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On nilpotent Lie algebras
of derivations of fraction fields

A. P. Petravchuk

Abstract. Let K be an arbitrary field of characteristic zero
and A an integral K-domain. Denote by R the fraction field of A and
by W (A) = RDerKA, the Lie algebra of K-derivations on R obtained
from DerKA via multiplication by elements of R. If L ⊆ W (A) is a
subalgebra of W (A) denote by rkRL the dimension of the vector
space RL over the field R and by F = RL the field of constants of
L in R. Let L be a nilpotent subalgebra L ⊆ W (A) with rkRL 6 3.
It is proven that the Lie algebra FL (as a Lie algebra over the field
F ) is isomorphic to a finite dimensional subalgebra of the triangular
Lie subalgebra u3(F ) of the Lie algebra DerF [x1, x2, x3], where
u3(F ) = {f(x2, x3) ∂

∂x1

+ g(x3) ∂

∂x2

+ c ∂

∂x3

} with f ∈ F [x2, x3], g ∈
F [x3], c ∈ F.

Introduction

Let K be an arbitrary field of characteristic zero and A an asso-
ciative commutative K-algebra that is a domain. The set DerKA of all
K-derivations of A is a Lie algebra over K and an A-module in a natural
way: given a ∈ A, D ∈ DerKA, the derivation aD sends any element x ∈ A
to a · D(x). The structure of the Lie algebra DerKA is of great interest
because in case K = R and A = R[[x1, . . . , xn]], the ring of formal power
series, the Lie algebra of all K-derivations of the form

D = f1
∂

∂x1
+ · · · + fn

∂

∂xn
, fi ∈ R[[x1, . . . , xn]]
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can be considered as the Lie algebra of vector fields on R
n with formal

power series coefficients. Such Lie algebras with polynomial, formal power
series, or analytical coefficients were studied by many authors. Main
results for fields K = C and K = R in case n = 1 and n = 2 were obtained
in [7] [4], [5] (see also [1], [3], [9], [10]).

One of the important problems in Lie theory is to describe finite dimen-
sional subalgebras of the Lie algebra W3(C) consisting of all derivations
on the ring C[[x1, x2, x3]] of the form

a1
∂

∂x1
+ a2

∂

∂x2
+ a3

∂

∂x3
, ai ∈ C[[x1, . . . , xn]].

In order to characterize nilpotent subalgebras of the Lie algebra W3(C)
we consider more general situation. Let R = Frac(A) be the field of
fractions of an integral domain A and W (A) = RDerK(A) the Lie algebra
of derivations of the field R obtained from derivations on A by multiplying
by elements of the field R (obviously DerKA ⊆ W (A)). For a subalgebra
L of the Lie algebra W (A) let us define rkR(L) = dimR RL and denote
by F = RL = {r ∈ R | D(r) = 0, ∀D ∈ L} the field of constants of the
Lie algebra L. The K-space FL is a vector space over the field F and a
Lie algebra over F. If L is a nilpotent subalgebra of W (A), then FL is
finite dimensional over F (by Lemma 5).

The main result of the paper: If L is a nilpotent subalgebra of rank
k 6 3 over R from the Lie algebra W (A), then FL is isomorphic to a finite
dimensional subalgebra of the triangular Lie algebra uk(F ) (Theorem 2).
Triangular Lie algebras were studied in [1] and [2], they are locally nilpotent
but not nilpotent, the structure of their ideals was described in these
papers.

We use standard notation, the ground field is arbitrary of characteristic
zero. The quotient field of the integral domain A under consideration
is denoted by R. Any derivation D of A can be uniquely extended to a
derivation of R by the rule: D(a/b) = (D(a)b−aD(b))/b2. If F is a subfield
of the field R and r1, . . . , rk ∈ R, then the set of all linear combinations
of these elements with coefficients in F is denoted by F 〈r1, . . . , rk〉, it is
a subspace of the F -space R. The triangular subalgebra un(K) of the Lie
algebra Wn(K) = Der(K[x1, . . . , xn]) consists of all the derivations on the
ring K[x1, . . . , xn] of the form D = f1(x2, . . . xn) ∂

∂x1
+· · ·+fn−1(xn) ∂

∂xn−1
+

fn
∂

∂xn
, where fi ∈ K[xi+1, . . . xn], fn ∈ K.
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1. Some properties of nilpotent subalgebras of W (A)

We will use some statements about derivations and nilpotent Lie
algebras of derivations from the paper [8]. The next statement can be
immediately checked.

Lemma 1. Let D1, D2 ∈ W (A) and a, b ∈ R. Then it holds:
1. [aD1, bD2] = ab[D1, D2] + aD1(b)D2 − bD2(a)D1.
2. If a, b ∈ RD1 ∩ RD2 , then [aD1, bD2] = ab[D1, D2].

Let L be a subalgebra of rank k over R of the Lie algebra W (A)
and F = RL its field of constants. Denote by RL the set of all linear
combinations over K of elements aD, where a ∈ R and D ∈ L. The set
FL is defined analogously.

Lemma 2 ([8], Lemma 2). Let L be a nonzero subalgebra of W (A) and
let FL, RL be K-spaces defined as above. Then:

1. FL and RL are K-subalgebras of the Lie algebra W (A). Moreover,
FL is a Lie algebra over the field F.

2. If the algebra L is abelian, nilpotent, or solvable then the Lie algebra
FL has the same property, respectively.

Lemma 3 ([8], Lemma 3). Let L be a subalgebra of finite rank over R
of the Lie algebra W (A), Z = Z(L) the center of L, and F = RL the
field of constants of L. Then rkRZ = dimF FZ and FZ is a subalgebra
of the center Z(FL). In particular, if L is abelian, then FL is an abelian
subalgebra of W (A) and rkRL = dimF FL.

Lemma 4 ([8], Lemma 4). Let L be a subalgebra of the Lie algebra W (A)
and I be an ideal of L. Then the vector space RI ∩ L (over K) is also an
ideal of L.

Lemma 5 ([8], Proposition 1, Theorem 1). Let L be a nilpotent subalgebra
of W (A) and F = RL be its field of constants. Then:

1. If rkRL < ∞, then dimF FL < ∞.
2. If rkRL = 1, then L is abelian and dimF FL = 1.
3. If rkRL = 2, then there exist elements D1, D2 ∈ FL and a ∈ R

such that

FL = F 〈D1, aD1, . . . , ak

k! D1, D2〉, k > 0

(if k = 0, then put FL = F 〈D1, D2〉),

where [D1, D2] = 0, D1(a) = 0, D2(a) = 1.



A. P. Petravchuk 119

Lemma 6. Let D1, D2, D3 ∈ W (A) and a ∈ R be such elements that
D1(a) = D2(a) = 0, D3(a) = 1 and let F = ∩3

i=1RDi . If there exists an
element b ∈ R such that D1(b) = D2(b) = 0, D3(b) ∈ F 〈1, a, . . . , as/s!〉
for some s > 0, then b ∈ F 〈1, a, . . . , as+1/(s + 1)!〉.

Proof. Write down D3(b) =
∑s

i=0 βia
i/i! with βi ∈ F and take the element

c =
∑s

i=0 βia
i+1/(i+1)! of the field R. It holds obviously D3(b−c) = 0 and

(by the conditions of Lemma) D1(b − c) = 0 and D2(b − c) = 0. Then we
have b − c ∈ ∩3

i=1RDi = F, and therefore b = γ +
∑s

i=0 βia
i+1/(i + 1)! for

some element γ ∈ F. The latter means that b ∈ F 〈1, a, . . . , as+1/(s + 1)!〉.

Lemma 7. Let D1, D2, D3 ∈ W (A) and a, b ∈ R be such elements that
D1(a) = D1(b) = 0, D2(a) = 1 D2(b) = 0, D3(a) = 0, D3(b) = 1 and let
F = ∩3

i=1RDi . If there exists an element c ∈ R such that

D1(c) = 0, [D2, D3](c) = 0,

D2(c) ∈ F 〈{aibj

i!j! }, 0 6 i 6 m − 1, 0 6 j 6 k〉,

D3(c) ∈ F 〈{aibj

i!j! }, 0 6 i 6 m, 0 6 j 6 k − 1〉,

then c ∈ F 〈{aibj

i!j! }, 0 6 i 6 m, 0 6 j 6 k〉.

Proof. The elements D2(c) and D3(c) can be written (by conditions of the
lemma) in the form D2(c) = f(a, b), D3(c) = g(a, b) where f, g ∈ F [u, v]
are some polynomials of u, v. Since [D2, D3](c) = 0, it holds D2(g) =
D3(f). It follows from the relations D2(g) = ∂

∂a
g(a, b), D3(f) = ∂

∂b
f(a, b)

that ∂
∂a

g(a, b) = ∂
∂b

f(a, b). Hence there exists a polynomial h(a, b) ∈

F [a, b] (the potential of the vector field f(a, b) ∂
∂a

+ g(a, b) ∂
∂b

) such that
D3(h(a, b)) = g, D2(h(a, b)) = f. The polynomial h(a, b) is obtained from
the polynomials f, g by formal integration on a and on b, so we have
h(a, b) ∈ F 〈{aibj

i!j! }, 0 6 i 6 m, 0 6 j 6 k〉. Further, using properties of
the element h(a, b) we get D2(h − c) = D3(h − c) = 0. Besides, it holds
D1(h − c) =0. The latter means that h − c ∈ F = ∩3

i=1RDi . But then c =

γ + h for some γ ∈ F and therefore c ∈ F 〈{aibj

i!j! }, 0 6 i 6 m, 0 6 j 6 k〉.

2. On nilpotent subalgebras of small rank of W (A)

Lemma 8. Let L be a nilpotent subalgebra of rank 3 over R from the Lie
algebra W (A) and F = RL be its field of constants. If the center Z(L)
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of the algebra L is of rank 2 over R and dimF FL > 4, then there exist
D1, D2, D3 ∈ L, a ∈ R such that the Lie algebra FL is contained in a
nilpotent Lie algebra L̃ of the Lie algebra W (A) of the form

L̃ = F 〈D3, D1, aD1, . . . , (an/n!)D1, D2, aD2, . . . , (an/n!)D2〉

for some n > 1, with [Di, Dj ] = 0, i, j = 1, 2, 3, D1(a) = D2(a) = 0,
D3(a) = 1.

Proof. Take any elements D1, D2 ∈ Z(L) that are linearly independent
over R and denote I = (RD1 + RD2) ∩ L. Then I is an ideal of the Lie
algebra L (by Lemma 4). Take an arbitrary element D ∈ I and write
down D = a1D1 + a2D2 for some elements ai ∈ R. Since [Di, D] = 0 =
Di(a1)D1 + Di(a2)D2, i = 1, 2 we get Di(aj) = 0, i, j = 1, 2. It follows
easily that for any element D′ ∈ I it holds the equality [D, D′] = 0, so
the ideal I is abelian. The Lie algebra FL is finite dimensional over F
and dimF FL/FI = 1 by Lemma 5. Take any element D3 ∈ L \ I. Then
FL = FI + FD3 and D1, D2, D3 are linearly independent over R.

Since rkRZ(L) = 2, (by conditions of the lemma) we have
dimF FZ(L) = 2 by Lemma 3. The ideal I of the Lie algebra L is abelian
by the above proven, so the ideal FI of the Lie algebra FL over the field F
is also abelian. Since FL = FI + FD3, there exists a basis of the F -space
FI in which the nilpotent linear operator adD3 has a matrix consisting
of two Jordan blocks. Let J1 and J2 be the correspondent Jordan bases;
without loss of generality one can assume that D1 ∈ J1, D2 ∈ J2 and the
elements D1, D2 are the first members of the bases J1 and J2 respectively.

If dimF F 〈J1〉 = dimF F 〈J2〉 = 1 then FL = F 〈D3, D1, D2〉 is of
dimension 3 over F which contradicts the conditions of the lemma. So, we
may assume that dimF F 〈J1〉 > dimF F 〈J2〉 and dimF F 〈J1〉 = n+1, n >

1. Denote the elements of the basis J1 by D1, a1D1 + b1D2, . . . , anD1 +
bnD2, where the elements ai, bi belong to R and put for convenience
a = a1. Let us prove by induction on i that ai, bi ∈ F 〈1, a, . . . , ai/i!〉. If
i = 1, then a1 = a ∈ F 〈1, a〉 by definition. It follows from the relation
[D3, a1D1 + b1D2] = D1 = D3(a1)D1 + D3(b1)D2 that D3(b1) = 0. Since
FI is abelian (by the above proven), we have D1(b1) = D2(b1) = 0. The
latter means that b1 ∈ F ⊂ F 〈1, a〉.

Further, the relation

[D3, aiD1 + biD2] = ai−1D1 + bi−1D2 = D3(ai)D1 + D3(bi)D2

gives the equalities D3(ai) = ai−1 and D3(bi) = bi−1. By the inductive
assumption, ai−1, bi−1 ∈ F 〈1, a, . . . , ai−1/(i−1)!〉 and taking into account
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the relations Dj(ai) = Dj(bi) = 0, j = 1, 2 (they hold because FI is
abelian) we get by Lemma 6 that ai, bi ∈ F 〈1, . . . , ai/i!〉. The latter
relation means that the F -subspace F 〈J1〉 of FI lies in the subalgebra L̃
from the conditions of the lemma.

Now let

J2 = {D2, c1D1 + d1D2, . . . , ckD1 + dkD2}

be a basis corresponding to the second Jordan block. The relation
[D3, c1D1 + d1D2] = D2 implies the equality D3(d1) = 1 and therefore
D3(a − d1) = 0. Since D1(a − d1) = D2(a − d1) = 0, we get a − d1 ∈ F,
i.e. d1 = a + γ for some γ ∈ F. Applying the above considerations to the
Jordan basis J2 we obtain that F 〈J2〉 ⊂ L̃. But then the Lie algebra L is
entirely contained in L̃.

Lemma 9. Let L be a nilpotent subalgebra of rank 3 over R from the Lie
algebra W (A) and F = RL be its field of constants. If the center Z(L) of
the algebra L is of rank 1 over R and dimF FL > 4, then the Lie algebra
FL is contained either in the nilpotent Lie algebra L̃ from the conditions
of Lemma 8 or in a subalgebra L of W (A) of the form

L = F 〈D3, D2, aD2, . . . , (an/n!)D2, {aibj

i!j! D1}, 0 6 i, j 6 m〉

where n > 0, m > 1, Di ∈ L, [Di, Dj ] = 0, for i, j = 1, 2, 3, and a, b ∈ R
such that D1(a) = D2(a) = 0, D3(a) = 1, D1(b) = D3(b) = 0, D2(b) = 1.

Proof. Take any nonzero element D1 ∈ Z(L) and denote I1 = RD1 ∩ L.
Then I1 is an abelian ideal of the algebra Lie L and rkRI1 = 1 by Lemma
3. Choose any nonzero element D2 + I1 in the center of the quotient Lie
algebra L/I1 and denote I2 = (RD1 + RD2) ∩ L. By the same Lemma
3, I2 is an ideal of the Lie algebra L and rkRI2 = 2. Further, take any
element D3 ∈ L\I2. Since dimF FL/FI2 = 1 by Lemma 5 from the paper
[8], we have FL = FI2 + FD3.

Case 1. The ideal I2 is abelian. Let us show that FL is contained in
the Lie algebra L̃ from the conditions of Lemma 8. It is obvious that
FI2 is an abelian ideal of codimension 1 of the Lie algebra FL over the
field F. By Lemma 3, rkRZ(L) = dimF FZ(L) and by the conditions
of the lemma, we see that dimF FZ(L) = 1. The linear operator adD3

acts on the F -space FI2 and dimF Ker(adD3) = dimF FZ(L). Therefore
dimF Ker(adD3) = 1 and there exists a basis of FI2 in which adD3 has
a matrix in the form of a single Jordan block. The same is true for the
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action of adD3 on the vector space FI1 (since [D3, I1] ⊆ I1, the ideal FI1

is invariant under adD3). The subalgebra FI1 + FD3 is of rank 2 over
R. If dimF FI1 > 1, then the center of the Lie algebra F1 + FD3 is of
dimension 1 over F. By Lemma 5, there exists a Jordan basis in FI1 of
the form

{D1, aD1, . . . , (as/s!)D1}, where s > 0, D3(a) = 1, [D3, D1] = 0.

If dimF FI1 = 1, then s = 0 and the desired basis of F1 is of the form
{D1}.

Let first s > 0. Since (FD2 + FI1)/FI1 is a central ideal of the
quotient algebra FL/FI1, we have [D3, D2] ∈ FI1 and hence one can
write [D3, D2] = γ0D1 + . . . + (γsas/s!)D1 for some γi ∈ F. Taking
D2 −

∑s−1
i=0 (γia

i+1/(i + 1)!)D1 instead D2 we may assume that [D3, D2] =
γsas/s!D1. Note that γs 6= 0. Really, in the opposite case [D3, D2] = 0
and therefore D2 ∈ Z(L). Then rkRZ(L) = 2 which is impossible because
of the conditions of the lemma. After changing D3 by γ−1

s D3 we may
assume that [D3, D2] = (as/s!)D1.

Since the linear operator adD3 has in a basis of the F -space FI2 a
matrix, consisting of a single Jordan block, the same is true for the linear
operator adD3 on the vector space FI2/FI1. Let dimF FI2/FI1 = k and
{S1, . . . , Sk} be a Jordan basis for adD3 on FI2/FI1, where Si = (ciD1 +
diD2) + FI1, i = 1, . . . , k, ci, di ∈ R. The representatives ciD1 + diD2

of the cosets Si can be chosen in such a way that [D3, ciD1 + diD2] =
ci−1D1 + di−1D2, i = 2, . . . , k and

[D3, c1D1 + d1D2] =
s∑

i=0

βi(a
i/i!)D1 (1)

for some βi ∈ F. Let us show by induction on i that the relations hold:

di ∈ F 〈1, . . . , ai−1/(i − 1)!〉, ci ∈ F 〈1, . . . , as+i/(s + i)!〉. (2)

Really, for i = 1 it follows from the relation (1) that

[D3, c1D1 + d1D2] =
s∑

i=0

βia
i/i!D1 =

= D3(c1)D1 + (d1as/s!)D1 + D3(d1)D2. (3)

It follows from (3) that D3(d1) = 0, and since the ideal FI2 is abelian,
it holds D1(d1) = D2(d1) = 0. The latter means that d1 ∈ F = F 〈1〉.
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We also get from (3) that D3(c1) ∈ F 〈1, . . . , as/s!〉 and obviously it holds
D1(c1) = D2(c1) = 0. Then, by Lemma 6, c1 ∈ F 〈1, a, . . . , as+1/(s + 1)!〉
and the relations (2) hold for i = 1. Assume they hold for i − 1. Let us
prove that the relations (2) hold for i. Using the equalities [D3, ciD1 +
diD2] = ci−1D1 + di−1D2 and [D3, D2] = as/s!D1 we get D3(di) =
di−1, D3(ci) = dia

s/s! + ci−1. By the inductive assumption, we have
di−1 ∈ F 〈1, a, . . . , ai−2/(i − 2)!〉, hence di ∈ F 〈1, a, . . . , ai−1/(i − 1)!〉 by
Lemma 6. Analogously, by the inductive assumption it holds

ci−1 ∈ F 〈1, a, . . . , as+i−1/(s + i − 1)!〉

and therefore D3(ci) ∈ F 〈1, a, . . . , as+i−1/(s + i − 1)!〉. Since D1(ci) =
D2(ci) = 0 we get by Lemma 6 that ci ∈ F 〈1, a, . . . , as+i/(s + i)!〉. But
then we have inclusion

FI2 ⊆ F 〈D1, aD1, . . . , (as+k/(s + k)!)D1, D2, aD2, . . . , (ak/k!)D2〉.

The last subalgebra of the Lie algebra W (R) is contained in the subalgebra
of the form

F 〈D1, aD1, . . . , (as+k/(s + k)!)D1, D2, aD2, . . . , (as+k/(s + k)!)D2〉.

But then the Lie algebra L is contained in the subalgebra L̃ from the
conditions Lemma 8.

Let now s = 0. Then FI1 = FD1 and without loss of generality we
may assume that [D3, D2] = D1. Repeating the above considerations we
can build a Jordan basis {(ciD1+diD2)+FI1, i = 1, . . . , k} of the quotient
algebra FI2/FI1 with [D3, ciD1 + diD2] = ci−1D1 + di−1D2, i = 2, . . . , k
and [D3, c1D1 + d1D2] = αD1 for some α ∈ F. It follows from the last
equality that D3(d1) = 0 and taking into account the equalities D1(d1) = 0
and D2(d1) = 0 we see that d1 ∈ F. Since a1D1 + d1D2 6∈ FI1, we have
d1 6= 0. By conditions of the lemma, dimF FL > 3, so we have k > 2
and the relation [D3, c2D1 + d2D2] = c1D1 + d1D2 implies the equality
D3(d2) = d1. But then D3(d2d−1

1 ) = 1 and multiplying all the elements of
the Jordan basis considered above by d−1

1 we may assume that D3(d2) = 1.
Denoting a = d2 and repeating the considerations from the subcase s > 0
we see that the Lie algebra L is contained in the subalgebra L̃ from the
conditions of Lemma 8.

Case 2. The ideal I2 is nonabelian. We may assume without loss of
generality that I1 coincides with its centralizer in L, i.e. CL(I1) = I1.
Really, let CL(I1) ⊃ I1 with strong containment. Choose a one-dimensional
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(central) ideal (D4 + I1)/I1 in the ideal CL(I1)/I1 of the quotient algebra
L/I1. Then I4 := (RD1 + RD4) ∩ L is an abelian ideal of rank 2 of the
algebra L and dimF FL/FI4 = 1 by Lemma 5 from [8]. Thus the problem
is reduced to the case 1 (one should take FI4 instead of FI2). So, we assume
that CL(I1) = I1. It follows from this equality that CF L(FI1) = FI1.

As in the case 1 we write FL = FI2 + FD3 and [D3, D2] = rD1

for some r ∈ R. Since the ideal FI1 is abelian, the linear operator
ad[D3, D2] = ad(rD1) acts trivially on the vector space FI1, and therefore
the linear operators adD2 and adD3 commute on FI1. Denote by M2 the
kernel Ker(adD2) on the F -space FI1. It is obvious that M2 is an abelian
subalgebra of FI1 and M2 is invariant under the action of adD3. Since
[D1, M2] = [D2, M2] = 0 the linear operator adD3 has on the F -space
FI1 the kernel of dimension 1 (in other case the center of the Lie algebra
FL would have dimension > 2 over F which contradicts our assumption).
Using Lemma 5 one can easily show that

M2 = F 〈D1, aD1, . . . , (ak/k!)D1〉

for some a ∈ R with D1(a) = 0, D2(a) = 0, D3(a) = 1 (if k = 0, then put
M2 = FD1). Further denote M3 = Ker(adD3) on the vector space FI1.
As above one can prove that M3 is invariant under action of adD2, this
linear operator has one-dimensional kernel on M3, and

M3 = F 〈D1, bD1, . . . , (bm/m!)D1〉

for some b ∈ R with D1(b) = D3(b) = 0 and D2(b) = 1 (if m = 0 put
M3 = FD1).

Take now any element cD1 of the ideal FI1, c ∈ R. Since the linear
operators adD2 and adD3 act nilpotently on FI1, there exist the least
positive integers k0 and m0 (depending on the element cD1) such that
(adD2)k0(cD1) = 0, (adD3)m0(cD1) = 0. Let us show by induction on
s = m0 +k0 that the element cD1 is a linear combination (with coefficients

from F ) of elements of the form aibj

i!j! D1 ∈ W (A) for some 0 6 i 6

k0 − 1, 0 6 j 6 m0 − 1 (note that the elements aibj

i!j! D1 can be outside of
FI1). If s = 2 (obviously s > 2), then we must only consider the case
m0 = 1, k0 = 1. In this case, we have [D3, cD1] = 0, [D2, cD1] = 0. These
equalities imply that cD1 ∈ Z(FL) = FD1 and all is done. Let s > 3.
The element [D2, cD1] can be written by the inductive assumption in the
form

[D2, cD1] =
k0−2∑

i=0

m0−1∑

j=0

γij
aibj

i!j!
D1 for some γij ∈ F.
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Analogously we get

[D3, cD1] =
k0−1∑

i=0

m0−2∑

j=0

δij
aibj

i!j!
D1 for some δij ∈ F.

It follows from the previous two equalities that

D2(c) =
k0−2∑

i=0

m0−1∑

j=0

γij
aibj

i!j!
, D3(c) =

k0−1∑

i=0

m0−2∑

j=0

δij
aibj

i!j!
.

Note that [D3, D2](c) = rD1(c) = 0 and therefore by Lemma 7 c ∈

F 〈aibj

i!j! , 0 6 i 6 k0 − 1, 0 6 j 6 m0 − 1〉. Since cD1 is arbitrarily

chosen we have FI1 ⊆ F 〈aibj

i!j! D1, 0 6 i 6 k0 − 1, 0 6 j 6 m0 − 1〉. One
can straightforwardly check that k0 6 k, where k = dim M2 − 1 and
analogously m0 6 m = dim M3 − 1. Let, for example, m > n. Then
FI1 ⊆ F 〈aibj

i!j! D1, 0 6 i, j 6 m〉.
Further, by the above proven, the linear operator adD3 on the vector

space FI2/FI1 has a matrix in a basis in the form of a single Jordan block.
This basis can be chosen in the form (u1D1 + v1D2) + FI1, . . . , (utD1 +
vtD2) + FI1 such that

[D3, uiD1 + viD2] = ui−1D1 + vi−1D2, i > 2,

[D3, u1D1 + v1D2] = fD1 (4)

for some element f, f ∈ F 〈aibj

i!j! , 0 6 i, j 6 m〉. Let us show by induction
on s that

us ∈ F 〈aibj

i!j! , 0 6 i, j 6 m + s〉, vs ∈ F 〈1, . . . , as−1/(s − 1)!〉.

If s = 1, then the equalities

[D3, u1D1 + v1D2] = fD1 = D3(u1)D1 + D3(v1)D2 + v1rD1 (5)

imply D3(v1) = 0 (let us recall here that [D3, D2] = rD1). Taking into
account the relations [D1, u1D1 + v1D2] = 0 and [D2, u1D1 + v1D2] ∈ FI1

we obtain that v1 ∈ ∩3
i=1RDi = F, that is v1 ∈ F 〈1〉. It follows from the

relations (4) that D3(u1) + v1r ∈ F 〈{aibj

i!j! }, 0 6 i, j 6 m.〉. Analogously
the inclusion [D2, u1D1 + v1D2] ∈ FI1 implies the relation

D2(u1) ∈ F 〈{aibj

i!j! }, 0 6 i, j 6 m.〉.
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Since [D3, D2] = rD1 and rD1(u1) = 0, we see (using Lemma 7) that

u1 ∈ F 〈{aibj

i!j! }, 0 6 i, j 6 m + 1.〉. By inductive assumption, we have

us−1 ∈ F 〈{aibj

i!j! }, 0 6 i, j 6 m + s − 1〉, vs−1 ∈ F 〈1, . . . , as−2

(s−2)!〉.

Note that the relations (4) imply the equalities

D3(us) = us−1 − rvs, D3(vs) = vs−1

(here [D3, D2] = rD1). Analogously it follows from the relation

[D2, usD1 + vsD2] ∈ FI1

that
D2(vs) = 0, D2(us) ∈ F 〈{aibj

i!j! D1}, 0 6 i, j 6 m〉.

Since D1 ∈ Z(L), we have the equalities D1(us) = D1(vs) = 0. Therefore
we get by Lemma 6 that vs ∈ F 〈1, . . . , as−1/(s − 1)!〉. By Lemma 7, us ∈

F 〈{aibj

i!j! }, 0 6 i, j 6 m+s〉 (since D3(us) ∈ F 〈{aibj

i!j! }, 0 6 i, j 6 m+s−1〉

by the relations (4)). Since rD1 ∈ FI1, we have rvs ∈ F 〈{aibj

i!j! }, 0 6

i, j 6 m + s − 1〉. But then by Lemma 7 us ∈ F 〈{aibj

i!j! }, 0 6 i, j 6 m + s〉.
So, we have proved that the Lie algebra L is contained in the subalgebra
L from the conditions of the lemma. To finish with the proof we must
prove that the element D2 can be chosen in W (A) in such a way that
[D3, D2] = 0. Take the element D2 − r0D1 instead D2, where the element
r0 is obtained from r by formal integration on variable a (recall that r ∈

F 〈{aibj

i!j! }, 0 6 i, j 6 m〉). Then [D3, D2] = 0. The proof is complete.

Collect now the results about nilpotent Lie algebras into the next
statement.

Theorem 1. Let K be a field of characteristic zero, A an integral K-
domain with fraction field R. Denote by W (A) the subalgebra RDerKA
of the Lie algebra DerKR. Let L be a nilpotent subalgebra of rank 3 over
R from W (A) and F = RL its field of constants. If dimF FL > 4, then
there exist integers n > 0, m > 0, elements D1, D2, D3 ∈ FL such that
[Di, Dj ] = 0, i, j = 1, 2, 3 and the Lie algebra FL is contained in one of
the following subalgebras of the Lie algebra W (A) :

1) L1 = F 〈D3, D1, aD1, . . . , (an/n!)D1, D2, aD2, . . . , (an/n!)D2〉,
where a ∈ R is such that D1(a) = D2(a) = 0, D3(a) = 1.

2) L2 = F 〈D3, D2, aD2, . . . , (an/n!)D2, {aibj

i!j! D1}, 0 6 i, j 6 m〉 where
a, b ∈ R are such that D1(a) = D2(a) = 0, D3(a) = 1, D1(b) = D3(b) = 0,
D2(b) = 1.
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As a corollary we get the next characterization of nilpotent Lie algebras
of rank 6 3 from the Lie algebra W (A).

Theorem 2. Under conditions of Theorem 1, every nilpotent subalgebra
L of rank k 6 3 over R from the Lie algebra W (A) is isomorphic to a
finite dimensional subalgebra of the triangular Lie algebra uk(F ).

Proof. If k = 1 then the Lie algebra FL is one-dimensional over F and
therefore is isomorphic to u1(F ) = F ∂

∂x1
. In the case k = 2, the Lie

algebra FL is (by Lemma 4) of the form

FL = F 〈D1, aD1, . . . , ak

k! D1, D2〉, k > 0

(if k = 0, then put FL = F 〈D1, D2〉),

where [D1, D2] = 0, D1(a) = 0, D2(a) = 1. The Lie algebra FL is
isomorphic to a suitable subalgebra of the triangular Lie algebra u2(F ) =
{f(x2) ∂

∂x1
+F ∂

∂x2
} : the correspondence Di 7→ ∂

∂xi
, i = 1, 2 and a 7→ x2 can

be extended to an isomorphism between FL and a subalgebra of u2(F ).
Let now k = 3. If dimF FL = 3, then FL is either abelian or has a basis
D1, D2, D3 with multiplication rule [D3, D2] = D1, [D2, D1] = [D3, D1] =
0. In the first case, FL is isomorphic to the subalgebra F 〈 ∂

∂x1
, ∂

∂x2
, ∂

∂x3
〉, in

the second case it is isomorphic to the subalgebra F 〈 ∂
∂x1

, x3
∂

∂x1
+ ∂

∂x2
, ∂

∂x3
〉

of the triangular Lie algebra u3(F ).

Let now dimF FL > 4. The Lie algebra FL is contained (by Theorem
1) in one of the Lie algebras L1 or L2 from the statement of that theorem.
Note that the Lie algebra L1 is isomorphic to the subalgebra L1 of the
Lie algebra u3(F ) of the form

L1 = F 〈 ∂
∂x3

, ∂
∂x1

, . . . , (xn
3 /n!) ∂

∂x1
, ∂

∂x2
, . . . , (xn

3 /n!) ∂
∂x2

〉,

Analogously the Lie algebra L2 is isomorphic the the subalgebra L2 of
u3(F ) of the form

L2 = F 〈 ∂
∂x3

, ∂
∂x2

, . . . , (xn
3 /n!) ∂

∂x2
, {

xi
2
x

j
3

i!j!
∂

∂x1
}, 0 6 i, j 6 m〉.

Corollary 1. Let L be a nilpotent subalgebra of the Lie algebra W3(K) =
Der(K[x1, x2, x3]) and F the field of constants for the Lie algebra L in the
field K(x,x2, x3). Then the Lie algebra FL (over the field F ) is isomorphic
to a finite dimensional subalgebra of the triangular Lie algebra u3(F ).
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Remark 1. If L is a nilpotent subalgebra of rank 3 over R from the
Lie algebra W3(K), then L being isomorphic to a subalgebra of the
triangular Lie algebra u3(K) can be not conjugated (by an automor-
phism of W3(K)) with any subalgebra of u3(K). Indeed, the subalgebra
L = K〈x1

∂
∂x1

, x2
∂

∂x2
, x3

∂
∂x3

〉 is nilpotent but not conjugated with any sub-
algebra of u3(K) (L is selfnormalized in W3(K), but any finite dimensional
subalgebra of u3(K) is not, because of locally nilpotency of the Lie algebra
u3(K)).

The author is grateful to V. Bavula and V.M.Bondarenko for useful
discussions and advice.
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