Automorphisms of the endomorphism semigroup of a free commutative g-dimonoid

Yurii V. Zhuchok
Communicated by V. I. Sushchansky

Abstract. We determine all isomorphisms between the endomorphism semigroups of free commutative g-dimonoids and prove that all automorphisms of the endomorphism semigroup of a free commutative g-dimonoid are quasi-inner.

1. Introduction

A dimonoid is an algebra (D, \dashv, \vdash) with two binary associative operations \dashv and \vdash such that for all $x, y, z \in D$ the following conditions hold:

$\left(D_{1}\right)$	$(x \dashv y) \dashv z=x \dashv(y \vdash z)$,
$\left(D_{2}\right)$	$(x \vdash y) \dashv z=x \vdash(y \dashv z)$,
$\left(D_{3}\right)$	$(x \dashv y) \vdash z=x \vdash(y \vdash z)$.

This notion was introduced by Jean-Louis Loday in [1] and now it plays a prominent role in problems from the theory of Leibniz algebras. A vector space equipped with the structure of a dimonoid is called a dialgebra. Thus, a dialgebra is a linear analog of a dimonoid. It is known that Leibniz algebras are a non-commutative variation of Lie algebras and dialgebras are a variation of associative algebras.

[^0]There exist some generalizations of dimonoids, for example, 0 -dialgebras and duplexes (see, e.g., [2], [3]), g-dimonoids etc. Omitting the axiom $\left(D_{2}\right)$ of an inner associativity in the definition of a dimonoid, we obtain the notion of a g-dimonoid. An associative 0-dialgebra, that is, a vector space equipped with two binary associative operations \dashv and \vdash satisfying the axioms $\left(D_{1}\right)$ and $\left(D_{3}\right)$, is a linear analog of a g-dimonoid. Free g-dimonoids and free n-nilpotent g-dimonoids were constructed in [4], [5] and [5], respectively. The construction of a free commutative g dimonoid and the least commutative congruence on a free g-dimonoid were described in [6]. Defining identities of a g-dimonoid appear also in axioms of trialgebras and of trioids [7-9].

Endomorphism semigroups of algebraic systems have been studied by numerous authors. The problem of studying the endomorphism semigroup for free algebras in a certain variety was raised by B.I. Plotkin in his papers on universal algebraic geometry (see, e.g., [10], [11]). In this direction there are many papers devoted to describing automorphisms of endomorphism semigroups of free finitely generated universal algebras of some varieties: groups [12], semigroups [13], associative algebras [14], inverse semigroups [15], modules and semimodules [16], Lie algebras [17] and other algebras (see also [18]). In this paper we solve the similar problem for the variety of commutative g-dimonoids.

The paper is organized in the following way. In Section 2, we give necessary definitions and statements. In Section 3, we define the notion of a crossed isomorphism of g-dimonoids and prove auxiliary lemmas. In Section 4, we describe all isomorphisms between the endomorphism monoids of free commutative g-dimonoids of rank 1. In Section 5, we prove that automorphisms of the endomorphism semigroup of a free commutative g-dimonoid of a non-unity rank are inner or "mirror inner". We show also that the automorphism group of the endomorphism semigroup of a free commutative g-dimonoid is isomorphic to the direct product of a symmetric group and a 2 -element group.

2. Preliminaries

Let $\mathfrak{D}_{1}=\left(D_{1}, \dashv_{1}, \vdash_{1}\right)$ and $\mathfrak{D}_{2}=\left(D_{2}, \dashv_{2}, \vdash_{2}\right)$ be arbitrary g-dimonoids. A mapping $\varphi: D_{1} \rightarrow D_{2}$ is called a homomorphism of \mathfrak{D}_{1} into \mathfrak{D}_{2} if

$$
\left(x \dashv_{1} y\right) \varphi=x \varphi \dashv_{2} y \varphi, \quad\left(x \vdash_{1} y\right) \varphi=x \varphi \vdash_{2} y \varphi
$$

for all $x, y \in D_{1}$.

A bijective homomorphism $\varphi: D_{1} \rightarrow D_{2}$ is called an isomorphism of \mathfrak{D}_{1} onto \mathfrak{D}_{2}. In this case g-dimonoids \mathfrak{D}_{1} and \mathfrak{D}_{2} are called isomorphic.

A g-dimonoid (D, \dashv, \vdash) is called commutative if for all $x, y \in D$,

$$
x \dashv y=y \dashv x, \quad x \vdash y=y \vdash x
$$

Firstly we give an example of a g-dimonoid which is not a dimonoid.
Let A be an arbitrary nonempty set and $\bar{A}=\{\bar{x} \mid x \in A\}$. For every $x \in A$ assume $\widetilde{\bar{x}}=x$ and introduce a mapping $\alpha=\alpha_{A}: A \cup \bar{A} \rightarrow A$ by the following rule:

$$
y \alpha= \begin{cases}y, & y \in A \\ \widetilde{y}, & y \in \bar{A}\end{cases}
$$

Give an arbitrary semigroup S and define operations \prec and \succ on $S \cup \bar{S}$ as follows:

$$
a \prec b=\left(a \alpha_{S}\right)\left(b \alpha_{S}\right), \quad a \succ b=\overline{\left(a \alpha_{S}\right)\left(b \alpha_{S}\right)}
$$

for all $a, b \in S \cup \bar{S}$. The algebra $(S \cup \bar{S}, \prec, \succ)$ is denoted by $S^{(\alpha)}$.
Proposition 1 ([6]). $S^{(\alpha)}$ is a g-dimonoid but not a dimonoid.
We note that if X is a generating set of a semigroup S, then $S^{(\alpha)} \backslash \bar{X}$ is a g-subdimonoid of $S^{(\alpha)}$ generated by X.

For an arbitrary commutative semigroup S, obviously, $S^{(\alpha)}$ is a commutative g-dimonoid.

Recall the construction of a free commutative g-dimonoid. Let $F[A]$ be the free commutative semigroup generated by a set A.

Theorem 1 ([6]). $F[A]^{(\alpha)} \backslash \bar{A}$ is the free commutative g-dimonoid.
Observe that A is a generating set of $F[A]^{(\alpha)} \backslash \bar{A}$, the cardinality of A is the rank of $F[A]^{(\alpha)} \backslash \bar{A}$ and this g-dimonoid is uniquely determined up to an isomorphism by $|A|$.

Further the free commutative g-dimonoid generated by A will be denoted by $\mathfrak{F} \mathfrak{C} \mathfrak{D}_{A}^{g}$.

In particular, we consider the free commutative g-dimonoid of rank 1 . Let \mathbb{N} be the set of all natural numbers and $\mathbb{N}^{*}=(\mathbb{N} \cup \overline{\mathbb{N}}) \backslash\{\overline{1}\}$. Define operations \prec and \succ on \mathbb{N}^{*} by

$$
\begin{gathered}
m \prec n=m+n, \quad \bar{q} \prec \bar{r}=q+r, \\
m \prec \bar{r}=m+r, \quad \bar{q} \prec n=q+n, \\
a \succ b=\overline{a \prec b},
\end{gathered}
$$

for all $m, n \in \mathbb{N}, \bar{q}, \bar{r} \in \overline{\mathbb{N}} \backslash\{\overline{1}\}$ and $a, b \in \mathbb{N}^{*}$.

Proposition 2 ([6]). The free commutative g-dimonoid $\mathfrak{F} \mathfrak{C} \mathfrak{D}_{A}^{g}$ of rank 1 is isomorphic to $\left(\mathbb{N}^{*}, \prec, \succ\right)$.

Recall that the content of $\omega=x_{1} x_{2} \ldots x_{n} \in F[A]$ is the set $c(\omega)=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and the length of ω is the number $l(\omega)=n$.

For every $\omega \in \mathfrak{F} \mathfrak{C} \mathfrak{D}_{A}^{g}$, the set $c(\omega \alpha)$ and the number $l(\omega \alpha)$ we call the content and the length of ω, respectively, and denote it by $c(\omega)$ and $l(\omega)$. For example, for $w=\overline{b a c d a}$ we have $c(w)=\{a, b, c, d\}$ and $l(w)=5$.

3. Auxiliary statements

We start this section with the following lemma.
Lemma 1. Let $\mathfrak{F C D} D_{X}^{g}$ and $\mathfrak{F C D} \mathfrak{D}_{Y}^{g}$ be free commutative g-dimonoids generated by X and Y, respectively. Every bijection $\varphi: X \rightarrow Y$ induces an isomorphism $\varepsilon_{\varphi}: \mathfrak{F C} \mathfrak{D}_{X}^{g} \rightarrow \mathfrak{F C D} \mathfrak{D}_{Y}^{g}$ such that

$$
\omega \varepsilon_{\varphi}= \begin{cases}x_{1} \varphi \prec x_{2} \varphi \prec \ldots \prec x_{m} \varphi, \quad \omega=x_{1} x_{2} \ldots x_{m}, m \geqslant 1 \\ x_{1} \varphi \succ x_{2} \varphi \succ \ldots \succ x_{m} \varphi, \quad \omega=x_{1} x_{2} \ldots x_{m}, m>1\end{cases}
$$

for all $\omega \in \mathfrak{F C D} D_{X}^{g}$.
Proof. The proof of this statement is obvious.
Now we introduce the notion of a crossed isomorphism of g-dimonoids. A mapping $\varphi: D_{1} \rightarrow D_{2}$ we call a crossed homomorphism of a g-dimonoid $\mathfrak{D}_{1}=\left(D_{1}, \dashv_{1}, \vdash_{1}\right)$ into a g-dimonoid $\mathfrak{D}_{2}=\left(D_{2}, \dashv_{2}, \vdash_{2}\right)$ if for all $x, y \in D_{1}$,

$$
\left(x \dashv_{1} y\right) \varphi=x \varphi \vdash_{2} y \varphi, \quad\left(x \vdash_{1} y\right) \varphi=x \varphi \dashv_{2} y \varphi
$$

A bijective crossed homomorphism $\varphi: D_{1} \rightarrow D_{2}$ will be called a crossed isomorphism of \mathfrak{D}_{1} onto \mathfrak{D}_{2}. In such case g-dimonoids \mathfrak{D}_{1} and \mathfrak{D}_{2} we call crossed isomorphic.

An example of crossed isomorphic g-dimonoids gives the next lemma.
Lemma 2. Let $\mathfrak{F C D} D_{X}^{g}$ and $\mathfrak{F C D}_{Y}^{g}$ be free commutative g-dimonoids generated by X and Y, respectively. Every bijection $\varphi: X \rightarrow Y$ induces a crossed isomorphism $\varepsilon_{\varphi}^{*}: \mathfrak{F C} \mathfrak{D}_{X}^{g} \rightarrow \mathfrak{F C} \mathfrak{D}_{Y}^{g}$ such that

$$
\omega \varepsilon_{\varphi}^{*}= \begin{cases}x_{1} \varphi \succ x_{2} \varphi \succ \ldots \succ x_{m} \varphi, \quad \omega=x_{1} x_{2} \ldots x_{m}, m \geqslant 1 \\ x_{1} \varphi \prec x_{2} \varphi \prec \ldots \prec x_{m} \varphi, \quad \omega=x_{1} x_{2} \ldots x_{m}, m>1\end{cases}
$$

for all $\omega \in \mathfrak{F C D} D_{X}^{g}$.

Proof. It is clear that $\varepsilon_{\varphi}^{*}$ is a bijection. Take arbitrary $u, v \in \mathfrak{F C D}{ }_{X}^{g}$ and consider the following cases.
Case 1. $u=u_{1} u_{2} \ldots u_{m}, v=v_{1} v_{2} \ldots v_{n} \in F[X]$, then

$$
\begin{aligned}
(u \prec v) \varepsilon_{\varphi}^{*} & =(u \alpha v \alpha) \varepsilon_{\varphi}^{*}=(u v) \varepsilon_{\varphi}^{*} \\
& =u_{1} \varphi \succ \ldots \succ u_{m} \varphi \succ v_{1} \varphi \succ \ldots \succ v_{n} \varphi=u \varepsilon_{\varphi}^{*} \succ v \varepsilon_{\varphi}^{*} \\
(u \succ v) \varepsilon_{\varphi}^{*} & =(\overline{u \alpha v \alpha}) \varepsilon_{\varphi}^{*}=(\overline{u v}) \varepsilon_{\varphi}^{*} \\
& =u_{1} \varphi \prec \ldots \prec u_{m} \varphi \prec v_{1} \varphi \prec \ldots \prec v_{n} \varphi \\
& =\overline{u_{1} \varphi \ldots u_{m} \varphi} \prec \overline{v_{1} \varphi \ldots v_{n} \varphi}=u \varepsilon_{\varphi}^{*} \prec v \varepsilon_{\varphi}^{*} .
\end{aligned}
$$

Case 2. $u=u_{1} u_{2} \ldots u_{m} \in F[X], \bar{v}=\overline{v_{1} v_{2} \ldots v_{n}} \in \overline{F[X]} \backslash \bar{X}$, then

$$
\begin{aligned}
(u \prec \bar{v}) \varepsilon_{\varphi}^{*} & =(u v) \varepsilon_{\varphi}^{*}=\overline{u_{1} \varphi \ldots u_{m} \varphi v_{1} \varphi \ldots v_{n} \varphi} \\
& =\overline{u_{1} \varphi \ldots u_{m} \varphi} \succ\left(v_{1} \varphi \ldots v_{n} \varphi\right)=u \varepsilon_{\varphi}^{*} \succ \bar{v} \varepsilon_{\varphi}^{*}, \\
(u \succ \bar{v}) \varepsilon_{\varphi}^{*} & =(\overline{u v}) \varepsilon_{\varphi}^{*}=u_{1} \varphi \ldots u_{m} \varphi v_{1} \varphi \ldots v_{n} \varphi \\
& =\overline{u_{1} \varphi \ldots u_{m} \varphi} \prec\left(v_{1} \varphi \ldots v_{n} \varphi\right)=u \varepsilon_{\varphi}^{*} \prec \bar{v} \varepsilon_{\varphi}^{*} .
\end{aligned}
$$

Case 3, where $\bar{u}=\overline{u_{1} u_{2} \ldots u_{m}} \in \overline{F[X]} \backslash \bar{X}, v=v_{1} v_{2} \ldots v_{n} \in F[X]$, can be omited since operations \prec and \succ are commutative.
Case 4, where $\bar{u}=\overline{u_{1} u_{2} \ldots u_{m}}, \bar{v}=\overline{v_{1} v_{2} \ldots v_{n}} \in \overline{F[X]} \backslash \bar{X}$, is analogous to the case 1.

From cases $1-4$ it follows that $\varepsilon_{\varphi}^{*}$ is a crossed homomorphism which completes the proof of this statement.

For an arbitrary algebra A, we denote the endomorphism semigroup and the automorphism group of A by $\operatorname{End}(A)$ and $\operatorname{Aut}(A)$, respectively.

Anywhere the composition of mappings is defined from left to right.
Lemma 3. Let $\mathfrak{D}_{1}=\left(D_{1}, \dashv_{1}, \vdash_{1}\right)$ and $\mathfrak{D}_{2}=\left(D_{2}, \dashv_{2}, \vdash_{2}\right)$ be arbitrary g-dimonoids, and φ be any isomorphism or a crossed isomorphism of \mathfrak{D}_{\perp} onto \mathfrak{D}_{2}. The mapping

$$
\Phi: f \mapsto f \Phi=\varphi^{-1} f \varphi, \quad f \in \operatorname{End}\left(\mathfrak{D}_{1}\right)
$$

is an isomorphism of $\operatorname{End}\left(\mathfrak{D}_{1}\right)$ onto $\operatorname{End}\left(\mathfrak{D}_{2}\right)$.

Proof. Let φ be a crossed isomorphism of \mathfrak{D}_{1} onto \mathfrak{D}_{2}. Clearly, φ^{-1} is a crossed isomorphism of \mathfrak{D}_{2} onto \mathfrak{D}_{1}. For all $u, v \in D_{2}$ and $f \in \operatorname{End}\left(\mathfrak{D}_{1}\right)$,

$$
\begin{aligned}
\left(u \dashv_{2} v\right) \varphi^{-1} f \varphi & =\left(u \varphi^{-1} \vdash_{1} v \varphi^{-1}\right) f \varphi \\
& =\left(u \varphi^{-1} f \vdash_{1} v \varphi^{-1} f\right) \varphi=u\left(\varphi^{-1} f \varphi\right) \dashv_{2} v\left(\varphi^{-1} f \varphi\right)
\end{aligned}
$$

In similar way, $\varphi^{-1} f \varphi \in \operatorname{End}\left(D_{2}, \vdash_{2}\right)$ and so $f \Phi \in \operatorname{End}\left(\mathfrak{D}_{2}\right)$ for all $f \in \operatorname{End}\left(\mathfrak{D}_{1}\right)$. The remaining part of the proof is trivial.

We call Φ from Lemma 3 as the isomorphism induced by the isomorphism or the crossed isomorphism φ.

For an arbitrary nonempty set X the identity transformation of X is denoted by $i d_{X}$. By Lemma $2, \varepsilon_{i d_{X}}^{*}$ is a crossed automorphism of the free commutative g-dimonoid $\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}$.

By Lemma 3, a transformation Φ_{1} of the endomorphism monoid $\operatorname{End}\left(\mathfrak{F C D} D_{X}^{g}\right)$ defined by $\eta \Phi_{1}=\left(\varepsilon_{i d_{X}}^{*}\right)^{-1} \eta \varepsilon_{i d_{X}}^{*}$ for all $\eta \in \operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{X}^{g}\right)$, is an automorphism. Obviously, $\left(\varepsilon_{i d_{X}}^{*}\right)^{-1}=\varepsilon_{i d_{X}}^{*}$.

The automorphism Φ_{1} we will call the mirror automorphism of the endomorphism monoid $\operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}\right)$. By Φ_{0} we denote the identity automorphism of $\operatorname{End}\left(\mathfrak{F C D}_{X}^{g}\right)$. It is clear that $\left\{\Phi_{0}, \Phi_{1}\right\}$ is a group with respect to the composition of permutations.

Let $\mathfrak{F} \mathfrak{D} D_{X}^{g}$ be the free commutative g-dimonoid generated by X. Each endomorphism ξ of $\mathfrak{F C} \mathfrak{D}_{X}^{g}$ is uniquely determined by a mapping $\varphi: X \rightarrow$ $\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}$. Really, to define ξ, it suffices to put

$$
\omega \xi= \begin{cases}x_{1} \varphi \prec x_{2} \varphi \prec \ldots \prec x_{m} \varphi, & \omega=x_{1} x_{2} \ldots x_{m}, m \geqslant 1 \\ x_{1} \varphi \succ x_{2} \varphi \succ \ldots \succ x_{m} \varphi, & \omega=\overline{x_{1} x_{2} \ldots x_{m}}, m>1\end{cases}
$$

for all $\omega \in \mathfrak{F C D} D_{X}^{g}$.
In particular, an endomorphism ξ of $\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}$ is an automorphism if and only if a restriction ξ on X belong to the symmetric group $S(X)$. Therefore, the group $\operatorname{Aut}\left(\mathfrak{F C D}_{X}^{g}\right)$ is isomorphic to $S(X)$ (see [6]).

Let $u \in \mathfrak{F C} \mathfrak{D}_{X}^{g}$. An endomorphism $\theta_{u} \in \operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}\right)$ is called constant if $x \theta_{u}=u$ for all $x \in X$.

Lemma 4. (i) Let $u \in \mathfrak{F C D}{ }_{X}^{g}, \xi \in \operatorname{End}\left(\mathfrak{F C D}_{X}^{g}\right)$. Then $\theta_{u} \xi=\theta_{u \xi}$.
(ii) An endomorphism ξ of $\mathfrak{F C} \mathfrak{D}_{X}^{g}$ is constant if and only if $\psi \xi=\xi$ for all $\psi \in \operatorname{Aut}\left(\mathfrak{F C D} \mathfrak{D}_{X}^{g}\right)$.
(iii) An endomorphism ξ of $\mathfrak{F C} \mathfrak{D}_{X}^{g}$ is constant idempotent if and only if $\xi=\theta_{x}$ for some $x \in X$.

Proof. (i) It is obvious.
(ii) Take a constant $\theta_{u} \in \operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{X}^{g}\right)$ for some $u \in \mathfrak{F C} \mathfrak{D}_{X}^{g}$, and let $\psi \in \operatorname{Aut}\left(\mathfrak{F} \mathfrak{C} D_{X}^{g}\right)$. Then $x\left(\psi \theta_{u}\right)=(x \psi) \theta_{u}=u=x \theta_{u}$ for all $x \in X$.

Now let $\psi \xi=\xi$ for all $\psi \in \operatorname{Aut}\left(\mathfrak{F C D} D_{X}^{g}\right)$ and some $\xi \in \operatorname{End}\left(\mathfrak{F C D} \mathfrak{D}_{X}^{g}\right)$. Fixing $x \in X$, we obtain $x \xi=x(\psi \xi)=(x \psi) \xi=y \xi$, where $y=x \psi$. Since $\left\{x \psi \mid \psi \in \operatorname{Aut}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}\right)\right\}=X$, then $x \xi=y \xi$ for all $y \in X$. Consequently, $\xi=\theta_{u}$ for $u=x \xi$.
(iii) Let $\xi \in \operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}\right)$ be a constant idempotent. Then $\xi=\theta_{u}, u \in$ $\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}$, and by (i) of this lemma, $\theta_{u}=\theta_{u} \theta_{u}=\theta_{u \theta_{u}}$. This implies $u=u \theta_{u}$ and, therefore, $l(u)=1$ and $u \in X$. Converse is obvious.

4. The automorphism group of $\operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}\right),|X|=1$

The free commutative g-dimonoid $\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}$ on an n-element set X we denote by $\mathfrak{F C} \mathfrak{D}_{n}^{g}$. Recall that the g-dimonoid $\mathfrak{F} \mathfrak{C} \mathfrak{D}_{1}^{g}$ is isomorphic to $\left(\mathbb{N}^{*}, \prec, \succ\right)$ (see Proposition 2). Therefore, we will identify elements of $\mathfrak{F} \mathfrak{C} \mathfrak{D}_{1}^{g}$ with corresponding elements of $\left(\mathbb{N}^{*}, \prec, \succ\right)$.

Define a binary operation \odot on $\mathbb{N}^{*}=(\mathbb{N} \cup \overline{\mathbb{N}}) \backslash\{\overline{1}\}$ by

$$
\begin{gathered}
m \odot n=m \odot \bar{n}=m \cdot n, \quad \bar{m} \odot n=\bar{m} \odot \bar{n}=\overline{m \cdot n}, \\
1 \odot x=x \odot 1=x
\end{gathered}
$$

for all $m, n \in \mathbb{N} \backslash\{1\}, \bar{m}, \bar{n} \in \overline{\mathbb{N}} \backslash\{\overline{1}\}$ and $x \in \mathbb{N}^{*}$.
Lemma 5. (i) The operation \odot is associative.
(ii) The operation \odot is distributive with respect to \prec and \succ.

Proof. It can be verified directly.
From Lemma 5 (i) it follows that $\left(\mathbb{N}^{*}, \odot\right)$ is a semigroup.
Lemma 6. The semigroups $\operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{1}^{g}\right)$ and $\left(\mathbb{N}^{*}, \odot\right)$ are isomorphic.
Proof. Let φ be an arbitrary endomorphism of $\left(\mathbb{N}^{*}, \prec, \succ\right)$ and $1 \varphi=k$ for some $k \in \mathbb{N}^{*}$. For all $a \in \mathbb{N}$ and $\bar{b} \in \bar{N} \backslash\{\overline{1}\}$ we obtain

$$
a \varphi=(\underbrace{1 \prec 1 \prec \ldots \prec 1}_{a}) \varphi=a \odot k, \quad \bar{b} \varphi=(\underbrace{1 \succ 1 \succ \ldots \succ 1}_{b}) \varphi=\overline{b \odot k} .
$$

Converse, any transformation $\varphi_{k}: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}, k \in \mathbb{N}^{*}$, defined by

$$
a \varphi_{k}=a \odot k
$$

is an endomorphism of ($\left.\mathbb{N}^{*}, \prec, \succ\right)$. Indeed, using the condition (ii) of Lemma 5 , for all $a, b \in \mathbb{N}^{*}$ and $\star \in\{\prec, \succ\}$ we obtain

$$
(a \star b) \varphi_{k}=(a \star b) \odot k=(a \odot k) \star(b \odot k)=a \varphi_{k} \star b \varphi_{k} .
$$

Consequently,

$$
\operatorname{End}\left(\mathbb{N}^{*}, \prec, \succ\right)=\left\{\varphi_{k} \mid k \in \mathbb{N}^{*}\right\}
$$

Define a mapping Θ of $\operatorname{End}\left(\mathbb{N}^{*}, \prec, \succ\right)$ into $\left(\mathbb{N}^{*}, \odot\right)$ by $\varphi_{k} \Theta=k$ for all $\varphi_{k} \in \operatorname{End}\left(\mathbb{N}^{*}, \prec, \succ\right)$. An immediate verification shows that Θ is an isomorphism.

Remark 1. Note that all endomorphisms of a g-dimonoid $\left(\mathbb{N}^{*}, \prec, \succ\right)$ are injective but they are not surjective (except an identity automorphism). So that the automorphism group of ($\mathbb{N}^{*}, \prec, \succ$) is singleton.

Let \mathbb{P} be the set of all prime numbers, $\overline{\mathbb{P}}=\{\bar{x} \mid x \in \mathbb{P}\}$ and $\mathbb{P}^{*}=\mathbb{P} \cup \overline{\mathbb{P}}$. For any mapping $f: A \rightarrow B$ and a nonempty subset $C \subseteq A$, we denote the restriction of f to C by $\left.f\right|_{C}$.

Further let $A, B \subseteq N \backslash\{1\}, C \subseteq \bar{N} \backslash\{\overline{1}\}$ be nonempty subsets and $\varphi: A \rightarrow B, \psi: B \rightarrow C$ be arbitrary mappings. Denote by $\bar{\varphi}$ and $\vec{\psi}$ the mappings $\bar{A} \rightarrow \bar{B}$ and, respectively, $\bar{B} \rightarrow C \alpha$ (the mapping α was defined in Section 2) such that

$$
\bar{a} \bar{\varphi}=\bar{b} \text { if } a \varphi=b \text { and } \bar{b} \vec{\psi}=c \text { if } b \psi=\bar{c}
$$

Proposition 3. Let $\operatorname{End}\left(\mathfrak{F C D} \mathfrak{D}_{X}^{g}\right) \cong \operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{Y}^{g}\right)$, where X is a singleton set, Y is an arbitrary set. Then $|Y|=1$ and the isomorphisms of $\operatorname{End}\left(\mathfrak{F C D} \mathfrak{D}_{X}^{g}\right)$ onto $\operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{Y}^{g}\right)$ are in a natural one-to-one correspondence with permutations $f: \mathbb{P}^{*} \rightarrow \mathbb{P}^{*}$ such that

$$
\mathbb{P} f=\mathbb{P},\left.f\right|_{\overline{\mathbb{P}}}=\overline{\left.f\right|_{\mathbb{P}}} \text { or } \mathbb{P} f=\overline{\mathbb{P}},\left.f\right|_{\overline{\mathbb{P}}}=\overrightarrow{\left.f\right|_{\mathbb{P}}}
$$

Proof. According to Lemma 6, $\operatorname{End}\left(\mathfrak{F} \mathfrak{D} \mathfrak{D}_{1}^{g}\right) \cong\left(\mathbb{N}^{*}, \odot\right)$. Let $|Y| \geqslant 2$ and $a, b \in Y, a \neq b$. Define a binary relation ρ on \mathbb{N}^{*} by

$$
(a ; b) \in \rho \Leftrightarrow a=b=1 \text { or } a \neq 1 \neq b, a \odot b=b \odot a .
$$

Obviously, ρ is an equivalence and $\mathbb{N}^{*} / \rho=\{\mathbb{N} \backslash\{1\}, \overline{\mathbb{N}} \backslash\{\overline{1}\},\{1\}\}$. Since $\operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{Y}^{g}\right) \cong\left(\mathbb{N}^{*}, \odot\right)$, we will use the relation ρ for $\operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{Y}^{g}\right)$ too. For constants $\theta_{\overline{a b}}, \theta_{a}, \theta_{a b} \in \operatorname{End}\left(\mathfrak{F C D} D_{Y}^{g}\right)$ and some $y \in Y$ we have

$$
\begin{gathered}
y\left(\theta_{\overline{a b}} \theta_{a}\right)=\overline{a b} \theta_{a}=\overline{a a} \neq \overline{a b}=a \theta_{\overline{a b}}=y\left(\theta_{a} \theta_{\overline{a b}}\right), \\
y\left(\theta_{\overline{a b}} \theta_{a b}\right)=\overline{a b} \theta_{a b}=\overline{a b a b} \neq a b a b=a b \theta_{\overline{a b}}=y\left(\theta_{a b} \theta_{\overline{a b}}\right),
\end{gathered}
$$

therefore $\left(\theta_{\overline{a b}}, \theta_{a}\right) \notin \rho$ and $\left(\theta_{\overline{a b}}, \theta_{a b}\right) \notin \rho$. From here it follows that $\left(\theta_{a b}, \theta_{a}\right) \in \rho$ which contradicts the fact that $\theta_{a b} \theta_{a} \neq \theta_{a} \theta_{a b}$. Then $|Y|=1$.

It is clear that the semigroup $\left(\mathbb{N}^{*} \backslash\{1\}, \odot\right)$ is generated by \mathbb{P}^{*} and $\mathbb{P}^{*} f=\mathbb{P}^{*}$ for all $f \in \operatorname{Aut}\left(\mathbb{N}^{*}, \odot\right)$. Assume that there exist $p, q \in \mathbb{P}$ such that $p f=p^{\prime} \in \mathbb{P}$ and $q f=\overline{q^{\prime}} \in \overline{\mathbb{P}}$ for some $f \in \operatorname{Aut}\left(\mathbb{N}^{*}, \odot\right)$. Then

$$
p^{\prime} \cdot q^{\prime}=p^{\prime} \odot \overline{q^{\prime}}=(p \cdot q) f=(q \cdot p) f=\overline{q^{\prime}} \odot p^{\prime}=\overline{p^{\prime} \cdot q^{\prime}}
$$

It means that $\mathbb{P} f=\mathbb{P}$ and so $\overline{\mathbb{P}} f=\overline{\mathbb{P}}$, or $\mathbb{P} f=\overline{\mathbb{P}}$ and then $\overline{\mathbb{P}} f=\mathbb{P}$.
If $\mathbb{P} f=\mathbb{P}$, then for all $p \in \mathbb{P}$ we have $(p f)^{2}=p^{2} f=(p \odot \bar{p}) f=p f \odot \bar{p} f$, whence $\bar{p} f=\overline{p f}$. Thus, $\left.f\right|_{\overline{\mathbb{P}}}=\overline{\left.f\right|_{\mathbb{P}}}$. In a similar way it can be shown that in the case $\mathbb{P} f=\overline{\mathbb{P}}$ we obtain $\left.f\right|_{\overline{\mathbb{P}}}=\overrightarrow{\left.f\right|_{\mathbb{P}}}$.

On the other hand, as it is not hard to check, every permutation $f: \mathbb{P}^{*} \rightarrow \mathbb{P}^{*}$ such that $\mathbb{P} f=\mathbb{P},\left.f\right|_{\overline{\mathbb{P}}}=\overline{\left.f\right|_{\mathbb{P}}}$, or $\mathbb{P} f=\overline{\mathbb{P}},\left.f\right|_{\overline{\mathbb{P}}}=\overrightarrow{\left.f\right|_{\mathbb{P}}}$, uniquely determines an automorphism of $\left(\mathbb{N}^{*}, \odot\right)$. These permutations and hence the isomorphisms $\operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{X}^{g}\right) \rightarrow \operatorname{End}\left(\mathfrak{F C D}_{Y}^{g}\right)$, are in a natural one-to-one correspondence.

An automorphism $\Phi: \operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}\right) \rightarrow \operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}\right)$ is called quasiinner if there exists a permutation α of $\mathfrak{F C D}{ }_{X}^{g}$ such that $\beta \Phi=\alpha^{-1} \beta \alpha$ for all $\beta \in \operatorname{End}\left(\mathfrak{F C D} \mathfrak{D}_{X}^{g}\right)$. If α turns out to be an automorphism of $\mathfrak{F C D}{ }_{X}^{g}$, Φ is an inner automorphism of $\operatorname{End}\left(\mathfrak{F C D}_{X}^{g}\right)$.

We denote the symmetric group on a set X by $S(X)$. A 2-element group with identity e is denoted by $C_{2}=\{e, a\}$.

Proposition 4. Automorphisms of the monoid $\operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{1}^{g}\right)$ are quasiinner. In addition, the automorphism group of $\operatorname{End}\left(\mathfrak{F C D}_{1}^{g}\right)$ is isomorphic to the direct product $S(\mathbb{P}) \times C_{2}$.

Proof. Let $\Psi: \operatorname{End}\left(\mathfrak{F C D} \mathfrak{D}_{1}^{g}\right) \rightarrow \operatorname{End}\left(\mathfrak{F C D} \mathfrak{D}_{1}^{g}\right)$ be an arbitrary automorphism. Define a bijection $\psi: N^{*} \rightarrow N^{*}$ putting $x \psi=y$ if $\varphi_{x} \Psi=\varphi_{y}$. It is clear that $\psi \in \operatorname{Aut}\left(\mathbb{N}^{*}, \odot\right)$, however $\psi \notin \operatorname{Aut}\left(\mathbb{N}^{*}, \prec, \succ\right)$ except the identity permutation (see Remark 1). Then for all $x \in N^{*}$ and some $\varphi_{i} \in \operatorname{End}\left(\mathfrak{F C D} \mathfrak{D}_{1}^{g}\right), i \in N^{*}$, we have

$$
\begin{aligned}
x\left(\psi^{-1} \varphi_{i} \psi\right) & =\left(x \psi^{-1}\right) \varphi_{i} \psi=\left(\left(x \psi^{-1}\right) \odot i\right) \psi \\
& =\left(x \psi^{-1}\right) \psi \odot i \psi=x \odot i \psi=x \varphi_{i \psi}
\end{aligned}
$$

Thus, $\psi^{-1} \varphi_{i} \psi=\varphi_{i} \Psi$ and Ψ is a quasi-inner automorphism.

The immediate check shows that a mapping Θ of $\operatorname{Aut}\left(\mathbb{N}^{*}, \odot\right)$ onto $S(\mathbb{P}) \times C_{2}$ defined as follows:

$$
\xi \Theta= \begin{cases}\left(\left.\xi\right|_{P}, e\right), & P \xi=P \\ \left(\left.\xi\right|_{P}, a\right), & P \xi=\bar{P}\end{cases}
$$

for all $\xi \in \operatorname{Aut}\left(\mathbb{N}^{*}, \odot\right)$, is an isomorphism.
By Lemma 6, $\operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{1}^{g}\right) \cong\left(\mathbb{N}^{*}, \odot\right)$, therefore $\operatorname{Aut}\left(\operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{1}^{g}\right)\right)$ and $S(\mathbb{P}) \times C_{2}$ are isomorphic.

5. The automorphism group of $\operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}\right),|X| \geqslant 2$

An automorphism Ψ of the endomorphism monoid $\operatorname{End}\left(\mathfrak{F C D}_{X}^{g}\right)$ of the free commutative g-dimonoid $\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}$ is called stable if Ψ induces the identity permutation of X, that is, $\theta_{x} \Psi=\theta_{x}$ for all $x \in X$.

Lemma 7. For all $u, v \in F[X] \backslash X$ the following equalities hold:

$$
\theta_{u} \theta_{v}=\theta_{u} \theta_{\bar{v}} \text { and } \theta_{\bar{u}} \theta_{\bar{v}}=\theta_{\bar{u}} \theta_{v}
$$

Proof. It is obvious.
Lemma 8. Let Ψ be a stable automorphism of $\operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{X}^{g}\right)$, $u, v \in F[X] \backslash X, x \in X$ and $\xi \in \operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}\right)$. Then
(i) $\theta_{x \xi} \Psi=\theta_{x(\xi \Psi)}$;
(ii) $\theta_{u} \Psi=\theta_{v}$ implies $\theta_{\bar{u}} \Psi=\theta_{\bar{v}}$;
(iii) $\theta_{u} \Psi=\theta_{\bar{v}}$ implies $\theta_{\bar{u}} \Psi=\theta_{v}$.

Proof. (i) By Lemma 4 (i), $\theta_{x \xi} \Psi=\left(\theta_{x} \xi\right) \Psi=\theta_{x}(\xi \Psi)=\theta_{x(\xi \Psi)}$.
(ii) Let $\theta_{u} \Psi=\theta_{v}$. By (i) of this lemma, $\theta_{\bar{u}} \Psi=\theta_{w}$ for some $w \in \mathfrak{F C} \mathfrak{D}_{X}^{g}$. Using Lemma 7, we obtain

$$
\begin{aligned}
\theta_{v^{l(v)}} & =\theta_{v}^{2}=\left(\theta_{u} \Psi\right)^{2}=\left(\theta_{u}^{2}\right) \Psi \\
& =\left(\theta_{u} \theta_{\bar{u}}\right) \Psi=\theta_{u} \Psi \theta_{\bar{u}} \Psi=\theta_{v} \theta_{w}=\theta_{w^{l(v)}}
\end{aligned}
$$

where $w^{l(v)}=\underbrace{w \prec w \prec \ldots \prec w}_{l(v)}$. From here $w=v$ or $w=\bar{v}$. In the first case we have $\theta_{\bar{u}} \Psi=\theta_{v}$ which contradicts to injectivity of Ψ, therefore $\theta_{\bar{u}} \Psi=\theta_{\bar{v}}$.
(iii) This statement is anologous to the case (ii).

An endomorphism θ of the free commutative g-dimonoid $\mathfrak{F C} \mathfrak{D}_{X}^{g}$ is called linear if $x \theta \in X$ for all $x \in X$.

Lemma 9. Let Ψ be a stable automorphism of $\operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{X}^{g}\right), u, v \in \mathfrak{F C} \mathfrak{D}_{X}^{g}$, $x \in X$ and $\xi \in \operatorname{End}\left(\mathfrak{F} \mathfrak{C D}_{X}^{g}\right)$. The following conditions hold:
(i) $\xi \Psi=\xi$, if ξ is linear;
(ii) $c(u)=c(v)$, if $\theta_{u} \Psi=\theta_{v}$;
(iii) $l(x \xi)=l(x(\xi \Psi))$.

Proof. (i) If ξ is linear, then $x \xi \in X$ for all $x \in X$. Hence by stability of $\Psi, \theta_{x(\xi \Psi)}=\theta_{x \xi} \Psi=\theta_{x \xi}$. From here, $\xi \Psi=\xi$.
(ii) Let $\theta_{u} \Psi=\theta_{v}$ and $c(u) \backslash c(v) \neq \varnothing$. We take $z \in c(u) \backslash c(v)$, and $x \in X, x \neq z$, and $\xi \in \operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}\right)$ such that $z \xi=x$ and $y \xi=y$ for all $y \in X, y \neq z$. Then ξ is linear, $v \xi=v$ and

$$
\theta_{u} \Psi=\theta_{v}=\theta_{v \xi}=\theta_{v} \xi=\left(\theta_{u} \Psi\right)(\xi \Psi)=\left(\theta_{u} \xi\right) \Psi=\theta_{u \xi} \Psi
$$

From here $\theta_{u}=\theta_{u \xi}$ and then $u=u \xi$ which contradicts to the definition of ξ, so $c(u) \backslash c(v)=\varnothing$. If $z \in c(v) \backslash c(u) \neq \varnothing, z \neq x$ and $\xi \in \operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{X}^{g}\right)$ the same as above, then

$$
\theta_{v}=\theta_{u} \Psi=\theta_{u \xi} \Psi=\left(\theta_{u} \xi\right) \Psi=\left(\theta_{u} \Psi\right)(\xi \Psi)=\theta_{v} \xi=\theta_{v \xi}
$$

whence $v=v \xi$ which contradicts to the definition of ξ. Thus, $c(v) \backslash c(u)=\varnothing$ and therefore, $c(u)=c(v)$.
(iii) Let $\xi_{1}, \xi_{2} \in \operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{X}^{g}\right)$ such that $l\left(x \xi_{1}\right)=l\left(x \xi_{2}\right)=m$ and $l\left(x\left(\xi_{1} \Psi\right)\right)=r, \quad l\left(x\left(\xi_{2} \Psi\right)\right)=s$. For all $t \in X$ we obtain

$$
t\left(\theta_{x} \xi_{1} \theta_{x}\right)=\left(x \xi_{1}\right) \theta_{x}= \begin{cases}x^{m}=t \theta_{x^{m}}, & x \xi_{1} \in F[X] \\ \overline{x^{m}}=t \theta_{\overline{x^{m}}}, & x \xi_{1} \in \overline{F[X]} \backslash \bar{X}\end{cases}
$$

Analogously it is proved that $\theta_{x} \xi_{2} \theta_{x}= \begin{cases}\theta_{x^{m}}, & x \xi_{2} \in F[X], \\ \theta_{\overline{x^{m}}}, & x \xi_{2} \in \overline{F[X]} \backslash \bar{X} .\end{cases}$
Consider following four cases.
Case 1. $x \xi_{1}, x \xi_{2} \in F[X]$. Using that Ψ is stable, we have

$$
\begin{aligned}
& \theta_{x^{m}} \Psi=\left(\theta_{x} \xi_{1} \theta_{x}\right) \Psi=\theta_{x}\left(\xi_{1} \Psi\right) \theta_{x}= \begin{cases}\theta_{x^{r}}, & x\left(\xi_{1} \Psi\right) \in F[X] \\
\theta_{\overline{x^{r}}}, & x\left(\xi_{1} \Psi\right) \in \overline{F[X]} \backslash \bar{X},\end{cases} \\
& \theta_{x^{m}} \Psi=\left(\theta_{x} \xi_{2} \theta_{x}\right) \Psi=\theta_{x}\left(\xi_{2} \Psi\right) \theta_{x}= \begin{cases}\theta_{x^{s}}, & x\left(\xi_{2} \Psi\right) \in F[X] \\
\theta_{\overline{x^{s}}}, & x\left(\xi_{2} \Psi\right) \in \overline{F[X]} \backslash \bar{X} .\end{cases}
\end{aligned}
$$

If $x\left(\xi_{1} \Psi\right) \in F[X], x\left(\xi_{2} \Psi\right) \in \overline{F[X]} \backslash \bar{X}$ or $x\left(\xi_{1} \Psi\right) \in \overline{F[X]} \backslash \bar{X}, x\left(\xi_{2} \Psi\right) \in$ $F[X]$, then we obtain $\theta_{x^{r}}=\theta_{\overline{x^{s}}}$ or $\theta_{\overline{x^{r}}}=\theta_{x^{s}}$ which is false. Otherwise, we have $r=s$.

Case 2. $x \xi_{1}, x \xi_{2} \in \overline{F[X]} \backslash \bar{X}$. It is similar to the case 1 .
Case 3. $x \xi_{1} \in F[X], x \xi_{2} \in \overline{F[X]} \backslash \bar{X}$. Assume that $\theta_{x^{m}} \Psi=\theta_{x^{r}}$, then by (ii) of Lemma 8 we have $\theta_{\overline{x^{m}}} \Psi=\theta_{\overline{x^{r}}}$. On the other hand,

$$
\theta_{\overline{x^{m}}} \Psi=\left(\theta_{x} \xi_{2} \theta_{x}\right) \Psi=\theta_{x}\left(\xi_{2} \Psi\right) \theta_{x}=\left\{\begin{array}{lr}
\theta_{x^{s}}, & x\left(\xi_{2} \Psi\right) \in F[X], \\
\theta_{\overline{x^{s}}}, & x\left(\xi_{2} \Psi\right) \in \overline{F[X]} \backslash \bar{X}
\end{array}\right.
$$

For $x\left(\xi_{2} \Psi\right) \in F[X]$ we obtain $\overline{x^{r}}=x^{s}$ which is false. If $x\left(\xi_{2} \Psi\right) \in$ $\overline{F[X]} \backslash \bar{X}$, then $\theta_{\overline{x^{r}}}=\theta_{\overline{x^{s}}}$, whence $r=s$.

In similar way we can show that $r=s$ if $\theta_{x^{m}} \Psi=\theta_{\overline{x^{r}}}$.
Case 4. $x \xi_{1} \in \overline{F[X]} \backslash \bar{X}, x \xi_{2} \in F[X]$. It is analogous to the case 3.
Thus, cases $1-4$ imply that r and s coincides.
Further, let A be a nonempty finite subset of X and

$$
\operatorname{End}_{A}^{m}(x)=\left\{\xi \in \operatorname{End}\left(\mathfrak{F} \mathfrak{C} D_{X}^{g}\right) \mid l(x \xi)=m, c(x \xi)=A\right\}
$$

For $\theta_{x \xi} \in \operatorname{End}_{A}^{m}(x)$ by (i) of Lemma 8 we have $\theta_{x \xi} \Psi=\theta_{x(\xi \Psi)}$. By (ii) of given lemma, $c(x \xi)=c(x(\xi \Psi))$. Taking into account the previous arguments, there exists k such that $\operatorname{End}_{A}^{m}(x) \Psi \subseteq \operatorname{End}_{A}^{k}(x)$. Since Ψ is bijective, $k=m$. Thus, $l(x \xi)=l(x(\xi \Psi))$ for all $\xi \in \operatorname{End}\left(\mathfrak{F C D} D_{X}^{g}\right)$ and $x \in X$.

Corollary 1. Let Ψ be a stable automorphism of $\operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{X}^{g}\right)$ and $x_{1}, x_{2} \in X$ are distinct. Then

$$
\theta_{x_{1} x_{2}} \Psi=\theta_{x_{1} x_{2}} \quad \text { or } \quad \theta_{x_{1} x_{2}} \Psi=\theta_{\overline{x_{1} x_{2}}} .
$$

Proof. By Lemma 8 (i), $\theta_{x_{1} x_{2}} \Psi=\theta_{u}$ for some $u \in \mathfrak{F C D} D_{X}^{g}$, and by (ii) of Lemma 9, $c(u)=\left\{x_{1}, x_{2}\right\}$. By (iii) of Lemma 9, $l(u)=2$. Thus, $u=x_{1} x_{2}$ or $u=\overline{x_{1} x_{2}}$.

Lemma 10. Let Ψ be a stable automorphism of $\operatorname{End}\left(\mathfrak{F C D}_{X}^{g}\right)$ and $x_{1}, x_{2} \in X$ are distinct. Then
(i) $\theta_{x_{1} x_{2}} \Psi=\theta_{x_{1} x_{2}}$ implies $\Psi=\Phi_{0}$;
(ii) $\theta_{x_{1} x_{2}} \Psi=\theta_{\overline{x_{1} x_{2}}}$ implies $\Psi=\Phi_{1}$.

Proof. (i) By induction on the length of u we show that $\theta_{u} \Psi=\theta_{u}$ for all $u \in F[X]$. By stability of $\Psi, \theta_{x} \Psi=\theta_{x}$ for all $x \in X$. Assume that $\theta_{v} \Psi=\theta_{v}$ for all $v \in F[X]$ with $l(v)<n$, and let $u=u_{1} \ldots u_{n} \in F[X]$, where $n \geqslant 2$. Let $v_{1}=u_{1} \ldots u_{n-1}, v_{2}=u_{n}$ and $f \in \operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{X}^{g}\right)$ is such that $x_{1} f=v_{1}, x_{2} f=v_{2}$ and $y f=y$ for all $y \in X \backslash\left\{x_{1}, x_{2}\right\}$. Then $x\left(\theta_{x_{1} x_{2}} f\right)=\left(x_{1} x_{2}\right) f=x_{1} f x_{2} f=u=x \theta_{u}$ for all $x \in X$.

By Lemma 8 (i) and the induction hypothesis, we have

$$
\begin{gathered}
\theta_{x_{i}(f \Psi)}=\theta_{x_{i} f} \Psi=\theta_{v_{i}} \Psi=\theta_{v_{i}}=\theta_{x_{i} f}, \quad i \in\{1,2\}, \\
\theta_{x(f \Psi)}=\theta_{x f} \Psi=\theta_{x} \Psi=\theta_{x}=\theta_{x f}, \quad x \in X \backslash\left\{x_{1}, x_{2}\right\} .
\end{gathered}
$$

So, $f \Psi=f$ and then for all $u \in F[X]$ with $l(u) \geqslant 2$,

$$
\theta_{u} \Psi=\left(\theta_{x_{1} x_{2}} f\right) \Psi=\left(\theta_{x_{1} x_{2}} \Psi\right)(f \Psi)=\theta_{x_{1} x_{2}} f=\theta_{u}
$$

By (ii) of Lemma $8, \theta_{\bar{u}} \Psi=\theta_{\bar{u}}$ for all $\bar{u} \in \overline{F[X]} \backslash \bar{X}$, so that $\theta_{u} \Psi=\theta_{u}$ for all $u \in \mathfrak{F C D}{ }_{X}^{g}$. Now for all $x \in X$ and $\varphi \in \operatorname{End}\left(\mathfrak{F C D} D_{X}^{g}\right)$,

$$
\theta_{x(\varphi \Psi)}=\theta_{x \varphi} \Psi=\theta_{x \varphi}
$$

This implies $\varphi \Psi=\varphi$ for all $\varphi \in \operatorname{End}\left(\mathfrak{F C D} D_{X}^{g}\right)$, that is, $\Psi=\Phi_{0}$.
(ii) Take the crossed automorphism $\varepsilon_{i d_{X}}^{*}$ of $\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}$ (see Lemma 2). For all $u \in \mathfrak{F C D} D_{X}^{g}$ and $f \in \operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{X}^{g}\right)$ we use denotations $u^{*}=u \varepsilon_{i d_{X}}^{*}$ and $f^{*}=\left(\varepsilon_{i d_{X}}^{*}\right)^{-1} f \varepsilon_{i d_{X}}^{*}$.

By induction on $l(u)$ we show that $\theta_{u} \Psi=\theta_{u^{*}}$ for all $u \in F[X]$. The induction base follows from the fact that Ψ is stable.

Let us suppose that $\theta_{v} \Psi=\theta_{v^{*}}$ for all $v \in F[X]$ such that $l(v)<n$, and let $u=u_{1} \ldots u_{n} \in F[X], n \geqslant 2$. We put $v_{1}=u_{1}, v_{2}=u_{2} \ldots u_{n}$, and take the endomorphism f of $\mathfrak{F C D}{ }_{X}^{g}$ such that $x_{1} f=v_{1}, x_{2} f=v_{2}$, and $y f=y$ for all $y \in X \backslash\left\{x_{1}, x_{2}\right\}$.

Similarly as in (i) of this lemma, we can show that $\theta_{x_{1} x_{2}} f=\theta_{u}$. By Lemma 8 (i) and the induction hypothesis,

$$
\begin{gathered}
\theta_{x_{i}(f \Psi)}=\theta_{x_{i} f} \Psi=\theta_{v_{i}} \Psi=\theta_{v_{i}^{*}}=\theta_{x_{i} f^{*}}, \quad i \in\{1,2\}, \\
\theta_{x(f \Psi)}=\theta_{x f} \Psi=\theta_{x} \Psi=\theta_{x^{*}}=\theta_{x f^{*}}, \quad x \in X \backslash\left\{x_{1}, x_{2}\right\} .
\end{gathered}
$$

From here, $f \Psi=f^{*}$. Then for all $u \in F[X]$ with $l(u) \geqslant 2$,

$$
\theta_{u} \Psi=\left(\theta_{x_{1} x_{2}} f\right) \Psi=\left(\theta_{x_{1} x_{2}} \Psi\right)(f \Psi)=\theta_{\overline{x_{1} x_{2}}} f^{*}=\theta_{\bar{u}}=\theta_{u^{*}}
$$

Taking into account Lemma 8 (iii), $\theta_{\bar{u}} \Psi=\theta_{u}$ for all $\bar{u} \in \overline{F[X]} \backslash \bar{X}$. It means that $\theta_{u} \Psi=\theta_{u^{*}}$ for all $u \in \mathfrak{F C} \mathfrak{D}_{X}^{g}$.

Finally, for all $x \in X$ and $\varphi \in \operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}\right)$ we have

$$
\theta_{x(\varphi \Psi)}=\theta_{x \varphi} \Psi=\theta_{(x \varphi)^{*}}=\theta_{x \varphi^{*}} .
$$

Hence, $\varphi \Psi=\varphi^{*}$ for all $\varphi \in \operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{X}^{g}\right)$, that is, $\Psi=\Phi_{1}$.

Theorem 2. Let X be an arbitrary set with $|X| \geqslant 2$. Every isomorphism $\Phi: \operatorname{End}\left(\mathfrak{F C D}_{X}^{g}\right) \rightarrow \operatorname{End}\left(\mathfrak{F C D}_{Y}^{g}\right)$ is induced either by the isomorphism ε_{f} or by the crossed isomorphism ε_{f}^{*} of $\mathfrak{F C D} D_{X}^{g}$ onto $\mathfrak{F C} \mathfrak{D}_{Y}^{g}$ for a uniquely determined bijection $f: X \rightarrow Y$.

Proof. Let $\Phi: \operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}\right) \rightarrow \operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{Y}^{g}\right)$ be an arbitrary isomorphism. In similar way as in the case of free abelian dimonoids (see [19, Theorem 3]), using Lemma 4 can be shown that for every $x \in X$ there exists $y \in Y$ such that $\theta_{x} \Phi=\theta_{y}$. Define a bijection $f: X \rightarrow Y$ putting $x f=y$ if $\theta_{x} \Phi=\theta_{y}$. In this case we say that f is induced by Φ.

By Lemma $1, f$ induces the isomorphism $\varepsilon_{f}: \mathfrak{F C D}{ }_{X}^{g} \rightarrow \mathfrak{F C} \mathfrak{D}_{Y}^{g}$. According to Lemma $3, E_{f}: \eta \mapsto \varepsilon_{f}^{-1} \eta \varepsilon_{f}$ is an isomorphism of $\operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}\right)$ onto $\operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{Y}^{g}\right)$. From this it follows that the composition ΦE_{f}^{-1} is an automorphism of $\operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{X}^{g}\right)$.

Further for all $x \in X$ we have

$$
\theta_{x}\left(\Phi E_{f}^{-1}\right)=\left(\theta_{x} \Phi\right) E_{f}^{-1}=\theta_{x f} E_{f}^{-1}=\theta_{(x f) f^{-1}}=\theta_{x}
$$

which implies stability of ΦE_{f}^{-1}.
Using Corollary 1 and Lemma 10, we obtain ΦE_{f}^{-1} is either the identity automorphism Φ_{0} or the mirror automorphism Φ_{1}. Assume, $\Phi E_{f}^{-1}=\Phi_{0}$, then $\Phi=E_{f}$ which means that Φ is an isomorphism induced by ε_{f}. If $\Phi E_{f}^{-1}=\Phi_{1}$, then $\Phi=\Phi_{1} E_{f}$ which means that Φ is an isomorphism induced by ε_{f}^{*}.

The following statement gives the positive solution of the definability problem of free commutative g-dimonoids by its endomorphism semigroups.

Corollary 2. Let $\mathfrak{F C} \mathfrak{D}_{X}^{g}$ and $\mathfrak{F} \mathfrak{D} D_{Y}^{g}$ be free commutative g-dimonoids such that $\operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}\right) \cong \operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{Y}^{g}\right)$. Then $\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}$ and $\mathfrak{F C} \mathfrak{D}_{Y}^{g}$ are isomorphic.

Proof. As shown in the proof of Theorem 2, every isomorphism Φ : $\operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}\right) \rightarrow \operatorname{End}\left(\mathfrak{F} \mathfrak{D} \mathfrak{D}_{Y}^{g}\right)$ induces a bijection $X \rightarrow Y$, therefore obviously we obtain $\mathfrak{F C D} D_{X}^{g} \cong \mathfrak{F C D} \mathfrak{D}_{Y}^{g}$.

We recall that an automorphism $\Phi: \operatorname{End}\left(\mathfrak{F C D}_{X}^{g}\right) \rightarrow \operatorname{End}\left(\mathfrak{F C D}_{X}^{g}\right)$ is quasi-inner if there exists $\alpha \in S\left(\mathfrak{F C D}{ }_{X}^{g}\right)$ such that $\beta \Phi=\alpha^{-1} \beta \alpha$ for all $\beta \in \operatorname{End}\left(\mathfrak{F C D}{ }_{X}^{g}\right)$.

At the end we consider the automorphism group of $\operatorname{End}\left(\mathfrak{F C D}_{X}^{g}\right)$.

Theorem 3. Let X be an arbitrary set with $|X| \geqslant 2$. Then
(i) all automorphisms of $\operatorname{End}\left(\mathfrak{F C D} D_{X}^{g}\right)$ are quasi-inner;
(ii) the automorphism group $\operatorname{Aut}\left(\operatorname{End}\left(\mathfrak{F} \mathfrak{C} \mathfrak{D}_{X}^{g}\right)\right)$ is isomorphic to the direct product $S(X) \times C_{2}$.

Proof. (i) Let $X=Y$ in Theorem 2, then it will be the part of Theorem 3. It is not hard to see that every automorphism Φ of $\operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{X}^{g}\right)$ is either an inner automorphism or the product of a mirror automorphism and an inner automorphism. Namely, we have $\Phi=E_{\varphi}$ or $\Phi=\Phi_{1} E_{\varphi}$ for a suitable bijection $\varphi: X \rightarrow X$. It means that all automorphisms of $\operatorname{End}\left(\mathfrak{F C} \mathfrak{D}_{X}^{g}\right)$ are quasi-inner.
(ii) It is clear that the automorphism group $\left\{\Phi_{0}, \Phi_{1}\right\}$ of $\operatorname{End}\left(\mathfrak{F C D}_{X}^{g}\right)$ is isomorphic to C_{2}. Define a mapping $\zeta: \operatorname{Aut}\left(\operatorname{End}\left(\mathfrak{F C D}{ }_{X}^{g}\right)\right) \rightarrow S(X) \times C_{2}$ as follows:

$$
\Phi \zeta= \begin{cases}\left(\varphi, \Phi_{0}\right), & \Phi=E_{\varphi} \\ \left(\varphi, \Phi_{1}\right), & \Phi=\Phi_{1} E_{\varphi}\end{cases}
$$

for all $\Phi \in \operatorname{Aut}\left(\operatorname{End}\left(\mathfrak{F C D}_{X}^{g}\right)\right)$.
It is easy to see that ζ is a bijection. Since for all $\varphi, \psi \in S(X)$ and $f \in \operatorname{End}\left(\mathfrak{F C D} \mathfrak{D}_{X}^{g}\right)$,

$$
\begin{aligned}
f\left(E_{\varphi} E_{\psi}\right) & =\left(\varepsilon_{\varphi}^{-1} f \varepsilon_{\varphi}\right) E_{\psi}=\left(\varepsilon_{\varphi} \varepsilon_{\psi}\right)^{-1} f\left(\varepsilon_{\varphi} \varepsilon_{\psi}\right) \\
& =\varepsilon_{\varphi \psi}^{-1} f \varepsilon_{\varphi \psi}=f E_{\varphi \psi}
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(E_{\varphi} \Phi_{1}\right) & =\left(\varepsilon_{\varphi}^{-1} f \varepsilon_{\varphi}\right) \Phi_{1}=\left(\varepsilon_{i d_{X}}^{*} \varepsilon_{\varphi}^{-1}\right) f\left(\varepsilon_{\varphi} \varepsilon_{i d_{X}}^{*}\right) \\
& =\left(\varepsilon_{\varphi}^{-1} \varepsilon_{i d_{X}}^{*}\right) f\left(\varepsilon_{i d_{X}}^{*} \varepsilon_{\varphi}\right)=\left(\varepsilon_{i d_{X}}^{*} f \varepsilon_{i d_{X}}^{*}\right) E_{\varphi}=f\left(\Phi_{1} E_{\varphi}\right)
\end{aligned}
$$

we obtain $E_{\varphi} E_{\psi}=E_{\varphi \psi}$ and $E_{\varphi} \Phi_{1}=\Phi_{1} E_{\varphi}$.
The immediate check shows that ζ is a homomorphism.

References

[1] Loday J.-L., Dialgebras, in: Dialgebras and related operads, Lect. Notes Math. 1763, Springer-Verlag, Berlin, 2001, 7-66.
[2] Pozhidaev A. P., 0-dialgebras with bar-unity and nonassociative Rota- Baxter algebras, Sib. Math. J. 50 (2009), no. 6, 1070-1080.
[3] Pirashvili T., Sets with two associative operations, Cent. Eur. J. Math. 2 (2003), 169-183.
[4] Movsisyan Y., Davidov S., Safaryan Mh., Construction of free g-dimonoids, Algebra and Discrete Math. 18 (2014), no. 1, 138-148.
[5] Zhuchok Yul. V. On one class of algebras, Algebra and Discrete Math. 18:2 (2014), no. 2, 306--320.
[6] Zhuchok A. V., Zhuchok Yu. V., Free commutative g-dimonoids, Chebyshevskii Sb. 16 (2015), no. 3, 276-284.
[7] Loday J.-L., Ronco M. O., Trialgebras and families of polytopes, Contemp. Math. 346 (2004), 369-398.
[8] Casas J. M., Trialgebras and Leibniz 3-algebras, Bolet??n de la Sociedad Matematica Mexicana 12 (2006), no. 2, 165-178.
[9] Zhuchok Yu.V., The endomorphism monoid of a free troid of rank 1, Algebra Universalis, 2016. (to appear)
[10] Plotkin B.I., Seven Lectures on the Universal Algebraic Geometry, Preprint, Institute of Mathematics, Hebrew University, 2000.
[11] Plotkin B.I., Algebras with the same (algebraic) geometry, Proc. of the Steklov Institute of Mathematics 242 (2003), 176-207.
[12] Formanek E., A question of B. Plotkin about the semigroup of endomorphisms of a free group, Proc. American Math. Soc. 130 (2001), 935-937.
[13] Mashevitsky G., Schein B.M., Automorphisms of the endomorphism semigroup of a free monoid or a free semigroup. Proc. American Math. Soc. 131 (2003), no. 6, 1655-1660.
[14] Kanel-Belov A., Berzins A., Lipyanski R., Automorphisms of the semigroup of endomorphisms of free associative algebras, arXiv:math/0512273v3 [math.RA], 2005.
[15] Mashevitsky G., Schein B.M., Zhitomirski G.I., Automorphisms of the endomorphism semigroup of a free inverse semigroup, Communic. in Algebra 34 (2006), no. 10, 3569-3584.
[16] Katsov Y., Lipyanski R., Plotkin B.I., Automorphisms of categories of free modules, free semimodules, and free Lie modules, Communic. in Algebra 35 (2007), no. 3, 931-952.
[17] Mashevitzky G., Plotkin B., Plotkin E., Automorphisms of the category of free Lie algebras, J. of Algebra 282 (2004), 490-512.
[18] Mashevitzky G., Plotkin B., Plotkin E., Automorphisms of categories of free algebras of varieties, Electronic research announvements of American Math. Soc. 8 (2002), 1-10.
[19] Zhuchok Yu.V., Free abelian dimonoids, Algebra and Discrete Math. 20 (2015), no. 2, 330-342.

Contact information

Yurii V. Zhuchok Kyiv National Taras Shevchenko University, Faculty of Mechanics and Mathematics, 64, Volodymyrska Street, Kyiv, Ukraine, 01601 E-Mail(s): zhuchok.yu@gmail.com

Received by the editors: 12.04.2016
and in final form 30.05.2016.

[^0]: 2010 MSC: 08A35, 08B20, 17A30.
 Key words and phrases: g-dimonoid, free commutative g-dimonoid, endomorphism semigroup, automorphism group.

