Automorphisms of the endomorphism semigroup of a free commutative g-dimonoid

Yurii V. Zhuchok

Communicated by V. I. Sushchansky

ABSTRACT. We determine all isomorphisms between the endomorphism semigroups of free commutative *g*-dimonoids and prove that all automorphisms of the endomorphism semigroup of a free commutative *g*-dimonoid are quasi-inner.

1. Introduction

A dimonoid is an algebra (D, \dashv, \vdash) with two binary associative operations \dashv and \vdash such that for all $x, y, z \in D$ the following conditions hold:

(D_1)	$(x\dashv y)\dashv z = x\dashv (y\vdash z),$
(D_2)	$(x \vdash y) \dashv z = x \vdash (y \dashv z),$
(D_3)	$(x \dashv y) \vdash z = x \vdash (y \vdash z).$

This notion was introduced by Jean-Louis Loday in [1] and now it plays a prominent role in problems from the theory of Leibniz algebras. A vector space equipped with the structure of a dimonoid is called a *dialgebra*. Thus, a dialgebra is a linear analog of a dimonoid. It is known that Leibniz algebras are a non-commutative variation of Lie algebras and dialgebras are a variation of associative algebras.

²⁰¹⁰ MSC: 08A35, 08B20, 17A30.

Key words and phrases: g-dimonoid, free commutative g-dimonoid, endomorphism semigroup, automorphism group.

There exist some generalizations of dimonoids, for example, 0-dialgebras and duplexes (see, e.g., [2], [3]), g-dimonoids etc. Omitting the axiom (D_2) of an inner associativity in the definition of a dimonoid, we obtain the notion of a g-dimonoid. An associative 0-dialgebra, that is, a vector space equipped with two binary associative operations \dashv and \vdash satisfying the axioms (D_1) and (D_3) , is a linear analog of a g-dimonoid. Free g-dimonoids and free n-nilpotent g-dimonoids were constructed in [4], [5] and [5], respectively. The construction of a free commutative gdimonoid and the least commutative congruence on a free g-dimonoid were described in [6]. Defining identities of a g-dimonoid appear also in axioms of trialgebras and of trioids [7–9].

Endomorphism semigroups of algebraic systems have been studied by numerous authors. The problem of studying the endomorphism semigroup for free algebras in a certain variety was raised by B.I. Plotkin in his papers on universal algebraic geometry (see, e.g., [10], [11]). In this direction there are many papers devoted to describing automorphisms of endomorphism semigroups of free finitely generated universal algebras of some varieties: groups [12], semigroups [13], associative algebras [14], inverse semigroups [15], modules and semimodules [16], Lie algebras [17] and other algebras (see also [18]). In this paper we solve the similar problem for the variety of commutative g-dimonoids.

The paper is organized in the following way. In Section 2, we give necessary definitions and statements. In Section 3, we define the notion of a crossed isomorphism of g-dimonoids and prove auxiliary lemmas. In Section 4, we describe all isomorphisms between the endomorphism monoids of free commutative g-dimonoids of rank 1. In Section 5, we prove that automorphisms of the endomorphism semigroup of a free commutative g-dimonoid of a non-unity rank are inner or "mirror inner". We show also that the automorphism group of the endomorphism semigroup of a free commutative g-dimonoid is isomorphic to the direct product of a symmetric group and a 2-element group.

2. Preliminaries

Let $\mathfrak{D}_1 = (D_1, \dashv_1, \vdash_1)$ and $\mathfrak{D}_2 = (D_2, \dashv_2, \vdash_2)$ be arbitrary *g*-dimonoids. A mapping $\varphi : D_1 \to D_2$ is called a *homomorphism* of \mathfrak{D}_1 into \mathfrak{D}_2 if

$$(x \dashv_1 y)\varphi = x\varphi \dashv_2 y\varphi, \ (x \vdash_1 y)\varphi = x\varphi \vdash_2 y\varphi$$

for all $x, y \in D_1$.

A bijective homomorphism $\varphi: D_1 \to D_2$ is called an *isomorphism* of \mathfrak{D}_1 onto \mathfrak{D}_2 . In this case g-dimonoids \mathfrak{D}_1 and \mathfrak{D}_2 are called *isomorphic*. A g-dimonoid (D, \dashv, \vdash) is called *commutative* if for all $x, y \in D$,

$$x \dashv y = y \dashv x, \qquad x \vdash y = y \vdash x.$$

Firstly we give an example of a g-dimonoid which is not a dimonoid. Let A be an arbitrary nonempty set and $\overline{A} = \{\overline{x} \mid x \in A\}$. For every $x \in A$ assume $\tilde{\overline{x}} = x$ and introduce a mapping $\alpha = \alpha_A : A \cup \overline{A} \to A$ by the following rule:

$$y\alpha = \begin{cases} y, & y \in A, \\ \widetilde{y}, & y \in \overline{A}. \end{cases}$$

Give an arbitrary semigroup S and define operations \prec and \succ on $S \cup \overline{S}$ as follows:

$$a \prec b = (a\alpha_S)(b\alpha_S), \qquad a \succ b = \overline{(a\alpha_S)(b\alpha_S)}$$

for all $a, b \in S \cup \overline{S}$. The algebra $(S \cup \overline{S}, \prec, \succ)$ is denoted by $S^{(\alpha)}$.

Proposition 1 ([6]). $S^{(\alpha)}$ is a g-dimonoid but not a dimonoid.

We note that if X is a generating set of a semigroup S, then $S^{(\alpha)} \setminus \overline{X}$ is a g-subdimonoid of $S^{(\alpha)}$ generated by X.

For an arbitrary commutative semigroup S, obviously, $S^{(\alpha)}$ is a commutative g-dimonoid.

Recall the construction of a free commutative g-dimonoid. Let F[A] be the free commutative semigroup generated by a set A.

Theorem 1 ([6]). $F[A]^{(\alpha)} \setminus \overline{A}$ is the free commutative g-dimonoid.

Observe that A is a generating set of $F[A]^{(\alpha)} \setminus \overline{A}$, the cardinality of A is the rank of $F[A]^{(\alpha)} \setminus \overline{A}$ and this g-dimonoid is uniquely determined up to an isomorphism by |A|.

Further the free commutative g-dimonoid generated by A will be denoted by \mathfrak{FCD}_A^g .

In particular, we consider the free commutative g-dimonoid of rank 1. Let \mathbb{N} be the set of all natural numbers and $\mathbb{N}^* = (\mathbb{N} \cup \overline{\mathbb{N}}) \setminus {\overline{1}}$. Define operations \prec and \succ on \mathbb{N}^* by

$$\begin{split} m \prec n &= m + n, \qquad \overline{q} \prec \overline{r} = q + r, \\ m \prec \overline{r} &= m + r, \qquad \overline{q} \prec n = q + n, \\ a \succ b &= \overline{a \prec b}, \end{split}$$

for all $m, n \in \mathbb{N}, \overline{q}, \overline{r} \in \overline{\mathbb{N}} \setminus \{\overline{1}\}$ and $a, b \in \mathbb{N}^*$.

Proposition 2 ([6]). The free commutative g-dimonoid \mathfrak{FCD}^g_A of rank 1 is isomorphic to $(\mathbb{N}^*, \prec, \succ)$.

Recall that the content of $\omega = x_1 x_2 \dots x_n \in F[A]$ is the set $c(\omega) = \{x_1, x_2, \dots, x_n\}$ and the length of ω is the number $l(\omega) = n$.

For every $\omega \in \mathfrak{FCD}_A^g$, the set $c(\omega \alpha)$ and the number $l(\omega \alpha)$ we call the *content* and the *length* of ω , respectively, and denote it by $c(\omega)$ and $l(\omega)$. For example, for $w = \overline{bacda}$ we have $c(w) = \{a, b, c, d\}$ and l(w) = 5.

3. Auxiliary statements

We start this section with the following lemma.

Lemma 1. Let \mathfrak{FCD}_X^g and \mathfrak{FCD}_Y^g be free commutative g-dimonoids generated by X and Y, respectively. Every bijection $\varphi: X \to Y$ induces an isomorphism $\varepsilon_{\varphi}: \mathfrak{FCD}_X^g \to \mathfrak{FCD}_Y^g$ such that

$$\omega \varepsilon_{\varphi} = \begin{cases} x_1 \varphi \prec x_2 \varphi \prec \ldots \prec x_m \varphi, & \omega = x_1 x_2 \ldots x_m, \ m \ge 1, \\ x_1 \varphi \succ x_2 \varphi \succ \ldots \succ x_m \varphi, & \omega = \overline{x_1 x_2 \ldots x_m}, \ m > 1 \end{cases}$$

for all $\omega \in \mathfrak{FCD}_X^g$.

Proof. The proof of this statement is obvious.

Now we introduce the notion of a crossed isomorphism of g-dimonoids. A mapping $\varphi : D_1 \to D_2$ we call a *crossed homomorphism* of a g-dimonoid $\mathfrak{D}_1 = (D_1, \dashv_1, \vdash_1)$ into a g-dimonoid $\mathfrak{D}_2 = (D_2, \dashv_2, \vdash_2)$ if for all $x, y \in D_1$,

$$(x \dashv_1 y)\varphi = x\varphi \vdash_2 y\varphi, \qquad (x \vdash_1 y)\varphi = x\varphi \dashv_2 y\varphi.$$

A bijective crossed homomorphism $\varphi : D_1 \to D_2$ will be called a *crossed isomorphism* of \mathfrak{D}_1 onto \mathfrak{D}_2 . In such case *g*-dimonoids \mathfrak{D}_1 and \mathfrak{D}_2 we call *crossed isomorphic*.

An example of crossed isomorphic g-dimonoids gives the next lemma.

Lemma 2. Let \mathfrak{FCD}_X^g and \mathfrak{FCD}_Y^g be free commutative g-dimonoids generated by X and Y, respectively. Every bijection $\varphi: X \to Y$ induces a crossed isomorphism $\varepsilon_{\varphi}^*: \mathfrak{FCD}_X^g \to \mathfrak{FCD}_Y^g$ such that

$$\omega \varepsilon_{\varphi}^{*} = \begin{cases} x_{1} \varphi \succ x_{2} \varphi \succ \ldots \succ x_{m} \varphi, & \omega = x_{1} x_{2} \ldots x_{m}, \ m \ge 1, \\ x_{1} \varphi \prec x_{2} \varphi \prec \ldots \prec x_{m} \varphi, & \omega = \overline{x_{1} x_{2} \ldots x_{m}}, \ m > 1 \end{cases}$$

for all $\omega \in \mathfrak{FCD}_X^g$.

Proof. It is clear that ε_{φ}^* is a bijection. Take arbitrary $u, v \in \mathfrak{FCD}_X^g$ and consider the following cases.

Case 1. $u = u_1 u_2 \dots u_m, v = v_1 v_2 \dots v_n \in F[X]$, then

$$(u \prec v)\varepsilon_{\varphi}^{*} = (u\alpha v\alpha)\varepsilon_{\varphi}^{*} = (uv)\varepsilon_{\varphi}^{*}$$
$$= u_{1}\varphi \succ \ldots \succ u_{m}\varphi \succ v_{1}\varphi \succ \ldots \succ v_{n}\varphi = u\varepsilon_{\varphi}^{*} \succ v\varepsilon_{\varphi}^{*},$$

$$(u \succ v)\varepsilon_{\varphi}^{*} = (\overline{u\alpha v\alpha})\varepsilon_{\varphi}^{*} = (\overline{uv})\varepsilon_{\varphi}^{*}$$
$$= u_{1}\varphi \prec \ldots \prec u_{m}\varphi \prec v_{1}\varphi \prec \ldots \prec v_{n}\varphi$$
$$= \overline{u_{1}\varphi \ldots u_{m}\varphi} \prec \overline{v_{1}\varphi \ldots v_{n}\varphi} = u\varepsilon_{\varphi}^{*} \prec v\varepsilon_{\varphi}^{*}.$$

Case 2. $u = u_1 u_2 \dots u_m \in F[X], \overline{v} = \overline{v_1 v_2 \dots v_n} \in \overline{F[X]} \setminus \overline{X}$, then

$$(u \prec \overline{v})\varepsilon_{\varphi}^{*} = (uv)\varepsilon_{\varphi}^{*} = \overline{u_{1}\varphi \dots u_{m}\varphi v_{1}\varphi \dots v_{n}\varphi}$$
$$= \overline{u_{1}\varphi \dots u_{m}\varphi} \succ (v_{1}\varphi \dots v_{n}\varphi) = u\varepsilon_{\varphi}^{*} \succ \overline{v}\varepsilon_{\varphi}^{*}$$

$$(u \succ \overline{v})\varepsilon_{\varphi}^{*} = (\overline{uv})\varepsilon_{\varphi}^{*} = u_{1}\varphi \dots u_{m}\varphi v_{1}\varphi \dots v_{n}\varphi$$
$$= \overline{u_{1}\varphi \dots u_{m}\varphi} \prec (v_{1}\varphi \dots v_{n}\varphi) = u\varepsilon_{\varphi}^{*} \prec \overline{v}\varepsilon_{\varphi}^{*}.$$

Case 3, where $\overline{u} = \overline{u_1 u_2 \dots u_m} \in \overline{F[X]} \setminus \overline{X}, v = v_1 v_2 \dots v_n \in F[X]$, can be omited since operations \prec and \succ are commutative.

Case 4, where $\overline{u} = \overline{u_1 u_2 \dots u_m}, \overline{v} = \overline{v_1 v_2 \dots v_n} \in \overline{F[X]} \setminus \overline{X}$, is analogous to the case 1.

From cases 1–4 it follows that ε_{φ}^* is a crossed homomorphism which completes the proof of this statement.

For an arbitrary algebra A, we denote the endomorphism semigroup and the automorphism group of A by End(A) and Aut(A), respectively.

Anywhere the composition of mappings is defined from left to right.

Lemma 3. Let $\mathfrak{D}_1 = (D_1, \dashv_1, \vdash_1)$ and $\mathfrak{D}_2 = (D_2, \dashv_2, \vdash_2)$ be arbitrary g-dimonoids, and φ be any isomorphism or a crossed isomorphism of \mathfrak{D}_1 onto \mathfrak{D}_2 . The mapping

$$\Phi: f \mapsto f \Phi = \varphi^{-1} f \varphi, \quad f \in \operatorname{End}(\mathfrak{D}_1),$$

is an isomorphism of $\operatorname{End}(\mathfrak{D}_1)$ onto $\operatorname{End}(\mathfrak{D}_2)$.

Proof. Let φ be a crossed isomorphism of \mathfrak{D}_1 onto \mathfrak{D}_2 . Clearly, φ^{-1} is a crossed isomorphism of \mathfrak{D}_2 onto \mathfrak{D}_1 . For all $u, v \in D_2$ and $f \in \operatorname{End}(\mathfrak{D}_1)$,

$$(u \dashv_2 v)\varphi^{-1}f\varphi = (u\varphi^{-1} \vdash_1 v\varphi^{-1})f\varphi$$
$$= (u\varphi^{-1}f \vdash_1 v\varphi^{-1}f)\varphi = u(\varphi^{-1}f\varphi) \dashv_2 v(\varphi^{-1}f\varphi)$$

In similar way, $\varphi^{-1}f\varphi \in \operatorname{End}(D_2, \vdash_2)$ and so $f\Phi \in \operatorname{End}(\mathfrak{D}_2)$ for all $f \in \operatorname{End}(\mathfrak{D}_1)$. The remaining part of the proof is trivial.

We call Φ from Lemma 3 as the isomorphism induced by the isomorphism or the crossed isomorphism φ .

For an arbitrary nonempty set X the identity transformation of X is denoted by id_X . By Lemma 2, $\varepsilon_{id_X}^*$ is a crossed automorphism of the free commutative g-dimonoid \mathfrak{FCD}_X^g .

By Lemma 3, a transformation Φ_1 of the endomorphism monoid $\operatorname{End}(\mathfrak{FCD}^g_X)$ defined by $\eta \Phi_1 = (\varepsilon^*_{id_X})^{-1} \eta \varepsilon^*_{id_X}$ for all $\eta \in \operatorname{End}(\mathfrak{FCD}^g_X)$, is an automorphism. Obviously, $(\varepsilon^*_{id_X})^{-1} = \varepsilon^*_{id_X}$.

The automorphism Φ_1 we will call the *mirror automorphism* of the endomorphism monoid $\operatorname{End}(\mathfrak{FCD}_X^g)$. By Φ_0 we denote the identity automorphism of $\operatorname{End}(\mathfrak{FCD}_X^g)$. It is clear that $\{\Phi_0, \Phi_1\}$ is a group with respect to the composition of permutations.

Let \mathfrak{FCD}_X^g be the free commutative g-dimonoid generated by X. Each endomorphism ξ of \mathfrak{FCD}_X^g is uniquely determined by a mapping $\varphi: X \to \mathfrak{FCD}_X^g$. Really, to define ξ , it suffices to put

$$\omega\xi = \begin{cases} x_1\varphi \prec x_2\varphi \prec \ldots \prec x_m\varphi, & \omega = x_1x_2\ldots x_m, \ m \ge 1, \\ x_1\varphi \succ x_2\varphi \succ \ldots \succ x_m\varphi, & \omega = \overline{x_1x_2\ldots x_m}, \ m > 1 \end{cases}$$

for all $\omega \in \mathfrak{FCD}_X^g$.

In particular, an endomorphism ξ of \mathfrak{FCD}_X^g is an automorphism if and only if a restriction ξ on X belong to the symmetric group S(X). Therefore, the group $\operatorname{Aut}(\mathfrak{FCD}_X^g)$ is isomorphic to S(X) (see [6]).

Let $u \in \mathfrak{FCD}_X^g$. An endomorphism $\theta_u \in \operatorname{End}(\mathfrak{FCD}_X^g)$ is called *constant* if $x\theta_u = u$ for all $x \in X$.

Lemma 4. (i) Let $u \in \mathfrak{FCD}_X^g$, $\xi \in \operatorname{End}(\mathfrak{FCD}_X^g)$. Then $\theta_u \xi = \theta_{u\xi}$.

- (ii) An endomorphism ξ of \mathfrak{FCD}_X^g is constant if and only if $\psi\xi = \xi$ for all $\psi \in \operatorname{Aut}(\mathfrak{FCD}_X^g)$.
- (iii) An endomorphism ξ of \mathfrak{FCD}_X^g is constant idempotent if and only if $\xi = \theta_x$ for some $x \in X$.

Proof. (i) It is obvious.

(ii) Take a constant $\theta_u \in \operatorname{End}(\mathfrak{FCD}_X^g)$ for some $u \in \mathfrak{FCD}_X^g$, and let $\psi \in \operatorname{Aut}(\mathfrak{FCD}_X^g)$. Then $x(\psi\theta_u) = (x\psi) \theta_u = u = x\theta_u$ for all $x \in X$.

Now let $\psi \xi = \xi$ for all $\psi \in \operatorname{Aut}(\mathfrak{FCD}_X^g)$ and some $\xi \in \operatorname{End}(\mathfrak{FCD}_X^g)$. Fixing $x \in X$, we obtain $x\xi = x(\psi\xi) = (x\psi)\xi = y\xi$, where $y = x\psi$. Since $\{x\psi \mid \psi \in \operatorname{Aut}(\mathfrak{FCD}_X^g)\} = X$, then $x\xi = y\xi$ for all $y \in X$. Consequently, $\xi = \theta_u$ for $u = x\xi$.

(iii) Let $\xi \in \text{End}(\mathfrak{FCD}_X^g)$ be a constant idempotent. Then $\xi = \theta_u, u \in \mathfrak{FCD}_X^g$, and by (i) of this lemma, $\theta_u = \theta_u \theta_u = \theta_{u\theta_u}$. This implies $u = u\theta_u$ and, therefore, l(u) = 1 and $u \in X$. Converse is obvious.

4. The automorphism group of $\operatorname{End}(\mathfrak{FCD}_X^g), |X| = 1$

The free commutative g-dimonoid \mathfrak{FCD}_X^g on an *n*-element set X we denote by \mathfrak{FCD}_n^g . Recall that the g-dimonoid \mathfrak{FCD}_1^g is isomorphic to $(\mathbb{N}^*, \prec, \succ)$ (see Proposition 2). Therefore, we will identify elements of \mathfrak{FCD}_1^g with corresponding elements of $(\mathbb{N}^*, \prec, \succ)$.

Define a binary operation \odot on $\mathbb{N}^* = (\mathbb{N} \cup \overline{\mathbb{N}}) \setminus \{\overline{1}\}$ by

$$\begin{split} m \odot n = m \odot \overline{n} = m \cdot n, \qquad \overline{m} \odot n = \overline{m} \odot \overline{n} = \overline{m \cdot n}, \\ 1 \odot x = x \odot 1 = x \end{split}$$

for all $m, n \in \mathbb{N} \setminus \{1\}, \overline{m}, \overline{n} \in \overline{\mathbb{N}} \setminus \{\overline{1}\}$ and $x \in \mathbb{N}^*$.

Lemma 5. (i) The operation \odot is associative. (ii) The operation \odot is distributive with respect to \prec and \succ .

Proof. It can be verified directly.

From Lemma 5 (i) it follows that (\mathbb{N}^*, \odot) is a semigroup.

Lemma 6. The semigroups $\operatorname{End}(\mathfrak{FCD}_1^g)$ and (\mathbb{N}^*, \odot) are isomorphic.

Proof. Let φ be an arbitrary endomorphism of $(\mathbb{N}^*, \prec, \succ)$ and $1\varphi = k$ for some $k \in \mathbb{N}^*$. For all $a \in \mathbb{N}$ and $\overline{b} \in \overline{N} \setminus \{\overline{1}\}$ we obtain

$$a\varphi = (\underbrace{1 \prec 1 \prec \ldots \prec 1}_{a})\varphi = a \odot k, \quad \overline{b}\varphi = (\underbrace{1 \succ 1 \succ \ldots \succ 1}_{b})\varphi = \overline{b \odot k}.$$

Converse, any transformation $\varphi_k : \mathbb{N}^* \to \mathbb{N}^*, k \in \mathbb{N}^*$, defined by

$$a\varphi_k = a \odot k$$

is an endomorphism of $(\mathbb{N}^*, \prec, \succ)$. Indeed, using the condition (ii) of Lemma 5, for all $a, b \in \mathbb{N}^*$ and $\star \in \{\prec, \succ\}$ we obtain

$$(a \star b)\varphi_k = (a \star b) \odot k = (a \odot k) \star (b \odot k) = a\varphi_k \star b\varphi_k.$$

Consequently,

$$\operatorname{End}(\mathbb{N}^*, \prec, \succ) = \{\varphi_k \mid k \in \mathbb{N}^*\}.$$

Define a mapping Θ of $\operatorname{End}(\mathbb{N}^*, \prec, \succ)$ into (\mathbb{N}^*, \odot) by $\varphi_k \Theta = k$ for all $\varphi_k \in \operatorname{End}(\mathbb{N}^*, \prec, \succ)$. An immediate verification shows that Θ is an isomorphism.

Remark 1. Note that all endomorphisms of a *g*-dimonoid $(\mathbb{N}^*, \prec, \succ)$ are injective but they are not surjective (except an identity automorphism). So that the automorphism group of $(\mathbb{N}^*, \prec, \succ)$ is singleton.

Let \mathbb{P} be the set of all prime numbers, $\overline{\mathbb{P}} = \{\overline{x} \mid x \in \mathbb{P}\}\$ and $\mathbb{P}^* = \mathbb{P} \cup \overline{\mathbb{P}}$. For any mapping $f : A \to B$ and a nonempty subset $C \subseteq A$, we denote the restriction of f to C by $f|_C$.

Further let $A, B \subseteq N \setminus \{1\}, C \subseteq \overline{N} \setminus \{\overline{1}\}$ be nonempty subsets and $\varphi : A \to B, \psi : B \to C$ be arbitrary mappings. Denote by $\overline{\varphi}$ and $\overrightarrow{\psi}$ the mappings $\overline{A} \to \overline{B}$ and, respectively, $\overline{B} \to C\alpha$ (the mapping α was defined in Section 2) such that

$$\overline{a} \ \overline{\varphi} = \overline{b} \ if \ a\varphi = b \ and \ \overline{b} \ \overline{\psi} = c \ if \ b\psi = \overline{c}.$$

Proposition 3. Let $\operatorname{End}(\mathfrak{FCD}_X^g) \cong \operatorname{End}(\mathfrak{FCD}_Y^g)$, where X is a singleton set, Y is an arbitrary set. Then |Y| = 1 and the isomorphisms of $\operatorname{End}(\mathfrak{FCD}_X^g)$ onto $\operatorname{End}(\mathfrak{FCD}_Y^g)$ are in a natural one-to-one correspondence with permutations $f: \mathbb{P}^* \to \mathbb{P}^*$ such that

$$\mathbb{P}f = \mathbb{P}, f|_{\overline{\mathbb{P}}} = \overline{f|_{\mathbb{P}}} \ or \ \mathbb{P}f = \overline{\mathbb{P}}, f|_{\overline{\mathbb{P}}} = \overrightarrow{f|_{\mathbb{P}}}.$$

Proof. According to Lemma 6, $\operatorname{End}(\mathfrak{FCD}_1^g) \cong (\mathbb{N}^*, \odot)$. Let $|Y| \ge 2$ and $a, b \in Y, a \neq b$. Define a binary relation ρ on \mathbb{N}^* by

$$(a;b) \in \rho \Leftrightarrow a = b = 1 \text{ or } a \neq 1 \neq b, a \odot b = b \odot a.$$

Obviously, ρ is an equivalence and $\mathbb{N}^*/\rho = \{\mathbb{N} \setminus \{1\}, \overline{\mathbb{N}} \setminus \{\overline{1}\}, \{1\}\}$. Since $\operatorname{End}(\mathfrak{FCD}_Y^g) \cong (\mathbb{N}^*, \odot)$, we will use the relation ρ for $\operatorname{End}(\mathfrak{FCD}_Y^g)$ too. For constants $\theta_{ab}, \theta_a, \theta_{ab} \in \operatorname{End}(\mathfrak{FCD}_Y^g)$ and some $y \in Y$ we have

$$y(\theta_{\overline{ab}}\theta_a) = \overline{ab}\theta_a = \overline{aa} \neq \overline{ab} = a\theta_{\overline{ab}} = y(\theta_a\theta_{\overline{ab}}),$$
$$y(\theta_{\overline{ab}}\theta_{ab}) = \overline{ab}\theta_{ab} = \overline{abab} \neq abab = ab\theta_{\overline{ab}} = y(\theta_{ab}\theta_{\overline{ab}}),$$

therefore $(\theta_{\overline{ab}}, \theta_a) \notin \rho$ and $(\theta_{\overline{ab}}, \theta_{ab}) \notin \rho$. From here it follows that $(\theta_{ab}, \theta_a) \in \rho$ which contradicts the fact that $\theta_{ab}\theta_a \neq \theta_a\theta_{ab}$. Then |Y| = 1.

It is clear that the semigroup $(\mathbb{N}^* \setminus \{1\}, \odot)$ is generated by \mathbb{P}^* and $\mathbb{P}^* f = \mathbb{P}^*$ for all $f \in \operatorname{Aut}(\mathbb{N}^*, \odot)$. Assume that there exist $p, q \in \mathbb{P}$ such that $pf = p' \in \mathbb{P}$ and $qf = \overline{q'} \in \overline{\mathbb{P}}$ for some $f \in \operatorname{Aut}(\mathbb{N}^*, \odot)$. Then

$$p' \cdot q' = p' \odot \overline{q'} = (p \cdot q)f = (q \cdot p)f = \overline{q'} \odot p' = \overline{p' \cdot q'}.$$

It means that $\mathbb{P}f = \mathbb{P}$ and so $\overline{\mathbb{P}}f = \overline{\mathbb{P}}$, or $\mathbb{P}f = \overline{\mathbb{P}}$ and then $\overline{\mathbb{P}}f = \mathbb{P}$.

If $\mathbb{P}f = \mathbb{P}$, then for all $p \in \mathbb{P}$ we have $(pf)^2 = p^2 f = (p \odot \overline{p})f = pf \odot \overline{p}f$, whence $\overline{p}f = \overline{pf}$. Thus, $f|_{\overline{\mathbb{P}}} = \overline{f|_{\mathbb{P}}}$. In a similar way it can be shown that in the case $\mathbb{P}f = \overline{\mathbb{P}}$ we obtain $f|_{\overline{\mathbb{P}}} = \overline{f|_{\mathbb{P}}}$.

On the other hand, as it is not hard to check, every permutation $f: \mathbb{P}^* \to \mathbb{P}^*$ such that $\mathbb{P}f = \mathbb{P}, f|_{\overline{\mathbb{P}}} = \overline{f|_{\mathbb{P}}}$, or $\mathbb{P}f = \overline{\mathbb{P}}, f|_{\overline{\mathbb{P}}} = \overline{f|_{\mathbb{P}}}$, uniquely determines an automorphism of (\mathbb{N}^*, \odot) . These permutations and hence the isomorphisms $\operatorname{End}(\mathfrak{FCD}_X^g) \to \operatorname{End}(\mathfrak{FCD}_Y^g)$, are in a natural one-to-one correspondence.

An automorphism Φ : End(\mathfrak{FCD}_X^g) \rightarrow End(\mathfrak{FCD}_X^g) is called *quasi*inner if there exists a permutation α of \mathfrak{FCD}_X^g such that $\beta \Phi = \alpha^{-1}\beta \alpha$ for all $\beta \in$ End(\mathfrak{FCD}_X^g). If α turns out to be an automorphism of \mathfrak{FCD}_X^g , Φ is an inner automorphism of End(\mathfrak{FCD}_X^g).

We denote the symmetric group on a set X by S(X). A 2-element group with identity e is denoted by $C_2 = \{e, a\}$.

Proposition 4. Automorphisms of the monoid $\operatorname{End}(\mathfrak{FCD}_1^g)$ are quasiinner. In addition, the automorphism group of $\operatorname{End}(\mathfrak{FCD}_1^g)$ is isomorphic to the direct product $S(\mathbb{P}) \times C_2$.

Proof. Let Ψ : End(\mathfrak{FCD}_1^g) \to End(\mathfrak{FCD}_1^g) be an arbitrary automorphism. Define a bijection ψ : $N^* \to N^*$ putting $x\psi = y$ if $\varphi_x \Psi = \varphi_y$. It is clear that $\psi \in \operatorname{Aut}(\mathbb{N}^*, \odot)$, however $\psi \notin \operatorname{Aut}(\mathbb{N}^*, \prec, \succ)$ except the identity permutation (see Remark 1). Then for all $x \in N^*$ and some $\varphi_i \in \operatorname{End}(\mathfrak{FCD}_1^g), i \in N^*$, we have

$$\begin{aligned} x(\psi^{-1}\varphi_i\psi) &= (x\psi^{-1})\varphi_i\psi = ((x\psi^{-1})\odot i)\psi \\ &= (x\psi^{-1})\psi\odot i\psi = x\odot i\psi = x\varphi_{i\psi} \end{aligned}$$

Thus, $\psi^{-1}\varphi_i\psi = \varphi_i\Psi$ and Ψ is a quasi-inner automorphism.

The immediate check shows that a mapping Θ of $\operatorname{Aut}(\mathbb{N}^*, \odot)$ onto $S(\mathbb{P}) \times C_2$ defined as follows:

$$\xi \Theta = \begin{cases} (\xi|_P, e), & P\xi = P, \\ (\xi|_P, a), & P\xi = \overline{P} \end{cases}$$

for all $\xi \in Aut(\mathbb{N}^*, \odot)$, is an isomorphism.

By Lemma 6, $\operatorname{End}(\mathfrak{FCD}_1^g) \cong (\mathbb{N}^*, \odot)$, therefore $\operatorname{Aut}(\operatorname{End}(\mathfrak{FCD}_1^g))$ and $S(\mathbb{P}) \times C_2$ are isomorphic.

5. The automorphism group of $\operatorname{End}(\mathfrak{FCD}_X^g), |X| \ge 2$

An automorphism Ψ of the endomorphism monoid $\operatorname{End}(\mathfrak{FCD}_X^g)$ of the free commutative g-dimonoid \mathfrak{FCD}_X^g is called *stable* if Ψ induces the identity permutation of X, that is, $\theta_X \Psi = \theta_X$ for all $x \in X$.

Lemma 7. For all $u, v \in F[X] \setminus X$ the following equalities hold:

$$\theta_u \theta_v = \theta_u \theta_{\overline{v}} \text{ and } \theta_{\overline{u}} \theta_{\overline{v}} = \theta_{\overline{u}} \theta_v.$$

Proof. It is obvious.

Lemma 8. Let Ψ be a stable automorphism of $\operatorname{End}(\mathfrak{FCD}_X^g)$, $u, v \in F[X] \setminus X, x \in X \text{ and } \xi \in \operatorname{End}(\mathfrak{FCD}_X^g)$. Then

- (i) $\theta_{x\xi}\Psi = \theta_{x(\xi\Psi)};$
- (ii) $\theta_u \Psi = \theta_v$ implies $\theta_{\overline{u}} \Psi = \theta_{\overline{v}}$;
- (iii) $\theta_u \Psi = \theta_{\overline{v}} \text{ implies } \theta_{\overline{u}} \Psi = \theta_v.$

Proof. (i) By Lemma 4 (i), $\theta_{x\xi}\Psi = (\theta_x\xi)\Psi = \theta_x(\xi\Psi) = \theta_{x(\xi\Psi)}$.

(ii) Let $\theta_u \Psi = \theta_v$. By (i) of this lemma, $\theta_{\overline{u}} \Psi = \theta_w$ for some $w \in \mathfrak{FCD}_X^g$. Using Lemma 7, we obtain

$$\begin{aligned} \theta_{v^{l(v)}} &= \theta_{v}^{2} = (\theta_{u}\Psi)^{2} = (\theta_{u}^{2})\Psi \\ &= (\theta_{u}\theta_{\overline{u}})\Psi = \theta_{u}\Psi\theta_{\overline{u}}\Psi = \theta_{v}\theta_{w} = \theta_{w^{l(v)}}, \end{aligned}$$

where $w^{l(v)} = \underbrace{w \prec w \prec \ldots \prec w}_{l(v)}$. From here w = v or $w = \overline{v}$. In the first case we have $\theta_{\overline{u}}\Psi = \theta_v$ which contradicts to injectivity of Ψ , therefore $\theta_{\overline{u}}\Psi = \theta_{\overline{v}}$.

(iii) This statement is anologous to the case (ii).

An endomorphism θ of the free commutative g-dimonoid \mathfrak{FCD}_X^g is called *linear* if $x\theta \in X$ for all $x \in X$.

Lemma 9. Let Ψ be a stable automorphism of $\operatorname{End}(\mathfrak{FCD}_X^g)$, $u, v \in \mathfrak{FCD}_X^g$, $x \in X$ and $\xi \in \operatorname{End}(\mathfrak{FCD}_X^g)$. The following conditions hold:

- (i) $\xi \Psi = \xi$, if ξ is linear;
- (ii) c(u) = c(v), if $\theta_u \Psi = \theta_v$;
- (iii) $l(x\xi) = l(x(\xi\Psi)).$

Proof. (i) If ξ is linear, then $x\xi \in X$ for all $x \in X$. Hence by stability of Ψ , $\theta_{x(\xi\Psi)} = \theta_{x\xi}\Psi = \theta_{x\xi}$. From here, $\xi\Psi = \xi$.

(ii) Let $\theta_u \Psi = \theta_v$ and $c(u) \setminus c(v) \neq \emptyset$. We take $z \in c(u) \setminus c(v)$, and $x \in X, x \neq z$, and $\xi \in \text{End}(\mathfrak{FCD}_X^g)$ such that $z\xi = x$ and $y\xi = y$ for all $y \in X, y \neq z$. Then ξ is linear, $v\xi = v$ and

$$\theta_u \Psi = \theta_v = \theta_{v\xi} = \theta_v \xi = (\theta_u \Psi)(\xi \Psi) = (\theta_u \xi) \Psi = \theta_{u\xi} \Psi.$$

From here $\theta_u = \theta_{u\xi}$ and then $u = u\xi$ which contradicts to the definition of ξ , so $c(u) \setminus c(v) = \emptyset$. If $z \in c(v) \setminus c(u) \neq \emptyset$, $z \neq x$ and $\xi \in \operatorname{End}(\mathfrak{FCD}_X^g)$ the same as above, then

$$\theta_v = \theta_u \Psi = \theta_{u\xi} \Psi = (\theta_u \xi) \Psi = (\theta_u \Psi)(\xi \Psi) = \theta_v \xi = \theta_{v\xi},$$

whence $v = v\xi$ which contradicts to the definition of ξ . Thus, $c(v) \setminus c(u) = \emptyset$ and therefore, c(u) = c(v).

(iii) Let $\xi_1, \xi_2 \in \text{End}(\mathfrak{FCD}_X^g)$ such that $l(x\xi_1) = l(x\xi_2) = m$ and $l(x(\xi_1\Psi)) = r$, $l(x(\xi_2\Psi)) = s$. For all $t \in X$ we obtain

$$t(\theta_x\xi_1\theta_x) = (x\xi_1)\theta_x = \begin{cases} x^m = t\theta_{x^m}, & x\xi_1 \in F[X], \\ \overline{x^m} = t\theta_{\overline{x^m}}, & x\xi_1 \in \overline{F[X]} \setminus \overline{X}. \end{cases}$$

Analogously it is proved that $\theta_x \xi_2 \theta_x = \begin{cases} \theta_{x^m}, & x\xi_2 \in F[X], \\ \theta_{\overline{x^m}}, & x\xi_2 \in \overline{F[X]} \setminus \overline{X}. \end{cases}$

Consider following four cases.

Case 1. $x\xi_1, x\xi_2 \in F[X]$. Using that Ψ is stable, we have

$$\theta_{x^m}\Psi = (\theta_x\xi_1\theta_x)\Psi = \theta_x(\xi_1\Psi)\theta_x = \begin{cases} \theta_{x^r}, & x(\xi_1\Psi) \in F[X], \\ \theta_{\overline{x^r}}, & x(\xi_1\Psi) \in \overline{F[X]} \setminus \overline{X}, \end{cases}$$

$$\theta_{x^m}\Psi = (\theta_x\xi_2\theta_x)\Psi = \theta_x(\xi_2\Psi)\theta_x = \begin{cases} \theta_{x^s}, & x(\xi_2\Psi) \in F[X], \\ \theta_{\overline{x^s}}, & x(\xi_2\Psi) \in \overline{F[X]} \setminus \overline{X}. \end{cases}$$

If $x(\xi_1\Psi) \in F[X], x(\xi_2\Psi) \in \overline{F[X]} \setminus \overline{X}$ or $x(\xi_1\Psi) \in \overline{F[X]} \setminus \overline{X}, x(\xi_2\Psi) \in F[X]$, then we obtain $\theta_{x^r} = \theta_{\overline{x^s}}$ or $\theta_{\overline{x^r}} = \theta_{x^s}$ which is false. Otherwise, we have r = s.

Case 2. $x\xi_1, x\xi_2 \in \overline{F[X]} \setminus \overline{X}$. It is similar to the case 1. Case 3. $x\xi_1 \in F[X], x\xi_2 \in \overline{F[X]} \setminus \overline{X}$. Assume that $\theta_{x^m} \Psi = \theta_{x^r}$, then by (ii) of Lemma 8 we have $\theta_{\overline{x^m}} \Psi = \theta_{\overline{x^r}}$. On the other hand,

$$\theta_{\overline{x^m}}\Psi = (\theta_x\xi_2\theta_x)\Psi = \theta_x(\xi_2\Psi)\theta_x = \begin{cases} \theta_{x^s}, & x(\xi_2\Psi) \in F[X], \\ \theta_{\overline{x^s}}, & x(\xi_2\Psi) \in \overline{F[X]} \setminus \overline{X}. \end{cases}$$

For $x(\xi_2 \Psi) \in F[X]$ we obtain $\overline{x^r} = x^s$ which is false. If $x(\xi_2 \Psi) \in \overline{F[X]} \setminus \overline{X}$, then $\theta_{\overline{x^r}} = \theta_{\overline{x^s}}$, whence r = s.

In similar way we can show that r = s if $\theta_{x^m} \Psi = \theta_{\overline{x^r}}$.

Case 4. $x\xi_1 \in \overline{F[X]} \setminus \overline{X}, x\xi_2 \in F[X]$. It is analogous to the case 3.

Thus, cases 1-4 imply that r and s coincides.

Further, let A be a nonempty finite subset of X and

$$\operatorname{End}_{A}^{m}(x) = \{\xi \in \operatorname{End}(\mathfrak{FCD}_{X}^{g}) \mid l(x\xi) = m, c(x\xi) = A\}.$$

For $\theta_{x\xi} \in \operatorname{End}_A^m(x)$ by (i) of Lemma 8 we have $\theta_{x\xi}\Psi = \theta_{x(\xi\Psi)}$. By (ii) of given lemma, $c(x\xi) = c(x(\xi\Psi))$. Taking into account the previous arguments, there exists k such that $\operatorname{End}_A^m(x)\Psi \subseteq \operatorname{End}_A^k(x)$. Since Ψ is bijective, k = m. Thus, $l(x\xi) = l(x(\xi\Psi))$ for all $\xi \in \operatorname{End}(\mathfrak{FCD}_X^g)$ and $x \in X$.

Corollary 1. Let Ψ be a stable automorphism of $\operatorname{End}(\mathfrak{FCD}_X^g)$ and $x_1, x_2 \in X$ are distinct. Then

$$\theta_{x_1x_2}\Psi = \theta_{x_1x_2}$$
 or $\theta_{x_1x_2}\Psi = \theta_{\overline{x_1x_2}}$.

Proof. By Lemma 8 (i), $\theta_{x_1x_2}\Psi = \theta_u$ for some $u \in \mathfrak{FCD}_X^g$, and by (ii) of Lemma 9, $c(u) = \{x_1, x_2\}$. By (iii) of Lemma 9, l(u) = 2. Thus, $u = x_1x_2$ or $u = \overline{x_1x_2}$.

Lemma 10. Let Ψ be a stable automorphism of $\operatorname{End}(\mathfrak{FCD}_X^g)$ and $x_1, x_2 \in X$ are distinct. Then

- (i) $\theta_{x_1x_2}\Psi = \theta_{x_1x_2}$ implies $\Psi = \Phi_0$;
- (ii) $\theta_{x_1x_2}\Psi = \theta_{\overline{x_1x_2}}$ implies $\Psi = \Phi_1$.

Proof. (i) By induction on the length of u we show that $\theta_u \Psi = \theta_u$ for all $u \in F[X]$. By stability of Ψ , $\theta_x \Psi = \theta_x$ for all $x \in X$. Assume that $\theta_v \Psi = \theta_v$ for all $v \in F[X]$ with l(v) < n, and let $u = u_1 \dots u_n \in F[X]$, where $n \ge 2$. Let $v_1 = u_1 \dots u_{n-1}$, $v_2 = u_n$ and $f \in \operatorname{End}(\mathfrak{FO}_X^g)$ is such that $x_1f = v_1, x_2f = v_2$ and yf = y for all $y \in X \setminus \{x_1, x_2\}$. Then $x(\theta_{x_1x_2}f) = (x_1x_2)f = x_1fx_2f = u = x\theta_u$ for all $x \in X$.

By Lemma 8 (i) and the induction hypothesis, we have

$$\theta_{x_i(f\Psi)} = \theta_{x_if}\Psi = \theta_{v_i}\Psi = \theta_{v_i} = \theta_{x_if}, \quad i \in \{1, 2\},$$

$$\theta_{x(f\Psi)} = \theta_{xf}\Psi = \theta_x\Psi = \theta_x = \theta_{xf}, \quad x \in X \setminus \{x_1, x_2\}.$$

So, $f\Psi = f$ and then for all $u \in F[X]$ with $l(u) \ge 2$,

$$\theta_u \Psi = (\theta_{x_1 x_2} f) \Psi = (\theta_{x_1 x_2} \Psi)(f \Psi) = \theta_{x_1 x_2} f = \theta_u.$$

By (ii) of Lemma 8, $\theta_{\overline{u}}\Psi = \theta_{\overline{u}}$ for all $\overline{u} \in \overline{F[X]} \setminus \overline{X}$, so that $\theta_u \Psi = \theta_u$ for all $u \in \mathfrak{FCD}_X^g$. Now for all $x \in X$ and $\varphi \in \operatorname{End}(\mathfrak{FCD}_X^g)$,

$$\theta_{x(\varphi\Psi)} = \theta_{x\varphi}\Psi = \theta_{x\varphi}.$$

This implies $\varphi \Psi = \varphi$ for all $\varphi \in \operatorname{End}(\mathfrak{FCD}_X^g)$, that is, $\Psi = \Phi_0$.

(ii) Take the crossed automorphism $\varepsilon_{id_X}^*$ of \mathfrak{FCD}_X^g (see Lemma 2). For all $u \in \mathfrak{FCD}_X^g$ and $f \in \operatorname{End}(\mathfrak{FCD}_X^g)$ we use denotations $u^* = u\varepsilon_{id_X}^*$ and $f^* = (\varepsilon_{id_X}^*)^{-1} f \varepsilon_{id_X}^*$.

By induction on l(u) we show that $\theta_u \Psi = \theta_{u^*}$ for all $u \in F[X]$. The induction base follows from the fact that Ψ is stable.

Let us suppose that $\theta_v \Psi = \theta_{v^*}$ for all $v \in F[X]$ such that l(v) < n, and let $u = u_1 \dots u_n \in F[X], n \ge 2$. We put $v_1 = u_1, v_2 = u_2 \dots u_n$, and take the endomorphism f of \mathfrak{FCD}_X^g such that $x_1f = v_1, x_2f = v_2$, and yf = y for all $y \in X \setminus \{x_1, x_2\}$.

Similarly as in (i) of this lemma, we can show that $\theta_{x_1x_2}f = \theta_u$. By Lemma 8 (i) and the induction hypothesis,

$$\theta_{x_i(f\Psi)} = \theta_{x_if}\Psi = \theta_{v_i}\Psi = \theta_{v_i^*} = \theta_{x_if^*}, \quad i \in \{1, 2\},$$

$$\theta_{x(f\Psi)} = \theta_{xf}\Psi = \theta_x\Psi = \theta_{x^*} = \theta_{xf^*}, \quad x \in X \setminus \{x_1, x_2\}.$$

From here, $f\Psi = f^*$. Then for all $u \in F[X]$ with $l(u) \ge 2$,

$$\theta_u \Psi = (\theta_{x_1 x_2} f) \Psi = (\theta_{x_1 x_2} \Psi) (f \Psi) = \theta_{\overline{x_1 x_2}} f^* = \theta_{\overline{u}} = \theta_{u^*}.$$

Taking into account Lemma 8 (iii), $\theta_{\overline{u}}\Psi = \theta_u$ for all $\overline{u} \in \overline{F[X]} \setminus \overline{X}$. It means that $\theta_u \Psi = \theta_{u^*}$ for all $u \in \mathfrak{FCD}_X^g$.

Finally, for all $x \in X$ and $\varphi \in \operatorname{End}(\mathfrak{FCD}_X^g)$ we have

$$\theta_{x(\varphi\Psi)} = \theta_{x\varphi}\Psi = \theta_{(x\varphi)^*} = \theta_{x\varphi^*}.$$

Hence, $\varphi \Psi = \varphi^*$ for all $\varphi \in \operatorname{End}(\mathfrak{FCD}_X^g)$, that is, $\Psi = \Phi_1$.

Theorem 2. Let X be an arbitrary set with $|X| \ge 2$. Every isomorphism $\Phi : \operatorname{End}(\mathfrak{FCD}_X^g) \to \operatorname{End}(\mathfrak{FCD}_Y^g)$ is induced either by the isomorphism ε_f or by the crossed isomorphism ε_f^* of \mathfrak{FCD}_X^g onto \mathfrak{FCD}_Y^g for a uniquely determined bijection $f : X \to Y$.

Proof. Let Φ : End(\mathfrak{FCD}_X^g) \to End(\mathfrak{FCD}_Y^g) be an arbitrary isomorphism. In similar way as in the case of free abelian dimonoids (see [19, Theorem 3]), using Lemma 4 can be shown that for every $x \in X$ there exists $y \in Y$ such that $\theta_x \Phi = \theta_y$. Define a bijection $f : X \to Y$ putting xf = y if $\theta_x \Phi = \theta_y$. In this case we say that f is induced by Φ .

By Lemma 1, f induces the isomorphism $\varepsilon_f : \mathfrak{FCD}_X^g \to \mathfrak{FCD}_Y^g$. According to Lemma 3, $E_f : \eta \mapsto \varepsilon_f^{-1} \eta \varepsilon_f$ is an isomorphism of $\operatorname{End}(\mathfrak{FCD}_X^g)$ onto $\operatorname{End}(\mathfrak{FCD}_Y^g)$. From this it follows that the composition ΦE_f^{-1} is an automorphism of $\operatorname{End}(\mathfrak{FCD}_X^g)$.

Further for all $x \in X$ we have

$$\theta_x(\Phi E_f^{-1}) = (\theta_x \Phi) E_f^{-1} = \theta_{xf} E_f^{-1} = \theta_{(xf)f^{-1}} = \theta_x,$$

which implies stability of ΦE_f^{-1} .

Using Corollary 1 and Lemma 10, we obtain ΦE_f^{-1} is either the identity automorphism Φ_0 or the mirror automorphism Φ_1 . Assume, $\Phi E_f^{-1} = \Phi_0$, then $\Phi = E_f$ which means that Φ is an isomorphism induced by ε_f . If $\Phi E_f^{-1} = \Phi_1$, then $\Phi = \Phi_1 E_f$ which means that Φ is an isomorphism induced by ε_f^* .

The following statement gives the positive solution of the definability problem of free commutative g-dimonoids by its endomorphism semigroups.

Corollary 2. Let \mathfrak{FCD}_X^g and \mathfrak{FCD}_Y^g be free commutative g-dimonoids such that $\operatorname{End}(\mathfrak{FCD}_X^g) \cong \operatorname{End}(\mathfrak{FCD}_Y^g)$. Then \mathfrak{FCD}_X^g and \mathfrak{FCD}_Y^g are isomorphic.

Proof. As shown in the proof of Theorem 2, every isomorphism Φ : End(\mathfrak{FCD}_X^g) \rightarrow End(\mathfrak{FCD}_Y^g) induces a bijection $X \rightarrow Y$, therefore obviously we obtain $\mathfrak{FCD}_X^g \cong \mathfrak{FCD}_Y^g$.

We recall that an automorphism $\Phi : \operatorname{End}(\mathfrak{FCD}_X^g) \to \operatorname{End}(\mathfrak{FCD}_X^g)$ is quasi-inner if there exists $\alpha \in S(\mathfrak{FCD}_X^g)$ such that $\beta \Phi = \alpha^{-1}\beta\alpha$ for all $\beta \in \operatorname{End}(\mathfrak{FCD}_X^g)$.

At the end we consider the automorphism group of $\operatorname{End}(\mathfrak{FCD}^g_X)$.

- **Theorem 3.** Let X be an arbitrary set with $|X| \ge 2$. Then
 - (i) all automorphisms of $\operatorname{End}(\mathfrak{FCD}_X^g)$ are quasi-inner;
 - (ii) the automorphism group $\operatorname{Aut}(\operatorname{End}(\mathfrak{FCD}_X^g))$ is isomorphic to the direct product $S(X) \times C_2$.

Proof. (i) Let X = Y in Theorem 2, then it will be the part of Theorem 3. It is not hard to see that every automorphism Φ of $\operatorname{End}(\mathfrak{FCD}_X^g)$ is either an inner automorphism or the product of a mirror automorphism and an inner automorphism. Namely, we have $\Phi = E_{\varphi}$ or $\Phi = \Phi_1 E_{\varphi}$ for a suitable bijection $\varphi : X \to X$. It means that all automorphisms of $\operatorname{End}(\mathfrak{FCD}_X^g)$ are quasi-inner.

(ii) It is clear that the automorphism group $\{\Phi_0, \Phi_1\}$ of $\operatorname{End}(\mathfrak{FCD}_X^g)$ is isomorphic to C_2 . Define a mapping $\zeta : \operatorname{Aut}(\operatorname{End}(\mathfrak{FCD}_X^g)) \to S(X) \times C_2$ as follows:

$$\Phi \zeta = \begin{cases} (\varphi, \Phi_0), & \Phi = E_{\varphi}, \\ (\varphi, \Phi_1), & \Phi = \Phi_1 E_{\varphi} \end{cases}$$

for all $\Phi \in \operatorname{Aut}(\operatorname{End}(\mathfrak{FCD}_X^g))$.

It is easy to see that ζ is a bijection. Since for all $\varphi, \psi \in S(X)$ and $f \in \operatorname{End}(\mathfrak{FCD}_X^g)$,

$$f(E_{\varphi}E_{\psi}) = (\varepsilon_{\varphi}^{-1}f\varepsilon_{\varphi})E_{\psi} = (\varepsilon_{\varphi}\varepsilon_{\psi})^{-1}f(\varepsilon_{\varphi}\varepsilon_{\psi})$$
$$= \varepsilon_{\varphi\psi}^{-1}f\varepsilon_{\varphi\psi} = fE_{\varphi\psi}$$

and

$$f(E_{\varphi}\Phi_{1}) = (\varepsilon_{\varphi}^{-1}f\varepsilon_{\varphi})\Phi_{1} = (\varepsilon_{id_{X}}^{*}\varepsilon_{\varphi}^{-1})f(\varepsilon_{\varphi}\varepsilon_{id_{X}}^{*})$$
$$= (\varepsilon_{\varphi}^{-1}\varepsilon_{id_{X}}^{*})f(\varepsilon_{id_{X}}^{*}\varepsilon_{\varphi}) = (\varepsilon_{id_{X}}^{*}f\varepsilon_{id_{X}}^{*})E_{\varphi} = f(\Phi_{1}E_{\varphi}),$$

we obtain $E_{\varphi}E_{\psi} = E_{\varphi\psi}$ and $E_{\varphi}\Phi_1 = \Phi_1E_{\varphi}$.

The immediate check shows that ζ is a homomorphism.

References

- Loday J.-L., Dialgebras, in: Dialgebras and related operads, *Lect. Notes Math.* 1763, Springer-Verlag, Berlin, 2001, 7–66.
- [2] Pozhidaev A. P., 0-dialgebras with bar-unity and nonassociative Rota- Baxter algebras, Sib. Math. J. 50 (2009), no. 6, 1070–1080.
- [3] Pirashvili T., Sets with two associative operations, Cent. Eur. J. Math. 2 (2003), 169–183.
- [4] Movsisyan Y., Davidov S., Safaryan Mh., Construction of free g-dimonoids, Algebra and Discrete Math. 18 (2014), no. 1, 138–148.
- [5] Zhuchok Yul. V. On one class of algebras, Algebra and Discrete Math. 18:2 (2014), no. 2, 306--320.

- [6] Zhuchok A. V., Zhuchok Yu. V., Free commutative g-dimonoids, *Chebyshevskii Sb.* 16 (2015), no. 3, 276–284.
- [7] Loday J.-L., Ronco M. O., Trialgebras and families of polytopes, *Contemp. Math.* 346 (2004), 369–398.
- [8] Casas J. M., Trialgebras and Leibniz 3-algebras, Bolet??n de la Sociedad Matematica Mexicana 12 (2006), no. 2, 165–178.
- [9] Zhuchok Yu.V., The endomorphism monoid of a free troid of rank 1, Algebra Universalis, 2016. (to appear)
- [10] Plotkin B.I., Seven Lectures on the Universal Algebraic Geometry, Preprint, Institute of Mathematics, Hebrew University, 2000.
- [11] Plotkin B.I., Algebras with the same (algebraic) geometry, *Proc. of the Steklov Institute of Mathematics* **242** (2003), 176–207.
- [12] Formanek E., A question of B. Plotkin about the semigroup of endomorphisms of a free group, *Proc. American Math. Soc.* **130** (2001), 935–937.
- [13] Mashevitsky G., Schein B.M., Automorphisms of the endomorphism semigroup of a free monoid or a free semigroup. *Proc. American Math. Soc.* **131** (2003), no. 6, 1655–1660.
- [14] Kanel-Belov A., Berzins A., Lipyanski R., Automorphisms of the semigroup of endomorphisms of free associative algebras, arXiv:math/0512273v3 [math.RA], 2005.
- [15] Mashevitsky G., Schein B.M., Zhitomirski G.I., Automorphisms of the endomorphism semigroup of a free inverse semigroup, *Communic. in Algebra* 34 (2006), no. 10, 3569–3584.
- [16] Katsov Y., Lipyanski R., Plotkin B.I., Automorphisms of categories of free modules, free semimodules, and free Lie modules, *Communic. in Algebra* 35 (2007), no. 3, 931–952.
- [17] Mashevitzky G., Plotkin B., Plotkin E., Automorphisms of the category of free Lie algebras, J. of Algebra 282 (2004), 490–512.
- [18] Mashevitzky G., Plotkin B., Plotkin E., Automorphisms of categories of free algebras of varieties, *Electronic research announvements of American Math. Soc.* 8 (2002), 1–10.
- [19] Zhuchok Yu.V., Free abelian dimonoids, Algebra and Discrete Math. 20 (2015), no. 2, 330–342.

CONTACT INFORMATION

Yurii V. Zhuchok Kyiv National Taras Shevchenko University, Faculty of Mechanics and Mathematics, 64, Volodymyrska Street, Kyiv, Ukraine, 01601 *E-Mail(s)*: zhuchok.yu@gmail.com

Received by the editors: 12.04.2016 and in final form 30.05.2016.