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Quadratic residues of the norm group

in sectorial domains
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Abstract. In the article the distribution of quadratic
residues in the ring Gpn , in the norm subgroup En of multiplicative
group G∗

pn , is investigated. The asymptotic formula for the number
R(x, φ) of quadratic residues in the sectorial domain of a special
form has been constructed.

1. Introduction

In 1918 I.M. Vinogradov and G. Polya built the asymptotic formula
for the number of quadratic residues modulo prime number on the seg-
ment 1 6 n 6 x < p, which was nontrivial for every x >

√
p log p. It

was the first result about incomplete residue system in analytic number
theory. Henceforth Vinogradov-Polya theorem was firstly sharpened by
D. Burgess [1]. After this on the assumption under extended Weil hypoth-
esis H. Montogomery and R. Vaughan [3] got the unimprovable result for
the theorem.

The research of analogous issue over the ring of Gaussian integers
is, evidently, a difficult problem by the virtue of the fact, that geometry
of points of a plane is richer than geometry of points on a line. In this
article the distribution of quadratic residues in the norm subgroup En
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of multiplicative group G∗
pn , is investigated. Here p is a prime rational

number of the type p = 3 + 4k and En can be written in the form:

En := {α ∈ Gpn |N(α) ≡ ±1 (mod pn)} .

This subgroup is cyclic, its order is equal to 2(p+1)pn−1. The numbers
p = 2 and p ≡ 1 (mod 4) are not prime in G. Thus, for p ≡ 1 (mod 4) we
have p = π · π̄;π, π̄ ∈ Z[i], and the residue class rings in Z[i] modulo pn

(respectively, πn) are isomorphic. So, this case was investigated in the
works mentioned above. Similarly we have for p = 2. That is why we
don’t consider these p.

If (u0+iv0) is a generating element of the group En, then N(u0+iv0) ≡
−1 (mod pn). It follows that only the elements of the type (u0 + iv0)2a,
where a = 0, 1, . . . , (p+ 1)pn−1, are quadratic residues modulo pn in En.

Our aim is to prove Theorems 1 and 2 stated in Section 3, and to
obtain an asymptotic formula for the number R(x, φ) of quadratic residues
in the sectorial domain

S(x, φ) =

{

φ1 6 argw < φ2, 0 < N(w) 6 x, φ2 − φ1 = φ <
π

2

}

. (1)

The formula for R(x, ϕ) is contained in Theorem 2 and has the fol-
lowing form

R(x;φ) =
φ2 − φ1

2
· p+ 1

p
· x
pn

+O

(

3nx
1−s

pn
log x

)

.

The most interesting case is the case, when φ2 − φ1 → 0 with x → ∞,
because the case φ2 − φ1 > C, C > 0 is a fixed constant, follows from the
work [5] about the distribution of values of the function r(n) (the number
of representations of n by the sum of two squares) in the arithmetic
progression.

Notations. We will use the following notations:

• G :=
{

a+ bi|a, b ∈ Z, i2 = −1
}

is the ring of Gaussian integers;
• Gγ is the ring of residues of Gaussian integers modulo γ;
• G∗

γ = {α ∈ Gγ , (α, γ) = 1};

• for α ∈ G we denote N(α) = |α|2 ,Sp(α) = 2ℜ(α);
• En ⊂ Gpn is the norm group;
• χ stands for a character of the group En;
• for a ∈ Z (or α ∈ G) νp(a) (or νp(α)) stands that pνp(a)|a, pνp(a)+1

does not divide a;
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• s ∈ C, s = σ + it, σ = ℜs, t = ℑs;
• Γ(z) is the Euler gamma-function;
• by f ≪ g(f = O(g)) for x ∈ X, where X is an arbitrary set, on

which f and g are defined, we mean that there exists a constant
C > 0 such that |f(x)| 6 C · g(x) for all x ∈ X;

• exp (x) = ex for x ∈ C (sometimes, instead of ex we will use exp(x)).

Let us denote

E+
n :=

{

α ∈ G∗
pn |N(α) ≡ 1 (mod pn)

}

=
{

α ∈ En|α = (u0 + iv0)2a, a = 0, 1, . . . , (p+ 1)pn−1
}

.

Then

R(x, φ) =
∑

α∈E+
n

∑

w∈G
w≡α (mod pn)

w∈S(x,φ)

1. (2)

We consider Dirichlet series

Fm(s) =
∑

α∈E+
n

∑

w≡α (mod pn)

e4mi arg w

N(w)s
, ℜs > 1.

We have

Fm(s) =
∑

α∈E+
n

1

N(pn)s
ζm

(

s;
α

pn
, 0

)

, ℜs > 1, (3)

where ζm

(

s; α
pn , 0

)

is a special case of Hecke zeta-function ζm (s; δ0, δ)

with a shift. In the domain ℜs > 1 the last is defined by absolutely
convergent Dirichlet series

ζm (s; δ0, δ) =
∑

w∈G

e4mi arg (w+δ0)

N(w + δ0)s
eπiSp(δw),

where δ0, δ are Gaussian numbers from the field Q(i); Sp(β) is a trace of
an element β from Q(i) to Q.

2. Auxiliary results

In the following lemmas we bring necessary information about Hecke
zeta-function for the next steps.
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Lemma 1. The Hecke zeta-function ζm (s; δ0, δ) satisfies the functional

equation

π−sΓ(2|m| + s)ζm (s; δ0, δ)

= π−(1−s)Γ (2 |m| + 1 − s) · ζ−m (1 − s; δ0,−δ) e−πi Sp(δδ̄0).

Moreover, ζm (s; δ0, δ) is an entire function if m 6= 0 or m = 0 and δ is

not a Gaussian integer. For m = 0 and δ ∈ G it is holomorphic except

for the point s = 1, where it has a simple pole with the residue π.

Proof. For δ0 = δ = 0 and m = 4m1, we get the well-known Hecke
zeta-function Zm(s) with the Hecke character of the first kind with the
exponent m (see, [2]). In [8] this lemma has been stated without a proof.
But for the completeness of treatment we restore a proof of this statement.

In the general case, for the proof of statement of the lemma we start
from the relation

Γ(s) |wδ0|−2s =

∞
∫

0

exp (−x|w + δ0|2)xs−1dx.

It is evident that for ℜs > 1 and m ∈ Z we can write

Γ(2|m| + s)Zm(s; δ0; δ) =

δ
∫

0

∑

w∈G
w 6=−δ0

e−x|w+δ0|2xs−1dx.

Let us denote δ0 = δ01 + δ02. Then a groundtruthing shows that the
functions

f(u1, u2) = exp (−x
(

u2
1 + u2

2

)

+ 2πi(δ01u1 + δ02u2)),

f̂(v1, v2) =
π

x
exp

(

−π2

x

[

(δ01 + v1)2 + (δ02 + v2)2
]

)

satisfy the conditions of Poisson summation formula (see, e.g. [6], Ch. VII,
Corollary 2.6).

Hence, denoting

Θm(x, δ0, δ) =
∑

w∈G

exp
(

−x|w + δ0|2
)

(w + δ0)4m exp
(

πiSp(δw)
)

and using Poisson summation formula, we find

Θ0(x, δ0, δ) =
π

x
Θ0

(

π2

x
, δ,−δ0

)

exp
(

−πiSp(δ0δ)
)

.
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Consider the operator

d

dδ0
:=

∂

∂δ01
+ i

∂

∂δ02
, δ0 = δ01 + δ02.

Then the following equalities for m > 0

(−2x)4mΘm(x, δ0, δ) =
dm

dδm
Θ0(x, δ0, δ)

and

π

x
(−2πi)4mΘm

(

π2

x
, δ0,−δ

)

exp
(

−πiSp
(

δ0δ
))

=
dm

dδm
0

(

π

x
Θ0

(

π2

x
, δ,−δ0

)

exp
(

−πiSp
(

δ0δ
))

)

hold.

So, for any m ∈ Z the following functional equation

Θm(x, δ0, δ) =

(

π

x

)4m+1

Θm

(

π2

x
, δ, δ0

)

exp
(

−πiSp
(

δ0δ
))

(4)

is true.

Now, applying reasoning used for the proof of the functional equa-
tion for Riemann zeta-function by the functional equation for a theta-
function Θm we easily infer

Γ(2|m| + s)ζm(s, δ0, δ) = π−(1−2s) exp
(

−πiSp
(

δ0δ
))

Im(δ0, δ),

where

Im(δ0, δ)

=

∫ ∞

0

∑

w
w 6=−δ0

exp (−x|w + δ0|2)(w + δ0)4m exp (πiSp(δw))xs+2m−1dx

=

π
∫

0

+

∞
∫

π

:= Im,1 + Im,2.
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In the integral Im,1 we apply the functional equation (4) for Θm(x, δ0,δ)
and make the substitution x = π2y−1. This gives the equality

Γ(2|m| + s)ζm(s, δ0, δ) = π2s−1 exp (−πiSp(δ0δ))×

×
∫ ∞

π

∑

w∈G
w 6=−δ

exp (−x|w + δ|2)(w + δ)4m exp (−πiSp(δ0w))x−s+2mdx

+

∫ ∞

π

∑

w∈G
w 6=−δ0

exp (−x|w + δ0|2)(w + δ0)4m exp (−πiSp(δw))xs+2m−1dx

+ ε(m, δ)
πs

s− 1
− ε(m, δ0) exp (−πiSp(δ0, δ))

πs

s
,

(5)
where

ε(m, a) =

{

1 if m = 0 and a ∈ G

0 otherwise.

The equality (5) was obtained for ℜs > 1. However, the right part of
this equality is an analytic function in all complex s-planes except maybe
the points s = 0 and s = 1, which can be the poles.

Now, multiplying the equality (5) by exp(πiSp(δ0δ))π
−2s+1 and mak-

ing the substitution s → 1 − s, δ0 → δ, δ → δ0, we obtain that the right
part doesn’t vary, and hence, we have proved the following functional
equation

π−sΓ(2|m| + s)ζm(s; δ0, δ)

= π−(1−s)Γ(2|m| + 1 − s)ζm(1 − s; −δ, δ0) exp(−πiSp(δ0δ)).

If m = −m′, m′ > 0, we put δ0 = −δ′
0, δ = −δ′, and then we have

ζm(s, δ, δ0) = ζm′(s,−δ,−δ0) ⇒ ζm′(1 − s, δ0,−δ) = ζm(1 − s,−δ0, δ).

So, for any m ∈ Z,

π−sΓ(2|m| + s)ζm(s; δ, δ0) = π−(1−s)Γ(2|m| + 1 − s)ζ−m(1 − s,−δ0, δ)

= π−(1−s)Γ(2|m| + 1 − s)ζ−m(1 − s; δ0,−δ).

This completes the proof of Lemma 1.

Corollary 1. If δ is not a Gaussian integer, then ζ0(0; δ0, δ) = 0.
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Lemma 2. In the strip ε 6 ℜs 6 1 + ε, ε > 0, the following estimate

(s− 1) · ζm(s; δ0, δ) ≪ (|t| + 1)(t2 +m2)
(1−2σ)(1+ε−σ)

1+2ε |N(δ)|−
σ+ε
1+2ε

holds.

This lemma follows from Phragmen-Lindelof principle and the esti-
mates for ζm (s; δ0, δ) on the boundaries of the strip ε 6 ℜs 6 1+ε, which
can be received with the usage of the functional equation for ζm (s; δ0, δ)
and Stirling formula for Γ(z).

Lemma 3. Let y > k ∈ {0, 1, 2}. Let a be a real number, −1 < a 6
5
4 ,

η(a) = minj=0,1,...,k |a − j| 6= 0. Then for any real numbers u, v the

following estimate

a+iv
∫

a+iu

ysψ(s,m)

s(s+ 1) . . . (s+ k)
ds

≪ N(γ)
1
2M

(

(

y

N(γ)
· 1

M

)a

(η−1(a)+logM) +

(

y

N(γ)M

)
1
2

− 2k+1
4

)

,

holds, where ψ(s,m) =
(

1
π
N(γ)

1
2

)1−2s Γ(2|m|+1−s)
Γ(2|m|+s) , M = |m| + 10.

Proof. Apply [3, Lemma 8].

Lemma 4 ([7], Theorem 1). Upon the condition D
1
2 6 x < D2 the

asymptotic formula

∑

n≡1 (mod D)
n6x

r(n) =
πx

D
γ0

∏

p|D

(

1 − χ4(p)

p

)

+O



D
1
2 exp



c
(logD)

1
2

log logD







+O

(

x
1
2

D
1
2

τ(D)

)

,

γ0 =

{

1 if D 6≡ 0 (mod 4),

2 if D ≡ 0 (mod 4)

is true.

Lemma 5. Let p ≡ 3 (mod 4). Then for n = 1, 2, 3, . . . the estimate

∑

α∈E+
n

e
πi Sp α2

pn ≪ p
n
2

holds.
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Proof. In the articles [5] and [9] the following description of elements
α ∈ E+

n , n > 2 was given:

α = (u0 + iv0)2(p+1)t+k ≡
n−1
∑

j=0

(Aj(k) + iBj(k)) tj (mod pn).

Here (u0 + iv0) is a generator of the group E+
n , t = 0, 1, . . . , pn−1,

k = 0, 1, . . . , 2p+ 1. Moreover,

A0(k) = u(k), B0(k) = v(k);

A1(k) ≡ −py0v(k) (mod p3), B1(k) ≡ py0u(k) (mod p3),

A2(k) ≡ −1

2
p2y2

0u(k) (mod p3), B2(k) ≡ −1

2
p2y2

0v(k) (mod p3),

(u0 + iv0)k ≡ u(k) + iv(k) (mod pn), (y0, p) = 1.

Furthermore,

u(k) ≡ 0 (mod p), when k =
p+ 1

2
, k =

3(p+ 1)

2
;

v(k) ≡ 0 (mod p), when k = 0, k = p+ 1;

Aj(k) ≡ Bj(k) ≡ 0 (mod p3), j = 3, 4, . . . ,m− 1, k = 0, 1, . . . , 2p+ 1.

Hence we easily conclude

ℜ(α2) ≡ (A2
0(k) −B2

0(k)) + 2(A0(k)A1(k) −B0(k)B1(k))t

+ (A2
1(k) −B2

1(k)) +A0(k)A2(k) −B0(k)B2(k)t2 (mod p3).

Then ℜ(α2) ≡ C0 + C1t+ C2t
2 (mod p3) with the coefficients

C1 ≡ −2py0u(k)v(k) (mod p3), C2 ≡ 1

2
p2y2

0(u2(k) − v2(k)) (mod p3)

or C2 ≡ 1

2
p2y2

0(1 − 2v2(k)) (mod p3).

Let us note that u(k)2 + v(k)2 ≡ (−1)k (mod p). Therefore, it follows
that u(k) and v(k) can not divide p simultaneously. It is obvious that

νp(C2) > 2 (the strict inequality holds for the cases k=0, p+1
2 ,

3(p+1)
2 , p+1).

That is why, when νp(C1) < νp(C2), S = 0. So, from the well-known
relation, for (b, p) = 1, f(x) ∈ Z[x],

∣

∣

∣

∣

∣

∣

∑

x∈Zpn

e
2πi

ax+pbx2+p2f(x)
pn

∣

∣

∣

∣

∣

∣

=

{

0 if (a, p) = 1,

2p
n−1

2 if a ≡ 0 (mod p)
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we get
∣

∣

∣

∣

∣

∣

∑

α∈E+
n

e
πi Sp α2

pn

∣

∣

∣

∣

∣

∣

6 4p
n
2 .

In case n = 1 we take into account that

E1 =

{

±1,±i, a− i

a+ i
, i
a− i

a+ i

∣

∣ a = 1, 2, . . . , p− 1

}

.

Thus, we conclude that Sp(α2) can be represented as the ratio of the
polynomials of degree 2. Then, following Weil [11], we have

∣

∣

∣

∣

∣

∣

∑

α∈E1

e
πi Sp α2

p

∣

∣

∣

∣

∣

∣

6 2
√
p.

Hence, the assertion of lemma follows.

Lemma 6 ([7], Lemma 5). Let p be a prime number, let u1, u2 be integers

and (u1, u2, p
n) = pm. Then

∣

∣

∣

∣

∣

∣

∣

∑

l21+l22≡1 (mod pn)

e
2πi

u1l1+u2l2
pn

∣

∣

∣

∣

∣

∣

∣

6 2p
n+m

2 .

Corollary 2. For m 6= 0 the following estimate

∑

α∈E+
n

ζm

(

0;
α

pn
, 0

)

≪ p
3
2

nM logM, M = |m| + 10,

holds.

This statement follows immediately from the functional equation for
ζm(s; δ0, δ) for m 6= 0 and Lemma 6.

The following Lemma was proved in [10] (see Lemma 11, pp. 259–260).

Lemma 7 (Vinogradov’s ‘glasses’). Let r ∈ N, Ω > 0, 0 < ∆ < 1
2Ω and

let φ1, φ2 be real numbers, ∆ 6 φ2 − φ1 6 Ω − 2∆. Then there exists a

periodic function f(φ) with the period Ω such that:

(i) f(φ) = 1, in the segment φ ∈ [φ1, φ2];
0 6 f(φ) 6 1 in the segments [φ1 − ∆, φ1] and [φ2, φ2 + ∆];
f(φ) = 0, in the segment [φ2 + ∆, φ1 + Ω − ∆];
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(ii) f(φ) has the expansion in a Fourier series

f(φ) =
+∞
∑

m=−∞

ame
2πi

mφ

Ω ,

where a0 = 1
Ω(φ2 − φ1 + ∆), and for m 6= 0 and r ∈ N each of the

following inequalities holds

|am| 6















1
Ω(φ2 − φ1 + ∆),

2
π|m| ,

2
π|m|

(

rΩ
π|m|∆

)r
.

3. Main results

Let us consider the function of a natural argument

rm(k) =
∑

u,v∈Z

u2+v2=k

e4mi arg(u+iv).

In view of (3) we can write

Fm(s) =
∞
∑

k6x
k≡1 (mod pn)

rm(k)

ks
.

Theorem 1. Let m 6= 0, pn 6 x 6 p2n. Then

∑

k6x
k≡1 (mod pn)

rm(k) ≪
√
x

p
n
2

+ p
n
2 log x+ p

n
2M logM.

Proof. Our assertion is trivial for x ≪ pnM . That is why we will assume
that x > C ·Mpn, C > 0. It follows from Lemma 1 that ζm (s; δ0, δ) is an
entire function. In view of the fact

1

p2ns
ζm

(

s;
α

pn
, 0

)

=
∑

w∈G
w≡α (mod pn)

e
4mi arg w

N(w)s

for ℜs > 1 and every α ∈ G the usage of the theorem of the residues gives

1

2πi

∫ 2+i·∞

2−i·∞

xs+2ζm

(

s; α
pn , 0

)

p2nss(s+ 1)(s+ 2)
ds

=
x2

2
δm

(

s;
α

pn
, 0

)

+
1

2πi

a+i·∞
∫

a−i·∞

xs+2ζm

(

s; α
pn , 0

)

p2nss(s+ 1)(s+ 2)

(6)



L. Balyas, P. Varbanets 163

for every −1 < a < 0.
Let us denote

S2(x, α) =
1

2

∑

0<N(w)6x
w≡α (mod pn)

e4mi arg w(x−N(w))2. (7)

Using the relation

1

2πi

2+i·∞
∫

2−i·∞

ys+l

s(s+ 1) . . . (s+ k)
=

{

1
l!(y − 1)l if y > 1

0 if 0 < y < 1

and taking into account the uniform convergence of the series for zeta-

function ζm

(

s; α
pn , 0

)

in the semiplane ℜs > 1 + ε, ε > 0, we get

1

2πi

2+i·∞
∫

2−i·∞

xs+2ζm

(

s; α
pn , 0

)

p2nss(s+ 1)(s+ 2)
ds

=
∑

w
w≡α (mod pn)

e4mi arg w

N(w)−2
· 1

2πi

2+i·∞
∫

2−i·∞

(

x
N(w)

)s+2

s(s+ 1)(s+ 2)
ds

=
1

2

∑

w≡α (mod pn)
N(w)6x

e4mi arg w(x−N(w))2 = S2(x, α).

(8)

The application of the functional equation for ζm(s; δ0, δ) (see Lemma 1)
and the estimate ζm(s; δ0, δ) in critical strip (see Lemma 2) give

1

2πi

a+i·∞
∫

a−i·∞

xs+2ζm

(

s; α
pn , 0

)

p2nss(s+ 1)(s+ 2)

=
∑

w∈G\{0}

e−4mi arg we
πi Sp

(

αw
pn

)

N(w)−s 1

2πi

a+i·∞
∫

a−i·∞

(xN(w))s+2 Γ(2|m|+1−s)
Γ(2|m|+s)

π1−2ss(s+1)(s+2)p2ns
ds.

(9)

From (6)–(9) we deduce the formula:

S2(x, α) =
x2

2
ζm

(

0;
α

pn
, 0

)

+
∑

w∈G\{0}

e−4mi arg we
πi Sp

(

αw
pn

)

N(w)−sW

(

xN(w)

p2n

)

p2(n+1),



164 Quadratic residues

where

W (y) =
1

2πi

a+i·∞
∫

a−i·∞

ys+2Γ(2|m| + 1 − s)

s(s+ 1)(s+ 2)Γ(2|m| + s)
ds.

We consider the following operator

∆zF (x) =
2
∑

j=0

(−1)jF (x+ jz) =

x+z
∫

x

dy1

y1+z
∫

y1

F
′′

(y2)dy2.

Then

∆z

(

x2

2
ζm

(

0;
α

pn
, 0

)

)

= z2ζm

(

0;
α

pn
, 0

)

.

It is obvious that for every b, −1 < b < 0, we have

W (y) =
1

2πi

b+i·∞
∫

b−i·∞

ys+2Γ(2|m| + 1 − s)

s(s+ 1)(s+ 2)Γ(2|m| + s)
ds.

We put b = −1 + 1
log y

, if y > 1. Using Lemma 3, we conclude that

W (y) ≪ K(y,m), (10)

where

K(y,m) = p3nM3y (log y + logM) .

It means that

∆zW

(

xN(w)

p2n

)

≪ K

(

xN(w)

p2n
,m

)

, (11)

if only z ≪ xN(w)
p2n .

The value ∆zW
(

xN(w)
p2n

)

may be defined in a different way. We put

Φ(y) =
1

2πi

c+i·∞
∫

c−i·∞

ys+2Γ(2|m| + 1 − s)

s(s+ 1)(s+ 2)Γ(2|m| + s)
ds, c > 1.

Then

Φ(y) =
y2

2

Γ(2|m| + 1)

Γ(2|m|) +W (y).
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For all y > 0 the integrals

1

2πi

c+i·∞
∫

c−i·∞

ys+2Γ(2|m| + 1 − s)

s · . . . · (s+ 2 − j)Γ(2|m| + s)
ds, j = 0, 1, 2,

converge absolutely and uniformly. Hence, for the derivatives of Φ(y) we
have

Φ(j)(y) =
1

2πi

c+i·∞
∫

c−i·∞

ys+2−jΓ(2|m| + 1 − s)

s · . . . · (s+ 2 − j)Γ(2|m| + s)
ds, j = 0, 1, 2.

Thus,

W
′′

(y) = −Γ(2|m| + 1)

Γ(2|m|) +
1

2πi

c+i·∞
∫

c−i·∞

ys

s

Γ(2 |m| + 1 − s)

Γ(2|m| + s)
ds. (12)

Now we will take into account that the subintegral function doesn’t
have singularities in the semiplane ℜs > 0. Then, transfering the contour
of the integration in (12) to the line ℜs = 1

log y
and using Lemma 3,

Stirling formula for the gamma-function, we get

W
′′

(y) ≪ L(y,m),

where L(y,m) = pn(M logM + y
1
4 ). But then

∆z

(

W

(

N(w)x

p2n

))

=

N(w)

p2n (x+z)
∫

N(w)

p2n x

dy1

y1+
N(w)

p2n z
∫

y1

W
′′

(y2)dy2

≪ L

(

xN(α)

p2n
,m

)

z2N(w)2

p4n
.

(13)

Let us denote as S2(x) the following sum

S2(x) =
∑

α∈E+
n

S2(x, α).
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We have

S2(x) =
x2

2

∑

α∈E+
n

ζm

(

0;
α

pn
, 0

)

+
∑

α∈E+
n

∑

w≡α (mod pn)

e4mi arg we
πi Sp

(

αw
pn

)W
(

xN(w)
p2n

)

N(w)3

=
x2

2

∑

α∈E+
n

ζm

(

0;
α

pn
, 0

)

+
∑

χEn

1

|En|
∑

α∈En

χ̄(α)

×
∑

N(w)≡1 (mod pn)

χ(w)e4mi arg w

N(w)3
· e

πi Sp
(

αw
pn

)

W

(

xN(w)

pn

)

.

(14)

Applying the operator ∆z to both parts of (14), we obtain

∆z (S2(x)) = z2
∑

α∈E+
n

ζm

(

0;
α

pn
, 0

)

+
∑

w∈G
N(w)≡1 (mod pn)

e−4mi arg wN(w)−3W

(

xN(w)

p2n

)

∑

α∈E+
n

e
πi Sp α2

pn .

In virtue of (10), (11) and (13), Lemma 5 and Corollary 2 we infer

∆z (S2(x))

≪ z2p
3
2

nM logM + p
n
2 z2

∑

N(w)6x

N(w)−1L

(

xN(w)

p2n
,m

)

+ p
n
2

∑

N(w)>x

N(w)−3K

(

xN(w)

p2n
,m

)

≪ z2p
n
2 pnM logM + z2p

n
2

∑

N(w)6x

pn

(

M logM+
N(w)

1
4x

1
4

p
n
2

)

N(w)−1

+ z2p
n
2

∑

N(w)>x

p3nM3N(w)−2p−2n logN(w).

(15)

From this we get

∆z (S2(x)) ≪
≪ p

3
2

{

z2M logM + z2M logM log x+ z2p− n
2
√
x+M3 log x

}

. (16)
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The application of the estimates (10), (14) requires that z ≪ xN(w)
p2n .

Thus the condition N(w) > x in the second sum of (15) allows to assume

z = pnM 6
x2

p2n for M ≪ x2

p2n . Then the following inequality

∆z (S2(x)) ≪ z2p
3
2

nM logM

holds.
Let H2(x) stands for the sum

H2(x) =
∑

α∈E+
n

∑

w∈G
w≡α (mod pn)

N(w)6x

e4mi arg w. (17)

Then from the definition of S2(x) we easily find

H2(x) =
d2

dx2
(S2(x)).

It is clear that

x+z
∫

x

dy1

y1+z
∫

y1

H2(y2)dy2 = ∆z (S2(x)) .

By x 6 y1 6 x+ 2z and Lemma 4 we have

|H2(y2) −H2(x)| = |E+
n | ·

∣

∣

∣

∣

∣

∑

x<N(w)6y2

N(w)≡1 (mod pn)

e4mi arg w

∣

∣

∣

∣

∣

6 (p+ 1)pn−1
∑

x<n6x+2z
n≡1 (mod pn)

r(n)

6
πz

pn
· p+1

p
+O

(√
x

p
n
2

)

+O



p
n
2 exp



c
(log pn)

1
2

log log pn







 .

Consequently,

|H2(y2)−H2(x)| = O

(

z

pn

)

+O
(√

xp− n
2

)

+O



p
n
2 exp



c
(log pn)

1
2

log log pn







 .

It follows that

H2(y2) = H2(x) +O

(

z

pn

)

+O
(√

xp− n
2

)

+O



p
n
2 exp



c
(log pn)

1
2

log log pn







 .

(18)
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Now from (17) and (18) we get

z2



H2(x) +O

(

z

pn

)

+O
(√

xp− n
2

)

+O



p
n
2 exp



c
(log pn)

1
2

log log pn













= O(z2p
n
2M logM).

Thus,

H2(x) = x
1
2 p− n

2 + p
n
2 exp



c
(log pn)

1
2

log log pn



+ p
n
2M logM.

So, the proof of Theorem 1 is completed.

Now we can investigate the distribution of quadratic residues mod-
ulo pn in narrow sectors.

Theorem 2. Let p
3
2

n
6 x 6 p2n, 0 6 φ1 < φ2 6

π
2 and let 0 < s 6

1
8 .

Then for φ2 − φ1 > x−s the asymptotic formula

R(x;φ) =
φ2 − φ1

2
· p+ 1

p
· x
pn

+O

(

3nx
1−s

pn
log x

)

holds.

Proof. It is known that the distribution of the arguments of Gaussian
integers (being considered up to the association) has the period π

2 . In view
of this fact the application of Lemma 7 with Ω = π

2 gives for every T > 1

∑

α∈E+
n

φ16α<φ2

N(α)6x

1 = Φ(φ1, φ2) + θ1Φ(φ1 − ∆, φ1) + θ2Φ(φ2, φ2 + ∆),

|θi| 6 1, i = 1, 2, Φ(φ1, φ2) =
1

4

∑

w∈E+
n

N(w)6x)

f(argw)

and f(φ) is the function from Lemma 7, 0 < ∆ = 1
2Ω.

Furthermore

Φ(φ1, φ2) =
∑

w∈E+
n

N(w)6x)

+∞
∑

m=−∞

ame4mi arg α =
+∞
∑

m=−∞

am

∑

k≡1 (mod pn)
k6x

rm(x),

where am is the Fourier coefficient from Lemma 7.
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We put δ = xs, 0 < s < 1 (we will find the more precise estimate for s
later). Let us use the estimates for the coefficients am (see Lemma 7 with
r = 2):

|am| ≪







1
|m| , |m| 6 δ = ∆−1;

1
|m|3∆2 , |m| > δ.

After simple calculations we get

Φ(φ1, φ2) =
φ2 − φ1

2
· p+ 1

p
· x
pn

+O

(

x1−s

pn

)

+O

(

s

√
x

p
n
2

log2 x

)

+O
(

sp
n
2 log2 x

)

+O

(

x
1
2

+s

p
n
2

)

+O
(

3np
n
2 xs log x

)

.

In view of the assumption of the theorem the following inequalities

x1−s

pn
≫ p

n
2 xs,

x1−s

pn
≫ x

1
2

+s

p
n
2

hold. Therefore,

Φ(φ1, φ2) =
φ2 − φ1

2
· p+ 1

p
· x
pn

+O

(

3nx
1−s

pn
log x

)

. (19)

It follows from (19) that

Φ(φ1 − ∆, φ1),Φ(φ2, φ2 + ∆) ≪ 3nx
1−s

pn
log x. (20)

The relations (19) and (20) show that Theorem 2 is proved for every s,
0 < s 6 1

8 .
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