Transformations of $(0,1]$ preserving tails of Δ^{μ}-representation of numbers

Tetiana M. Isaieva, Mykola V. Pratsiovytyi

Communicated by A. P. Petravchuk

Abstract. Let $\mu \in(0,1)$ be a given parameter, $\nu \equiv 1-\mu$. We consider Δ^{μ}-representation of numbers $x=\Delta_{a_{1} a_{2} \ldots a_{n} \ldots}^{\mu}$ belonging to (0,1] based on their expansion in alternating series or finite sum in the form:

$$
x=\sum_{n}\left(B_{n}-B_{n}^{\prime}\right) \equiv \Delta_{a_{1} a_{2} \ldots a_{n} \ldots}^{\mu}
$$

where $B_{n}=\nu^{a_{1}+a_{3}+\ldots+a_{2 n-1}-1} \mu^{a_{2}+a_{4}+\ldots+a_{2 n-2}}$,

$$
B_{n}^{\prime}=\nu^{a_{1}+a_{3}+\ldots+a_{2 n-1}-1} \mu^{a_{2}+a_{4}+\ldots+a_{2 n}}, a_{i} \in \mathbb{N} .
$$

This representation has an infinite alphabet $\{1,2, \ldots\}$, zero redundancy and N-self-similar geometry.

In the paper, classes of continuous strictly increasing functions preserving "tails" of Δ^{μ}-representation of numbers are constructed. Using these functions we construct also continuous transformations of $(0,1]$. We prove that the set of all such transformations is infinite and forms non-commutative group together with an composition operation.

Introduction

We consider representation of real numbers belonging to half-interval $(0,1]$. It depends on real parameter $\mu \in(0,1)$ and has an infinite alphabet $\mathbb{N}=\{1,2,3, \ldots\}$. This representation is based on the following theorem.

2010 MSC: 11H71, 26A46, 93B17.
Key words and phrases: Δ^{μ}-representation, cylinder, tail set, function preserving "tails" of Δ^{μ}-representation of numbers, continuous transformation of $(0,1]$ preserving "tails" of Δ^{μ}-representation of numbers, group of transformations.

Theorem 1 ([19]). Let $(0,1) \ni \mu$ be a fixed real number, $\nu \equiv 1-\mu$. For any $x \in(0,1]$, there exists a finite tuple of positive integers $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ or a sequence of positive integers $\left(a_{n}\right)$ such that

$$
\begin{align*}
x=\nu^{a_{1}-1}-\nu^{a_{1}-1} \mu^{a_{2}}+ & \nu^{a_{1}+a_{3}-1} \mu^{a_{2}}-\nu^{a_{1}+a_{3}-1} \mu^{a_{2}+a_{4}}+\ldots= \\
& =\sum_{n}\left(B_{n}-B_{n}^{\prime}\right) \tag{1}
\end{align*}
$$

where $B_{n}=\nu^{a_{1}+a_{3}+\ldots+a_{2 n-1}-1} \mu^{a_{2}+a_{4}+\ldots+a_{2 n-2}}, \quad B_{n}^{\prime}=B_{n} \cdot \mu^{a_{2 n}}$.
We call expansion of the number x in the form of alternating series (1) the Δ^{μ}-expansion and its symbolic notation $\Delta_{a_{1} a_{2} \ldots a_{m}(\varnothing)}^{\mu}$ for finite expansion of number x or $\Delta_{a_{1} a_{2} \ldots a_{n} \ldots}^{\mu}$ for infinite sum the Δ^{μ}-representation.

Remark that expansion of a number in the form of alternating series (1) first appeared in papers [23,24] in an expression of strictly increasing singular function φ_{μ} being an unique continuous solution of a system of functional equations:

$$
\left\{\begin{array}{l}
\varphi_{\mu}\left(\frac{x}{1+x}\right)=(1-\mu) \varphi_{\mu}(x) \\
\varphi_{\mu}(1-x)=1-\varphi_{1-\mu}(x)
\end{array}\right.
$$

This function generalizes the well-known singular Minkowski function [1-$8,10-16,25]$ and coincides with it for $\mu=1 / 2$. In this case the Δ^{μ}-representation is the Δ^{\sharp}-representation studied in papers $[20,21]$.

There exists a countable everywhere dense in $[0,1]$ set of numbers having two Δ^{μ}-representation. These numbers have a form: $\Delta_{a_{1} \ldots\left[a_{m}+1\right](\varnothing)}^{\mu}=$ $=\Delta_{a_{1} \ldots a_{m} 1(\varnothing)}^{\mu}$. We call these numbers Δ^{μ}-finite. Other numbers belonging to $(0,1]$ have a unique Δ^{μ}-representation, their expansions are infinite, so we call them Δ^{μ}-infinite numbers. That is, Δ^{μ}-representation has a zero redundancy. We denote the set of all Δ^{μ}-infinite numbers by H and the set of Δ^{μ}-finite numbers by S.

The Δ^{μ}-representation of number is called the rational Δ^{μ}-representation if $\mu \in(0,1)$ is rational. In this case irrational numbers belonging to $(0,1]$ have infinite non-periodic Δ^{μ}-representation and rational numbers have either finite or infinite periodic or infinite non-periodic Δ^{μ}-representation [19]. So the set H contains all irrational numbers and everywhere dense in $[0,1]$ subset of rational numbers.

Remark that Δ^{μ}-representation has much in common with encoding of real numbers by regular continued fraction [9, 17], namely, they
have the same topology, rules for comparing numbers etc. However, $\Delta^{\mu_{-}}$ representation generates other metric relations, that is, it has own original metric theory [19].

In the paper, we construct an infinite non-commutative group of continuous strictly increasing piecewise linear transformations of $(0,1]$ preserving tails of Δ^{μ}-representation of numbers. Analogous objects for E-representation based on expansions of numbers in the form of positive Engel series are discussed in paper [18]. This representation has fundamental distinctions from E-representation in topological as well as metric aspects.

1. Geometry of Δ^{μ}-representation of numbers

Geometric meaning of digits of Δ^{μ}-representation of numbers and essence of related positional and metric problems are disclosed by the following important notion.

Definition 1. Let $\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ be a tuple of positive integers.
Cylinder of rank m with base $c_{1} c_{2} \ldots c_{m}$ is a set $\Delta_{c_{1} c_{2} \ldots c_{m}}^{\mu}$ of numbers $x \in(0,1]$ having Δ^{μ}-representation such that $a_{i}(x)=c_{i}, i=\overline{1, m}$.

Cylinders have the following properties.

1. $\bigcup_{a_{1} \in \mathbb{N}} \bigcup_{a_{2} \in \mathbb{N}} \ldots \bigcup_{a_{m} \in \mathbb{N}} \Delta_{a_{1} a_{2} \ldots a_{m}}^{\mu}=(0,1] ; \quad 2 . \Delta_{c_{1} c_{2} \ldots c_{m}}^{\mu}=\bigcup_{i=1}^{\infty} \Delta_{c_{1} c_{2} \ldots c_{m} i}^{\mu}$;
2. Cylinder $\Delta_{c_{1} c_{2} \ldots c_{m}}^{\mu}$ is a closed interval, moreover, if m is odd, then $\Delta_{c_{1} c_{2} \ldots c_{2 k-1}}^{\mu}=[a-\delta, a]$, where

$$
\begin{gathered}
\delta=\nu^{c_{1}+c_{3}+\ldots+c_{2 k-1}-1} \cdot \mu^{c_{2}+c_{4}+\ldots+c_{2 k-2}+1} \\
a=\nu^{c_{1}-1}-\nu^{c_{1}-1} \mu^{c_{2}}+\ldots+\nu^{c_{1}+c_{3}+\ldots+c_{2 k-1}-1} \mu^{c_{2}+c_{4}+\ldots+c_{2 k-2}}
\end{gathered}
$$

if m is even, then $\Delta_{c_{1} c_{2} \ldots c_{2 k}}^{\mu}=[a, a+\delta]$, where

$$
\begin{gathered}
\delta=\nu^{c_{1}+c_{3}+\ldots+c_{2 k-1}} \cdot \mu^{c_{2}+c_{4}+\ldots+c_{2 k}} \\
a=\nu^{c_{1}-1}-\nu^{c_{1}-1} \mu^{c_{2}}+\ldots+ \\
+\nu^{c_{1}+c_{3}+\ldots+c_{2 k-1}-1} \mu^{c_{2}+c_{4}+\ldots+c_{2 k-2}-\nu^{c_{1}+c_{3}+\ldots+c_{2 k-1}-1} \mu^{c_{2}+c_{4}+\ldots+c_{2 k}}},
\end{gathered}
$$

4. The length of cylinder of rank m is calculated by the formulae:

$$
\left|\Delta_{c_{1} \ldots c_{m}}^{\mu}\right|= \begin{cases}\nu^{c_{1}+c_{3}+\ldots+c_{2 k-1}-1} \cdot \mu^{c_{2}+c_{4}+\ldots+c_{2 k-2}+1} & \text { if } m=2 k-1 \\ \nu^{c_{1}+c_{3}+\ldots+c_{2 k-1}} \cdot \mu^{c_{2}+c_{4}+\ldots+c_{2 k}} & \text { if } m=2 k\end{cases}
$$

5. If $\Delta_{c_{1} c_{2} \ldots c_{m}}^{\mu}$ is a fixed cylinder, then the following equality (basic metric relation) holds:

$$
\frac{\left|\Delta_{c_{1} c_{2} \ldots c_{m} i}^{\mu}\right|}{\left|\Delta_{c_{1} c_{2} \ldots c_{m}}^{\mu}\right|}=\left\{\begin{array}{lll}
\nu \mu^{i-1} & \text { if } & m=2 k-1 \\
\mu \nu^{i-1} & \text { if } & m=2 k
\end{array}\right.
$$

6. $\min \Delta_{c_{1} \ldots c_{2 k-1} i}^{\mu}=\max \Delta_{c_{1} \ldots c_{2 k-1}(i+1)}^{\mu} ; \max \Delta_{c_{1} \ldots c_{2 k}}^{\mu}=\min \Delta_{c_{1} \ldots c_{2 k}(i+1)}^{\mu}$;
7. Cylinders of the same rank do not intersect or coincide. Moreover,

$$
\Delta_{c_{1} c_{2} \ldots c_{m}}^{\mu}=\Delta_{c_{1}^{\prime} c_{2}^{\prime} \ldots c_{m}^{\prime}}^{\mu} \Longleftrightarrow c_{i}=c_{i}^{\prime} \quad i=\overline{1, m}
$$

8. For any sequence $\left(c_{m}\right), c_{m} \in \mathbb{N}$, intersection

$$
\bigcap_{m=1}^{\infty} \Delta_{c_{1} c_{2} \ldots c_{m}}^{\mu}=x \equiv \Delta_{c_{1} c_{2} \ldots c_{m} \ldots}^{\mu}
$$

is a point belonging to half-interval $(0,1]$.
In paper [19], it is proved that geometry of Δ^{μ}-representation of numbers is N-self-similar and foundations of metric theory are laid. In paper [22], functions with fractal properties defined in terms of Δ^{μ}-representation are considered. Geometry plays an essential role in studies of such functions.

2. Tail sets and functions preserving tails of Δ^{μ}-representation of numbers

Let \mathcal{Z}_{H}^{μ} be the set of all Δ^{μ}-representations of numbers belonging to set H. We introduce binary relation "has the same tail" (symbolically: \sim) on the set \mathcal{Z}_{H}^{μ}.

Two Δ^{μ}-representations $\Delta_{a_{1} a_{2} \ldots a_{n} \ldots}^{\mu}$ and $\Delta_{b_{1} b_{2} \ldots b_{n} \ldots}^{\mu}$ are said to have the same tail (or they are \sim-related) if there exist positive integers k and m such that $a_{k+j}=b_{m+j}$ for any $j \in \mathbb{N}$.

It is evident that binary relation \sim is an equivalence relation (i.e., it is reflexive, symmetric and transitive) and provides a partition of the set \mathcal{Z}_{H}^{μ} into equivalence classes. Any equivalence class is said to be a tail set. Any tail set is uniquely determined by its arbitrary element (representative).

We say that two numbers x and y belonging to set H have the same tail of Δ^{μ}-representation (or they are \sim-related) if their Δ^{μ}-representations are \sim-related. We denote this symbolically as $x \sim y$.

Theorem 2. Any tail set is countable and dense in (0,1]; quotient set $F \equiv(0,1] / \sim$ is a continuum set.

Proof. Suppose K is an arbitrary equivalence class, $x_{0}=\Delta_{c_{1} c_{2} \ldots c_{n} \ldots}^{\mu}$ is its representative. Then it is evident that, for any $m \in \mathbb{Z}_{0}$, there exists set $K_{m}=\left\{x: x=\Delta_{a_{1} \ldots a_{k} c_{m+1} c_{m+2} \ldots}^{\mu}, \quad a_{i} \in \mathbb{N}, k=0,1,2, \ldots\right\}$ of numbers x such that for some $k \in \mathbb{Z}_{0}$

$$
a_{k+j}(x)=c_{m+j} \quad \text { for any } j \in \mathbb{N} \quad \text { and } \quad K=\bigcup_{m \in \mathbb{Z}_{0}} K_{m}
$$

The set K is countable because it is a countable union of countable sets.
Now we prove that K is a dense in $(0,1]$ set. Since number x belongs or does not belong to the set K irrespective of any finite amount of first digits of its Δ^{μ}-representation, we have that any cylinder of arbitrary rank m contains point belonging to K. Thus K is an everywhere dense in half-interval $(0,1]$ set.

To prove that quotient set $F \equiv(0,1] / \sim$ is continuum set, we assume the converse. Suppose that F is a countable set. Then half-interval $(0,1]$ is a countable set as a countable union of countable sets (equivalence classes of quotient set F). This contradiction proves the theorem.

Remark that it is easy to introduce a distance function (metric) in the quotient set F.

Definition 2. Suppose function f is defined on the set H and takes values from this set. We say that function f preserves tails of Δ^{μ}-representations of numbers if for any $x \in(0,1]$ there exist positive integers $k=k(x)$ and $m=m(x)$ such that

$$
a_{k+n}(x)=a_{m+n}(f(x)) \quad \text { for all } n \in \mathbb{N}
$$

It is clear that functions preserving tails of Δ^{μ}-representations of numbers form an infinite set. However, only continuous functions are interested for us. Identity transformation $y=e(x)$ is a simplest example of such function.

By X we denote the set of all functions satisfying Definition 2. In the sequel, we consider some representatives of this class.

3. Function $\sigma_{1}(x)$

We consider function defined on the set H by equality

$$
y=\sigma_{1}(x)=\sigma_{1}\left(\Delta_{a_{1}(x) a_{2}(x) a_{3}(x) a_{4}(x) \ldots a_{n}(x) \ldots}^{\mu}\right)=\Delta_{\left[a_{1}+a_{2}+a_{3}\right] a_{4} \ldots a_{n} \ldots}^{\mu}
$$

This function is well-defined due to uniqueness of Δ^{μ}-representation of numbers belonging to the set H. It is evident that it preserves tails of Δ^{μ}-representation of numbers.

Lemma 1. Analytic expression for function $y=\sigma_{1}(x)$ is given by formula

$$
\begin{equation*}
\sigma_{1}(x)=\left(\frac{\nu}{\mu}\right)^{a_{2}(x)} \cdot x+\nu^{a_{1}(x)+a_{2}(x)-1}\left(1-\frac{1}{\mu^{a_{2}(x)}}\right) \tag{2}
\end{equation*}
$$

this function is linear on every cylinder of rank 2 and has the following properties:

1) it is continuous strictly increasing function;
2) $\sup _{x \in \Delta_{i j}^{\mu}} \sigma_{1}(x)=\nu^{i+j}, \inf _{x \in \Delta_{i j}^{\mu}} \sigma_{1}(x)=0$;
3) $\int_{\Delta_{i j}^{\mu}} \sigma_{1}(x) d x=\frac{1}{2} \nu^{2 i+j} \mu^{j}$; 4) $\int_{0}^{1} \sigma_{1}(x) d x=\frac{1}{2} \cdot \frac{\nu^{3}}{1+\nu^{3}}$.

Proof. 1. Indeed, if $x=\Delta_{a_{1} a_{2} a_{3} a_{4} a_{5} \ldots a_{n} \ldots}^{\mu}$, then

$$
\begin{gathered}
x=\nu^{a_{1}-1}-\nu^{a_{1}-1} \mu^{a_{2}}+\nu^{a_{1}+a_{3}-1} \mu^{a_{2}}-\nu^{a_{1}+a_{3}-1} \mu^{a_{2}+a_{4}}+\ldots= \\
=\nu^{a_{1}-1}-\nu^{a_{1}-1} \mu^{a_{2}}+\frac{\mu^{a_{2}}}{\nu^{a_{2}}} \cdot \sigma_{1}(x)
\end{gathered}
$$

Whence it follows that

$$
\sigma_{1}(x)=\left(\frac{\nu}{\mu}\right)^{a_{2}(x)} \cdot x+\nu^{a_{1}(x)+a_{2}(x)-1}\left(1-\frac{1}{\mu^{a_{2}(x)}}\right) .
$$

It is evident that function $\sigma_{1}(x)$ is linear. Therefore it is continuous strictly increasing on the set $H \cap \Delta_{a_{1} a_{2}}^{\mu}$. Extending by continuity in Δ^{μ}-finite points we obtain continuous function on the whole cylinder $\Delta_{a_{1} a_{2}}^{\mu}$.
2. Boundary values of function $\sigma_{1}(x)$ on cylinder $\Delta_{i j}^{\mu}$ can be calculated by formulae:

$$
\begin{aligned}
& \sup _{x \in \Delta_{i j}^{\mu}} \sigma_{1}(x)=\lim _{k \rightarrow \infty} \sigma_{1}\left(\Delta_{i j 1(k)}^{\mu}\right)=\Delta_{[i+j+1](\varnothing)}^{\mu}=\nu^{i+j} . \\
& \inf _{x \in \Delta_{i j}^{\mu}} \sigma_{1}(x)=\lim _{k \rightarrow \infty} \sigma_{1}\left(\Delta_{i j(k)}^{\mu}\right)=\lim _{k \rightarrow \infty} \Delta_{[i+j+k](k)}^{\mu}=0 .
\end{aligned}
$$

3. Calculate integral on cylinder $\Delta_{i j}^{\mu}$:

$$
\int_{\Delta_{i j}^{\mu}} \sigma_{1}(x) d x=\int_{\Delta_{i j(\varnothing)}^{\mu}}^{\Delta_{i[j+1](\varnothing)}^{\mu}} \sigma_{1}(x) d x=\int_{\nu^{i-1}\left(1-\mu^{j}\right)}^{\nu^{i-1}\left(1-\mu^{j+1}\right)} \sigma_{1}(x) d x=\frac{1}{2} \nu^{2 i+j} \mu^{j}
$$

4. Calculate integral on the unit interval:

$$
\int_{0}^{1} \sigma_{1}(x) d x=\frac{1}{2} \sum_{i=1}^{\infty} \nu^{2 i} \sum_{j=1}^{\infty} \nu^{j} \mu^{j}=\frac{1}{2} \cdot \frac{\nu^{2}}{1-\nu^{2}} \cdot \frac{\nu \mu}{1-\nu \mu}=\frac{1}{2} \cdot \frac{\nu^{3}}{1+\nu^{3}} .
$$

4. Function $d_{s}(x)$

Let s be a fixed positive integer. We consider function depending on parameter s, well-defined on half-interval $(0,1]$ by equality

$$
y=d_{s}(x)=d_{s}\left(\Delta_{a_{1}(x) a_{2}(x) a_{3}(x) \ldots}^{\mu}\right)=\Delta_{\left[s+a_{1}\right] a_{2} a_{3} \ldots}^{\mu} .
$$

Since s is an arbitrary positive integer, we have a countable class of functions $y=d_{s}(x)$.

Theorem 3. Function d_{s} is analytically expressed by formula:

$$
d_{s}(x)=\nu^{s} \cdot x
$$

and has the following properties:

1) it is linear strictly increasing, 2) $\inf _{x \in(0,1]} d_{s}(x)=0, \sup _{x \in(0,1]} d_{s}(x)=\nu^{s}$.

Moreover, equation $\sigma_{1}(x)=d_{s}(x)$ does not have solutions if $a_{2} \geqslant s$, and has a countable set of solutions:

$$
\begin{aligned}
E & =\left\{x: x=\Delta_{a_{1}\left(a_{2}\left[s-a_{2}\right]\right)}^{\mu}, \quad \text { where } a_{1} \in \mathbb{N}, a_{2} \in\{1,2, \ldots, s-1\}\right\} \\
\text { if } a_{2} & <s
\end{aligned}
$$

Proof. By definition of function d_{s}, we have

$$
d_{s}(x)=\Delta_{\left[s+a_{1}\right] a_{2} a_{3} \ldots}^{\mu}=\nu^{s+a_{1}-1}-\nu^{s+a_{1}-1} \mu^{a_{2}}+\ldots=\nu^{s} \cdot x
$$

Thus $d_{s}(x)=\nu^{s} \cdot x$. It is evident that function d_{s} is linear strictly increasing on half-interval $(0,1]$. Moreover,

$$
\begin{aligned}
& \inf _{x \in(0,1]} d_{s}(x)=\lim _{x \rightarrow 0+0} d_{s}(x)=\lim _{k \rightarrow \infty} d_{s}\left(\Delta_{(k)}^{\mu}\right)=\lim _{k \rightarrow \infty} \Delta_{[s+k](k)}^{\mu}=0 \\
& \sup _{x \in(0,1]} d_{s}(x)=\lim _{x \rightarrow 1-0} d_{s}(x)=\lim _{k \rightarrow \infty} d_{s}\left(\Delta_{1(k)}^{\mu}\right)=\Delta_{[s+1](\varnothing)}^{\mu}=\nu^{s}
\end{aligned}
$$

We can write equation $\sigma_{1}(x)=d_{s}(x)$ in the form

$$
\Delta_{\left[a_{1}(x)+a_{2}(x)+a_{3}(x)\right] a_{4}(x) \ldots}^{\mu}=\Delta_{\left[s+a_{1}(x)\right] a_{2}(x) a_{3}(x) a_{4}(x) \ldots}^{\mu}
$$

From uniqueness of Δ^{μ}-representation of numbers belonging to set H it follows that following equalities hold simultaneously:

$$
\begin{aligned}
& a_{1}(x)+a_{2}(x)+a_{3}(x)=s+a_{1}(x), \quad a_{4}(x)=a_{2}(x), \\
& a_{5}(x)=a_{3}(x)=s-a_{2}(x), \quad \ldots \quad a_{2 k}(x)=a_{2}(x), \\
& a_{2 k+1}(x)=s-a_{2}(x), \quad k \in \mathbb{N} .
\end{aligned}
$$

It is evident that this system is inconsistent if $a_{2} \geqslant s$. However, for $a_{2}<s$, equation has a countable set of solutions $x=\Delta_{a_{1}\left(a_{2}\left[s-a_{2}\right]\right)}^{\mu}$, where a_{1}, a_{2} are independent positive integer parameters.

5. Left shift operator on digits of Δ^{μ}-representation of number

Let \mathcal{Z}_{H}^{μ} be the set of all Δ^{μ}-representations of numbers belonging to set H. We consider shift operator ω_{2} on digits defined by equality

$$
\omega_{2}\left(\Delta_{a_{1} a_{2} a_{3} a_{4} \ldots a_{n} \ldots}^{\mu}\right)=\Delta_{a_{3} a_{4} \ldots a_{n} \ldots}^{\mu}
$$

This operator generates function $y=\omega_{2}(x)=\Delta_{a_{3}(x) a_{4}(x) \ldots a_{n}(x) \ldots}^{\mu}$ on the set H. It is evident that operator ω_{2} is surjective but not injective.

Any point $\Delta_{(i j)}^{\mu}=\frac{\nu^{i-1}\left(1-\mu^{j}\right)}{1-\nu^{i} \mu^{j}}$, where (i, j) is any pair of positive integers, is an invariant point of the mapping ω_{2}.

Lemma 2. Function $y=\omega_{2}(x)$ is analytically expressed by formula

$$
\begin{equation*}
\omega_{2}(x)=\frac{x}{\nu^{a_{1}(x)} \mu^{a_{2}(x)}}-\frac{1-\mu^{a_{2}(x)}}{\nu \mu^{a_{2}(x)}} \tag{3}
\end{equation*}
$$

and is continuous monotonically increasing on any cylinder of rank 2.
Proof. Let $x \in \Delta_{i j}^{\mu}$. Then $x=\Delta_{i j a_{3} a_{4} \ldots}^{\mu}$ and

$$
\begin{gathered}
x=\nu^{i-1}-\nu^{i-1} \mu^{j}+\nu^{i+a_{3}-1} \mu^{j}-\nu^{i+a_{3}-1} \mu^{j+a_{4}}+\ldots= \\
=\nu^{i-1}-\nu^{i-1} \mu^{j}+\nu^{i} \mu^{j} \cdot \omega_{2}(x) .
\end{gathered}
$$

Whence, $\omega_{2}(x)=\frac{x}{\nu^{i} \mu^{j}}-\frac{1-\mu^{j}}{\nu \mu^{j}}$.
Since function ω_{2} is linear, we have that this function is continuous strictly increasing on the set $H \cap \Delta_{a_{1} a_{2}}^{\mu}$. Extending by continuity in the points of the set S we obtain continuous function on the whole cylinder $\Delta_{a_{1} a_{2}}^{\mu}$.

Lemma 3. Equation $d_{s}(x)=\omega_{2}(x)$ has a countable set of solutions having the form $x=\Delta_{a_{1}\left(a_{2}\left[s+a_{1}\right]\right)}^{\mu}$, where a_{1}, a_{2} are arbitrary positive integers.

Proof. We can write equation $d_{s}(x)=\omega_{2}(x)$ in the form

$$
\Delta_{\left[s+a_{1}(x)\right] a_{2}(x) a_{3}(x) a_{4}(x) \ldots}^{\mu}=\Delta_{a_{3}(x) a_{4}(x) \ldots}^{\mu}
$$

From uniqueness of Δ^{μ}-representation of numbers belonging to set H it follows that the following equalities hold simultaneously:

$$
\begin{aligned}
& s+a_{1}(x)=a_{3}(x), \quad a_{2}(x)=a_{4}(x), \quad a_{3}(x)=a_{5}(x)=s+a_{1}(x), \\
& a_{4}(x)=a_{6}(x)=a_{2}(x), \quad \cdots, \quad a_{2 k+1}(x)=s+a_{1}(x) \\
& a_{2 k}(x)=a_{2}(x), \quad k \in \mathbb{N} .
\end{aligned}
$$

Then solutions of equation are numbers having the form $x=\Delta_{a_{1}\left(a_{2}\left[s+a_{1}\right]\right)}^{\mu}$, where $a_{1}, a_{2} \in \mathbb{N}$.

6. Right shift operator on digits of Δ^{μ}-representation of number

Let i, j be fixed positive integers. We consider operator depending on parameters i, j, well-defined on half-interval $(0,1]$ by equality

$$
\delta_{i j}(x)=\delta_{i j}\left(\Delta_{a_{1}(x) a_{2}(x) \ldots}^{\mu}\right)=\Delta_{i j a_{1} a_{2} \ldots}^{\mu}
$$

This operator defines a countable set of functions $y=\delta_{i j}(x), i \in \mathbb{N}, j \in \mathbb{N}$.
Lemma 4. Function $y=\delta_{i j}(x)$ is analytically expressed by formula

$$
y=\delta_{i j}(x)=\nu^{i} \mu^{j} \cdot x+\nu^{i-1}\left(1-\mu^{j}\right)
$$

and is linear strictly increasing on half-interval (0,1 , moreover,

$$
\begin{gathered}
\inf _{x \in(0,1]} \delta_{i j}(x)=\Delta_{i j(\varnothing)}^{\mu}=\nu^{i-1}\left(1-\mu^{j}\right) \\
\sup _{x \in(0,1]} \delta_{i j}(x)=\Delta_{i j 1(\varnothing)}^{\mu}=\nu^{i-1}\left(1-\mu^{j+1}\right) .
\end{gathered}
$$

Proof. In fact, by definition of function $\delta_{i j}$, we have:

$$
y=\delta_{i j}\left(\Delta_{a_{1} a_{2} \ldots}^{\mu}\right)=\Delta_{i j a_{1} a_{2} \ldots}^{\mu}=\nu^{i-1}-\nu^{i-1} \mu^{j}+\nu^{i+a_{1}-1} \mu^{j}-\nu^{i+a_{1}-1} \mu^{j+a_{2}}+\ldots=
$$

$=\nu^{i-1}-\nu^{i-1} \mu^{j}+\nu^{i} \mu^{j} \underbrace{\left(\nu^{a_{1}-1}-\nu^{a_{1}-1} \mu^{a_{2}}+\ldots\right)}_{x}=\nu^{i-1}-\nu^{i-1} \mu^{j}+\nu^{i} \mu^{j} \cdot x$.
Therefore, $y=\delta_{i j}(x)=\nu^{i} \mu^{j} \cdot x+\nu^{i-1}\left(1-\mu^{j}\right)$.
From linearity of function $\delta_{i j}$ it follows that it is a continuous strictly increasing function on $(0,1]$ for any pair of positive integers (i, j). Moreover,

$$
\begin{gathered}
\inf _{x \in(0,1]} \delta_{i j}(x)=\lim _{x \rightarrow 0+0} \delta_{i j}(x)=\lim _{k \rightarrow \infty} \delta_{i j}\left(\Delta_{(k)}^{\mu}\right)=\lim _{k \rightarrow \infty} \Delta_{i j(k)}^{\mu}= \\
=\Delta_{i j(\varnothing)}^{\mu}=\nu^{i-1}\left(1-\mu^{j}\right) \\
\sup _{x \in(0,1]} \delta_{i j}(x)=\lim _{x \rightarrow 1-0} \delta_{i j}(x)=\lim _{k \rightarrow \infty} \delta_{i j}\left(\Delta_{1(k)}^{\mu}\right)= \\
=\Delta_{i j 1(\varnothing)}^{\mu}=\nu^{i-1}\left(1-\mu^{j+1}\right)
\end{gathered}
$$

For functions ω_{2} and $\delta_{i j}$, the following equalities are obvious:

$$
\omega_{2}\left(\delta_{i j}\right)=x, \quad \delta_{a_{1}(x) a_{2}(x)}\left(\omega_{2}(x)\right)=x
$$

Theorem 4. For function $\delta_{i j}$, the following propositions are true.

1. Equation $\sigma_{1}(x)=\delta_{i j}(x)$ does not have any solution if $a_{1}+a_{2} \geqslant i$ and has a countable set of solutions
$E=\left\{x: x=\Delta_{\left(a_{1} a_{2}\left[i-a_{1}-a_{2}\right] j\right)}^{\mu}, a_{1} \in \mathbb{N}, a_{2} \in \mathbb{N}, a_{1}+a_{2} \in\{1,2, \ldots, i-1\}\right\}$ if $a_{1}+a_{2}<i$.
2. Equation $d_{s}(x)=\delta_{i j}(x)$ does not have any solution if $s \geqslant i$ and has a countable set of solutions

$$
E=\left\{x: x=\Delta_{([i-s] j)}^{\mu}, s \in \mathbb{N}, s \in\{1,2, \ldots, i-1\}\right\}
$$

if $s<i$.
3. Equation $\omega_{2}(x)=\delta_{i j}(x)$ has infinitely many solutions having a general form

$$
x=\Delta_{\left(a_{1} a_{2} i j\right)}^{\mu}, \quad \text { where }\left(a_{1}, a_{2}\right) \text { is an arbitrary pair of positive integers. }
$$

Proof. 1. We can write equation $\sigma_{1}(x)=\delta_{i j}(x)$ in the form

$$
\Delta_{\left[a_{1}(x)+a_{2}(x)+a_{3}(x)\right] a_{4}(x) a_{5}(x) \ldots}^{\mu}=\Delta_{i j a_{1}(x) a_{2}(x) a_{3}(x) a_{4}(x) \ldots}^{\mu}
$$

From uniqueness of Δ^{μ}-representation of numbers belonging to H it follows that following equalities holds simultaneously:

$$
\begin{aligned}
& a_{1}(x)+a_{2}(x)+a_{3}(x)=i, \quad a_{4}(x)=j, \quad a_{5}(x)=a_{1}(x), \quad a_{6}(x)=a_{2}(x), \\
& a_{7}(x)=a_{3}=i-\left(a_{1}+a_{2}\right), a_{8}(x)=a_{4}=j, \ldots, a_{4 k-1}(x)=i-\left(a_{1}+a_{2}\right), \\
& a_{4 k}(x)=j, a_{4 k+1}(x)=a_{1}, a_{4 k+2}(x)=a_{2}, \quad k \in \mathbb{N} .
\end{aligned}
$$

Then this system does not have any solution if $a_{1}+a_{2} \geqslant i$ and have a countable set of solutions $E=\left\{x: x=\Delta_{\left(a_{1} a_{2}\left[i-a_{1}-a_{2}\right] j\right)}^{\mu}\right\}$, where a_{1}, a_{2} are independent positive integer parameters, if $a_{1}+a_{2}<i$.

Similarly, we can prove statements 2 and 3 of the theorem.

7. Transformations preserving tails of Δ^{μ}-representation of numbers

Recall that transformation of non-empty set E is any bijective (i.e., both injective and surjective) mapping of this set onto itself.

It is clear that continuous transformations of $[0,1]$ are strictly monotonic (increasing or decreasing) functions such that $f(0)=0$ and $f(1)=1$ or $f(0)=1$ and $f(1)=0$.

If f is a transformation of $[0,1]$, then $\varphi(x)=1-f(x)$ is also transformation of this set. Therefore, to study continuous transformations of $[0,1]$, we can consider only strictly increasing functions, i.e., continuous probability distribution functions.

Simple examples of continuous strictly increasing transformations preserving tails of Δ^{μ}-representation of numbers are the following functions:

$$
\varphi_{\tau}(x)=\left\{\begin{array}{lll}
d_{i}(x) & \text { if } & 0<x \leqslant x_{1} \equiv \Delta_{a_{1}\left(a_{2}\left[i+a_{1}\right]\right)}^{\mu} \\
\omega_{2}(x) & \text { if } & x_{1}<x \leqslant x_{2} \equiv \Delta_{\left(a_{1} a_{2}\right)}^{\mu} \\
e(x) & \text { if } & x_{2}<x \leqslant 1
\end{array}\right.
$$

where $\tau=\left(i, a_{1}, a_{2}\right)$ is an arbitrary triplet of positive integers;

$$
\psi(x)=\left\{\begin{array}{lll}
d_{1}(x) & \text { if } & 0<x \leqslant x_{1} \equiv \Delta_{1(12)}^{\mu} \\
\omega_{2}(x) & \text { if } & x_{1}<x \leqslant x_{2} \equiv \Delta_{(1112)}^{\mu} \\
\delta_{12}(x) & \text { if } & x_{2}<x \leqslant x_{3} \equiv \Delta_{(12)}^{\mu} \\
e(x) & \text { if } & x_{3}<x \leqslant 1
\end{array}\right.
$$

$$
\gamma(x)=\left\{\begin{array}{lll}
d_{3}(x) & \text { if } & 0<x \leqslant x_{1} \equiv \Delta_{1(12)}^{\mu} \\
\sigma_{1}(x) & \text { if } & x_{1}<x \leqslant x_{2} \equiv \Delta_{(1111)}^{\mu} \\
\delta_{31}(x) & \text { if } & x_{2}<x \leqslant x_{3} \equiv \Delta_{(1231)}^{\mu} \\
\omega_{2}(x) & \text { if } & x_{3}<x \leqslant x_{4} \equiv \Delta_{(1212)}^{\mu} \\
e(x) & \text { if } & x_{4}<x \leqslant 1
\end{array}\right.
$$

Theorem 5. The set G of all continuous strictly increasing transformations of half-interval $(0,1]$ preserving tails of Δ^{μ}-representation of numbers together with an operation \circ (function composition) form an infinite non-commutative group.

Proof. The set of continuous transformations of $(0,1]$ is a subset of all transformations of $(0,1]$ forming a group. Thus we use a subgroup test. It is evident that set G is closed under the composition operation. For continuous strictly increasing function, inverse function is continuous and strictly increasing too. If transformation f preserves "tails" of Δ^{μ}-representations, then inverse transformation preserves them too. Therefore, for transformation $f \in G$, inverse transformation belongs to G too.

Since set of transformations $\varphi_{\tau}, \tau \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$, is countable, we see that set G is infinite.

To prove that group (G, \circ) is non-commutative, we provide an example of two transformations f_{1} and f_{2} such that they are not commute, i.e., $f_{2} \circ f_{1} \neq f_{1} \circ f_{2}$. Consider two transformations $\varphi_{\tau_{1}}(x)$ and $\varphi_{\tau_{2}}(x)$, where $\tau_{1}=(1,2,3), \tau_{2}=(1,1,2)$, i.e.,

$$
\begin{aligned}
& \varphi_{\tau_{1}}(x)=\left\{\begin{array}{lll}
d_{1}(x) & \text { if } & 0<x \leqslant x_{1} \equiv \Delta_{2(33)}^{\mu} \\
\omega_{2}(x) & \text { if } & x_{1}<x \leqslant x_{2} \equiv \Delta_{(23)}^{\mu} \\
e(x) & \text { if } & x_{2}<x \leqslant 1
\end{array}\right. \\
& \varphi_{\tau_{2}}(x)=\left\{\begin{array}{lll}
d_{1}(x) & \text { if } & 0<x \leqslant x_{3} \equiv \Delta_{1(22)}^{\mu} \\
\omega_{2}(x) & \text { if } & x_{3}<x \leqslant x_{4} \equiv \Delta_{(12)}^{\mu} \\
e(x) & \text { if } & x_{4}<x \leqslant 1
\end{array}\right.
\end{aligned}
$$

Then, for $x_{0}=\Delta_{12(3)}^{\mu}$, tacking into account inequalities $x_{0}>x_{2}=\Delta_{(23)}^{\mu}$ but $\varphi_{\tau_{1}}\left(x_{0}\right)<x_{3}=\Delta_{1(22)}^{\mu}$ and $x_{0}<x_{3}=\Delta_{1(22)}^{\mu}$ but $\varphi_{\tau_{2}}\left(x_{0}\right)<x_{1}=\Delta_{2(33)}^{\mu}$, we obtain

$$
\begin{gathered}
\varphi_{\tau_{2}}\left(\varphi_{\tau_{1}}\left(\Delta_{12(3)}^{\mu}\right)\right)=\varphi_{\tau_{2}}\left(\Delta_{12(3)}^{\mu}\right)=\Delta_{22(3)}^{\mu} \\
\varphi_{\tau_{1}}\left(\varphi_{\tau_{2}}\left(\Delta_{12(3)}^{\mu}\right)\right)=\varphi_{\tau_{1}}\left(\Delta_{22(3)}^{\mu}\right)=\Delta_{32(3)}^{\mu} \neq \Delta_{22(3)}^{\mu}
\end{gathered}
$$

Therefore $\varphi_{\tau_{2}} \circ \varphi_{\tau_{1}} \neq \varphi_{\tau_{1}} \circ \varphi_{\tau_{2}}$ and (G, \circ) is a non-commutative group.

References

[1] G. Alkauskas, An asymptotic formula for the moments of the Minkowski question mark function in the interval [0, 1], Lithuanian Mathematical Journal, 48, 2008, no. 4, pp. 357-367.
[2] G. Alkauskas, Generating and zeta functions, structure, spectral and analytic properties of the moments of Minkowski question mark function, Involve, 2, 2009, no. 2, pp. 121-159.
[3] G. Alkauskas, The Minkowski question mark function: explicit series for the dyadic period function and moments, Mathematics of Computation, 79, 2010, no. 269, pp. 383-418.
[4] G. Alkauskas, Semi-regular continued fractions and an exact formula for the moments of the Minkowski question mark function, Ramanujan J., 25, 2011, no. 3, pp. 359-367.
[5] G. Alkauskas, The Minkowski ?(x) function and Salem's problem, C. R. Acad. Sci., 350, no. 3-4, Paris, 2012, pp. 137-140.
[6] A. Denjoy, Sur une fonction de Minkowski, C. R. Acad. Sci., vol. 194, Paris, 1932, pp. 44-46.
[7] A. Denjoy, Sur une fonction réelle de Minkowski, J. Math. Pures Appl., vol. 17, 1938, pp. 105-151.
[8] A. A. Dushistova, I. D. Kan, N. G. Moshchevitin, Differentiability of the Minkowski question mark function, J. Math. Anal. Appl., 401, 2013, no. 2, pp. 774-794.
[9] A. Ya. Khinchin, Continued fractions, Moscow: Nauka, 1978, 116 p. (in Russian).
[10] J. R. Kinney, Note on a singular function of Minkowski, Proc. Amer. Math. Soc., 11, 1960, no. 5, pp. 788-794.
[11] M. Kesseböhmer, B. Stratmann, Fractal analysis for sets of non-differentiability of Minkowski's question mark function, J. Number Theory, 128, 2008, no. 9, pp. 2663-2686.
[12] M. Lamberger, On a family of singular measures related to Minkowski's ?(x) function, Indag. Math., 17, 2006, no. 1, pp. 45-63.
[13] H. Minkowski, Gesammelte Abhandlungen, vol. 2, Berlin, 1911, pp. 50-51.
[14] O. R. Beaver, T. Garrity, A two-dimensional Minkowski ?(x) function, J. Number Theory, 107, 2004, no. 1, pp. 105-134.
[15] G. Panti, Multidimensional continued fractions and a Minkowski function, Monatsh. Math., 154, 2008, no. 3, pp. 247-264.
[16] J. Paradis, P. Viader, L. Bibiloni, A new light on Minkowski's ?(x) function, J. Number. Theory, 73, 1998, no. 2, pp. 212-227.
[17] M. V. Pratsiovytyi, Fractal approach to investigation of singular probability distributions, Kyiv: Natl. Pedagog. Mykhailo Drahomanov Univ. Publ., 1998, 296 p. (in Ukrainian).
[18] O. Baranovskyi, Yu. Kondratiev, M. Pratsiovytyi, Transformations and functions preserving tails of E-representation of numbers, Manuscript, 2015.
[19] M. V. Pratsiovytyi, T. M. Isaieva, Δ^{μ}-representation as a generalization of Δ^{\sharp}-representation and a foundation of new metric theory of real numbers, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Drahomanova. Ser. 1. Fiz.-Mat. Nauky [Trans. Natl. Pedagog. Mykhailo Drahomanov Univ. Ser. 1. Phys. Math.], N. 16, 2014, pp. 164-186 (in Ukrainian).
[20] M. V. Pratsiovytyi, T. M. Isaieva, Encoding of real numbers with infinite alphabet and base 2, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Drahomanova. Ser. 1. Fiz.-Mat. Nauky [Trans. Natl. Pedagog. Mykhailo Drahomanov Univ. Ser. 1. Phys. Math.], N. 15, 2013, pp. 6-23 (in Ukrainian).
[21] M. V. Pratsiovytyi, T. M. Isaieva, On some applications of Δ^{\sharp}-representation of real numbers, Bukovyn. Mat. Zhurn. [Bukovinian Math. J.], vol. 2, N. 2-3, 2014, pp. 187-197 (in Ukrainian).
[22] M. V. Pratsiovytyi, T. M. Isaieva, Fractal functions related to Δ^{μ}-representation of numbers, Bukovyn. Mat. Zhurn. [Bukovinian Math. J.], vol. 3, N. 3-4, 2015, pp. 156-165 (in Ukrainian).
[23] M. V. Pratsiovytyi, A. V. Kalashnikov, Singularity of functions of one-parameter class containing the Minkowski function, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Drahomanova. Ser. 1. Fiz.-Mat. Nauky [Trans. Natl. Pedagog. Mykhailo Drahomanov Univ. Ser. 1. Phys. Math.], N. 12, 2011, pp. 59-65 (in Ukrainian).
[24] M. V. Pratsiovytyi, A. V. Kalashnikov, V. K. Bezborodov, On one class of singular functions containing classic Minkowski function, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Drahomanova. Ser. 1. Fiz.-Mat. Nauky [Trans. Natl. Pedagog. Mykhailo Drahomanov Univ. Ser. 1. Phys. Math.], N. 11, 2010, pp. 207-213 (in Ukrainian).
[25] R. Salem, On some singular monotonic function which are strictly increasing, Trans. Amer. Math. Soc., N. 53, 1943, pp. 423-439.

Contact information

$\begin{array}{ll}\text { T. Isaieva, } & \text { Institute of Physics and Mathematics, } \\ \text { M. Pratsiovytyi } & \text { National Pedagogical Mykhailo Drahomanov } \\ & \text { University, } \\ & 9 \text { Pyrohova St., Kyiv, 01601, Ukraine } \\ & E-\operatorname{Mail}(s): \text { isaeva_tn@ukr.net, } \\ & \text { prats4444@gmail.com }\end{array}$
Received by the editors: 10.04.2016
and in final form 10.08.2016.

