Algebra and Discrete Mathematics Volume **22** (2016). Number 2, pp. 153–170 © Journal "Algebra and Discrete Mathematics"

Quadratic residues of the norm group in sectorial domains

Lyubov Balyas and Pavel Varbanets

Communicated by D. Simson

ABSTRACT. In the article the distribution of quadratic residues in the ring G_{p^n} , in the norm subgroup E_n of multiplicative group $G_{p^n}^*$, is investigated. The asymptotic formula for the number $R(x,\phi)$ of quadratic residues in the sectorial domain of a special form has been constructed.

1. Introduction

In 1918 I.M. Vinogradov and G. Polya built the asymptotic formula for the number of quadratic residues modulo prime number on the segment $1 \leq n \leq x < p$, which was nontrivial for every $x > \sqrt{p} \log p$. It was the first result about incomplete residue system in analytic number theory. Henceforth Vinogradov-Polya theorem was firstly sharpened by D. Burgess [1]. After this on the assumption under extended Weil hypothesis H. Montogomery and R. Vaughan [3] got the unimprovable result for the theorem.

The research of analogous issue over the ring of Gaussian integers is, evidently, a difficult problem by the virtue of the fact, that geometry of points of a plane is richer than geometry of points on a line. In this article the distribution of quadratic residues in the norm subgroup E_n

²⁰¹⁰ MSC: 11L05, 11L07, 11N25, 11S40.

Key words and phrases: quadratic residue, the norm group, Hecke Z-function, the gamma function, Dirichlet series, functional equation, Gaussian integers.

of multiplicative group $G_{p^n}^*$, is investigated. Here p is a prime rational number of the type p = 3 + 4k and E_n can be written in the form:

$$E_n := \{ \alpha \in G_{p^n} | N(\alpha) \equiv \pm 1 \pmod{p^n} \}.$$

This subgroup is cyclic, its order is equal to $2(p+1)p^{n-1}$. The numbers p = 2 and $p \equiv 1 \pmod{4}$ are not prime in G. Thus, for $p \equiv 1 \pmod{4}$ we have $p = \pi \cdot \overline{\pi}; \pi, \overline{\pi} \in \mathbb{Z}[i]$, and the residue class rings in $\mathbb{Z}[i]$ modulo p^n (respectively, π^n) are isomorphic. So, this case was investigated in the works mentioned above. Similarly we have for p = 2. That is why we don't consider these p.

If (u_0+iv_0) is a generating element of the group E_n , then $N(u_0+iv_0) \equiv -1 \pmod{p^n}$. It follows that only the elements of the type $(u_0+iv_0)^{2a}$, where $a = 0, 1, \ldots, (p+1)p^{n-1}$, are quadratic residues modulo p^n in E_n .

Our aim is to prove Theorems 1 and 2 stated in Section 3, and to obtain an asymptotic formula for the number $R(x, \phi)$ of quadratic residues in the sectorial domain

$$S(x,\phi) = \left\{ \phi_1 \leqslant \arg w < \phi_2, 0 < N(w) \leqslant x, \phi_2 - \phi_1 = \phi < \frac{\pi}{2} \right\}.$$
 (1)

The formula for $R(x, \varphi)$ is contained in Theorem 2 and has the following form

$$R(x;\phi) = \frac{\phi_2 - \phi_1}{2} \cdot \frac{p+1}{p} \cdot \frac{x}{p^n} + O\left(3^n \frac{x^{1-s}}{p^n} \log x\right).$$

The most interesting case is the case, when $\phi_2 - \phi_1 \rightarrow 0$ with $x \rightarrow \infty$, because the case $\phi_2 - \phi_1 \ge C$, C > 0 is a fixed constant, follows from the work [5] about the distribution of values of the function r(n) (the number of representations of n by the sum of two squares) in the arithmetic progression.

Notations. We will use the following notations:

- $G := \{a + bi | a, b \in \mathbb{Z}, i^2 = -1\}$ is the ring of Gaussian integers;
- G_{γ} is the ring of residues of Gaussian integers modulo γ ;
- $G^*_{\gamma} = \{ \alpha \in G_{\gamma}, (\alpha, \gamma) = 1 \};$
- for $\alpha \in G$ we denote $N(\alpha) = |\alpha|^2$, $\operatorname{Sp}(\alpha) = 2\Re(\alpha)$;
- $E_n \subset G_{p^n}$ is the norm group;
- χ stands for a character of the group E_n ;
- for $a \in \mathbb{Z}$ (or $\alpha \in G$) $\nu_p(a)$ (or $\nu_p(\alpha)$) stands that $p^{\nu_p(a)}|a, p^{\nu_p(a)+1}$ does not divide a;

- $s \in \mathbb{C}, s = \sigma + it, \sigma = \Re s, t = \Im s;$
- $\Gamma(z)$ is the Euler gamma-function;
- by $f \ll g(f = O(g))$ for $x \in X$, where X is an arbitrary set, on which f and g are defined, we mean that there exists a constant C > 0 such that $|f(x)| \leq C \cdot g(x)$ for all $x \in X$;
- $\exp(x) = e^x$ for $x \in \mathbb{C}$ (sometimes, instead of e^x we will use $\exp(x)$). Let us denote

$$E_n^+ := \left\{ \alpha \in G_{p^n}^* | N(\alpha) \equiv 1 \pmod{p^n} \right\}$$
$$= \left\{ \alpha \in E_n | \alpha = (u_0 + iv_0)^{2a}, a = 0, 1, \dots, (p+1)p^{n-1} \right\}.$$

Then

$$R(x,\phi) = \sum_{\alpha \in E_n^+} \sum_{\substack{w \in G \\ w \equiv \alpha \pmod{p^n} \\ w \in S(x,\phi)}} 1.$$
 (2)

We consider Dirichlet series

$$F_m(s) = \sum_{\alpha \in E_n^+} \sum_{w \equiv \alpha \pmod{p^n}} \frac{e^{4mi \arg w}}{N(w)^s}, \quad \Re s > 1.$$

We have

$$F_m(s) = \sum_{\alpha \in E_n^+} \frac{1}{N(p^n)^s} \zeta_m\left(s; \frac{\alpha}{p^n}, 0\right), \quad \Re s > 1,$$
(3)

where $\zeta_m\left(s;\frac{\alpha}{p^n},0\right)$ is a special case of Hecke zeta-function $\zeta_m\left(s;\delta_0,\delta\right)$ with a shift. In the domain $\Re s > 1$ the last is defined by absolutely convergent Dirichlet series

$$\zeta_m\left(s;\delta_0,\delta\right) = \sum_{w\in G} \frac{\mathrm{e}^{4mi\arg\left(w+\delta_0\right)}}{N(w+\delta_0)^s} e^{\pi i Sp(\delta w)},$$

where δ_0, δ are Gaussian numbers from the field $\mathbb{Q}(i)$; $\operatorname{Sp}(\beta)$ is a trace of an element β from $\mathbb{Q}(i)$ to \mathbb{Q} .

2. Auxiliary results

In the following lemmas we bring necessary information about Hecke zeta-function for the next steps.

Lemma 1. The Hecke zeta-function $\zeta_m(s; \delta_0, \delta)$ satisfies the functional equation

$$\pi^{-s} \Gamma(2|m|+s) \zeta_m(s;\delta_0,\delta) = \pi^{-(1-s)} \Gamma(2|m|+1-s) \cdot \zeta_{-m} (1-s;\delta_0,-\delta) e^{-\pi i \operatorname{Sp}(\delta \bar{\delta_0})}$$

Moreover, $\zeta_m(s; \delta_0, \delta)$ is an entire function if $m \neq 0$ or m = 0 and δ is not a Gaussian integer. For m = 0 and $\delta \in G$ it is holomorphic except for the point s = 1, where it has a simple pole with the residue π .

Proof. For $\delta_0 = \delta = 0$ and $m = 4m_1$, we get the well-known Hecke zeta-function $Z_m(s)$ with the Hecke character of the first kind with the exponent m (see, [2]). In [8] this lemma has been stated without a proof. But for the completeness of treatment we restore a proof of this statement.

In the general case, for the proof of statement of the lemma we start from the relation

$$\Gamma(s) |w\delta_0|^{-2s} = \int_0^\infty \exp(-x|w+\delta_0|^2) x^{s-1} dx.$$

It is evident that for $\Re s > 1$ and $m \in \mathbb{Z}$ we can write

$$\Gamma(2|m|+s)Z_m(s;\delta_0;\delta) = \int_0^\delta \sum_{\substack{w \in G \\ w \neq -\delta_0}} e^{-x|w+\delta_0|^2} x^{s-1} dx.$$

Let us denote $\delta_0 = \delta_{01} + \delta_{02}$. Then a groundtruthing shows that the functions

$$f(u_1, u_2) = \exp\left(-x\left(u_1^2 + u_2^2\right) + 2\pi i(\delta_{01}u_1 + \delta_{02}u_2)\right),$$
$$\hat{f}(v_1, v_2) = \frac{\pi}{x}\exp\left(-\frac{\pi^2}{x}\left[(\delta_{01} + v_1)^2 + (\delta_{02} + v_2)^2\right]\right)$$

satisfy the conditions of Poisson summation formula (see, e.g. [6], Ch. VII, Corollary 2.6).

Hence, denoting

$$\Theta_m(x,\delta_0,\delta) = \sum_{w \in G} \exp\left(-x|w+\delta_0|^2\right) (w+\delta_0)^{4m} \exp\left(\pi i \operatorname{Sp}(\overline{\delta}w)\right)$$

and using Poisson summation formula, we find

$$\Theta_0(x,\delta_0,\delta) = \frac{\pi}{x}\Theta_0\left(\frac{\pi^2}{x},\delta,-\delta_0\right)\exp\left(-\pi i\operatorname{Sp}(\delta_0\overline{\delta})\right).$$

Consider the operator

$$\frac{d}{d\delta_0} := \frac{\partial}{\partial\delta_{01}} + i\frac{\partial}{\partial\delta_{02}}, \ \delta_0 = \delta_{01} + \delta_{02}$$

Then the following equalities for $m \ge 0$

$$(-2x)^{4m}\Theta_m(x,\delta_0,\delta) = \frac{d^m}{d\delta^m}\Theta_0(x,\delta_0,\delta)$$

and

$$\frac{\pi}{x}(-2\pi i)^{4m}\Theta_m\left(\frac{\pi^2}{x},\delta_0,-\delta\right)\exp\left(-\pi i\operatorname{Sp}\left(\delta_0\overline{\delta}\right)\right)$$
$$=\frac{d^m}{d\delta_0^m}\left(\frac{\pi}{x}\Theta_0\left(\frac{\pi^2}{x},\delta,-\delta_0\right)\exp\left(-\pi i\operatorname{Sp}\left(\delta_0\overline{\delta}\right)\right)\right)$$

hold.

So, for any $m\in\mathbb{Z}$ the following functional equation

$$\Theta_m(x,\delta_0,\delta) = \left(\frac{\pi}{x}\right)^{4m+1} \Theta_m\left(\frac{\pi^2}{x},\delta,\delta_0\right) \exp\left(-\pi i \operatorname{Sp}\left(\delta_0\overline{\delta}\right)\right) \quad (4)$$

is true.

Now, applying reasoning used for the proof of the functional equation for Riemann zeta-function by the functional equation for a theta-function Θ_m we easily infer

$$\Gamma(2|m|+s)\zeta_m(s,\delta_0,\delta) = \pi^{-(1-2s)} \exp\left(-\pi i \operatorname{Sp}\left(\overline{\delta}_0\delta\right)\right) \mathfrak{I}_m(\delta_0,\delta),$$

where

$$\begin{split} \mathfrak{I}_m(\delta_0,\delta) \\ &= \int_0^\infty \sum_{\substack{w \neq -\delta_0 \\ w \neq -\delta_0}} \exp\left(-x|w+\delta_0|^2\right)(w+\delta_0)^{4m} \exp\left(\pi i\operatorname{Sp}(\overline{\delta}w)\right) x^{s+2m-1} dx \\ &= \int_0^\pi + \int_\pi^\infty := \mathfrak{I}_{m,1} + \mathfrak{I}_{m,2}. \end{split}$$

In the integral $\mathfrak{I}_{m,1}$ we apply the functional equation (4) for $\Theta_m(x, \delta_0, \delta)$ and make the substitution $x = \pi^2 y^{-1}$. This gives the equality

$$\Gamma(2|m|+s)\zeta_m(s,\delta_0,\delta) = \pi^{2s-1} \exp\left(-\pi i \operatorname{Sp}(\overline{\delta}_0\delta)\right) \times \\ \times \int_{\pi}^{\infty} \sum_{\substack{w \in G \\ w \neq -\delta}} \exp\left(-x|w+\delta|^2\right) (w+\delta)^{4m} \exp\left(-\pi i \operatorname{Sp}(\overline{\delta}_0w)\right) x^{-s+2m} dx \\ + \int_{\pi}^{\infty} \sum_{\substack{w \in G \\ w \neq -\delta_0}} \exp\left(-x|w+\delta_0|^2\right) (w+\delta_0)^{4m} \exp\left(-\pi i \operatorname{Sp}(\overline{\delta}w)\right) x^{s+2m-1} dx \\ + \varepsilon(m,\delta) \frac{\pi^s}{s-1} - \varepsilon(m,\delta_0) \exp\left(-\pi i \operatorname{Sp}(\delta_0,\overline{\delta})\right) \frac{\pi^s}{s},$$
(5)

where

$$\varepsilon(m, a) = \begin{cases} 1 & \text{if } m = 0 \text{ and } a \in G \\ 0 & \text{otherwise.} \end{cases}$$

The equality (5) was obtained for $\Re s > 1$. However, the right part of this equality is an analytic function in all complex *s*-planes except maybe the points s = 0 and s = 1, which can be the poles.

Now, multiplying the equality (5) by $\exp(\pi i \operatorname{Sp}(\overline{\delta}_0 \delta))\pi^{-2s+1}$ and making the substitution $s \to 1 - s$, $\delta_0 \to \delta$, $\delta \to \delta_0$, we obtain that the right part doesn't vary, and hence, we have proved the following functional equation

$$\pi^{-s} \Gamma(2|m|+s) \zeta_m(s;\delta_0,\delta)$$

= $\pi^{-(1-s)} \Gamma(2|m|+1-s) \zeta_m(1-s;-\delta,\delta_0) \exp(-\pi i \operatorname{Sp}(\delta_0\overline{\delta})).$

If m = -m', m' > 0, we put $\delta_0 = -\delta'_0$, $\delta = -\delta'$, and then we have

$$\zeta_m(s,\delta,\delta_0) = \zeta_{m'}(s,-\delta,-\delta_0) \Rightarrow \zeta_{m'}(1-s,\delta_0,-\delta) = \zeta_m(1-s,-\delta_0,\delta).$$

So, for any $m \in \mathbb{Z}$,

$$\pi^{-s}\Gamma(2|m|+s)\zeta_m(s;\delta,\delta_0) = \pi^{-(1-s)}\Gamma(2|m|+1-s)\zeta_{-m}(1-s,-\delta_0,\delta)$$

= $\pi^{-(1-s)}\Gamma(2|m|+1-s)\zeta_{-m}(1-s;\delta_0,-\delta).$

This completes the proof of Lemma 1.

Corollary 1. If δ is not a Gaussian integer, then $\zeta_0(0; \delta_0, \delta) = 0$.

Lemma 2. In the strip $\varepsilon \leq \Re s \leq 1 + \varepsilon$, $\varepsilon > 0$, the following estimate

$$(s-1)\cdot\zeta_m(s;\delta_0,\delta)\ll(|t|+1)(t^2+m^2)^{\frac{(1-2\sigma)(1+\varepsilon-\sigma)}{1+2\varepsilon}}|N(\delta)|^{-\frac{\sigma+\varepsilon}{1+2\varepsilon}}$$

holds.

This lemma follows from Phragmen-Lindelof principle and the estimates for $\zeta_m(s; \delta_0, \delta)$ on the boundaries of the strip $\varepsilon \leq \Re s \leq 1 + \varepsilon$, which can be received with the usage of the functional equation for $\zeta_m(s; \delta_0, \delta)$ and Stirling formula for $\Gamma(z)$.

Lemma 3. Let $y \ge k \in \{0, 1, 2\}$. Let a be a real number, $-1 < a \le \frac{5}{4}$, $\eta(a) = \min_{j=0,1,\dots,k} |a - j| \ne 0$. Then for any real numbers u, v the following estimate

$$\int_{a+iu}^{a+iv} \frac{y^s \psi(s,m)}{s(s+1)\dots(s+k)} ds$$

$$\ll N(\gamma)^{\frac{1}{2}} M\left(\left(\frac{y}{N(\gamma)} \cdot \frac{1}{M}\right)^a (\eta^{-1}(a) + \log M) + \left(\frac{y}{N(\gamma)M}\right)^{\frac{1}{2} - \frac{2k+1}{4}}\right),$$
holds where $\psi(s,m) = \left(\frac{1}{2}N(\gamma)^{\frac{1}{2}}\right)^{1-2s} \frac{\Gamma(2|m|+1-s)}{M} = |m| + 10$

holds, where $\psi(s,m) = \left(\frac{1}{\pi}N(\gamma)^{\frac{1}{2}}\right)^{1-2s} \frac{\Gamma(2|m|+1-s)}{\Gamma(2|m|+s)}, M = |m| + 10.$ Proof. Apply [3, Lemma 8].

Lemma 4 ([7], Theorem 1). Upon the condition $D^{\frac{1}{2}} \leq x < D^2$ the asymptotic formula

$$\sum_{\substack{n \equiv 1 \pmod{D} \\ n \leqslant x}} r(n) = \frac{\pi x}{D} \gamma_0 \prod_{p|D} \left(1 - \frac{\chi_4(p)}{p} \right) + O\left(D^{\frac{1}{2}} \exp\left(c \frac{(\log D)^{\frac{1}{2}}}{\log \log D} \right) \right) + O\left(\frac{x^{\frac{1}{2}}}{D^{\frac{1}{2}}} \tau(D) \right),$$
$$\gamma_0 = \begin{cases} 1 & \text{if } D \not\equiv 0 \pmod{4}, \\ 2 & \text{if } D \equiv 0 \pmod{4} \end{cases}$$

is true.

Lemma 5. Let $p \equiv 3 \pmod{4}$. Then for $n = 1, 2, 3, \ldots$ the estimate

$$\sum_{\alpha \in E_n^+} e^{\pi i \operatorname{Sp} \frac{\alpha^2}{p^n}} \ll p^{\frac{n}{2}}$$

holds.

Proof. In the articles [5] and [9] the following description of elements $\alpha \in E_n^+, n \ge 2$ was given:

$$\alpha = (u_0 + iv_0)^{2(p+1)t+k} \equiv \sum_{j=0}^{n-1} \left(A_j(k) + iB_j(k) \right) t^j \pmod{p^n}$$

Here $(u_0 + iv_0)$ is a generator of the group E_n^+ , $t = 0, 1, \ldots, p^{n-1}$, $k = 0, 1, \ldots, 2p + 1$. Moreover,

$$A_0(k) = u(k), \quad B_0(k) = v(k);$$

$$A_1(k) \equiv -py_0v(k) \pmod{p^3}, \quad B_1(k) \equiv py_0u(k) \pmod{p^3},$$

$$A_2(k) \equiv -\frac{1}{2}p^2y_0^2u(k) \pmod{p^3}, \quad B_2(k) \equiv -\frac{1}{2}p^2y_0^2v(k) \pmod{p^3},$$

$$(u_0 + iv_0)^k \equiv u(k) + iv(k) \pmod{p^n}, (y_0, p) = 1.$$

Furthermore,

$$u(k) \equiv 0 \pmod{p}, \text{ when } k = \frac{p+1}{2}, \ k = \frac{3(p+1)}{2};$$

 $v(k) \equiv 0 \pmod{p}, \text{ when } k = 0, \ k = p+1;$

 $A_j(k) \equiv B_j(k) \equiv 0 \pmod{p^3}, \quad j = 3, 4, \dots, m-1, \ k = 0, 1, \dots, 2p+1.$

Hence we easily conclude

$$\Re(\alpha^2) \equiv (A_0^2(k) - B_0^2(k)) + 2(A_0(k)A_1(k) - B_0(k)B_1(k))t + (A_1^2(k) - B_1^2(k)) + A_0(k)A_2(k) - B_0(k)B_2(k)t^2 \pmod{p^3}.$$

Then $\Re(\alpha^2) \equiv C_0 + C_1 t + C_2 t^2 \pmod{p^3}$ with the coefficients

$$C_1 \equiv -2py_0 u(k)v(k) \pmod{p^3}, \quad C_2 \equiv \frac{1}{2}p^2 y_0^2(u^2(k) - v^2(k)) \pmod{p^3}$$

or $C_2 \equiv \frac{1}{2}p^2 y_0^2(1 - 2v^2(k)) \pmod{p^3}.$

Let us note that $u(k)^2 + v(k)^2 \equiv (-1)^k \pmod{p}$. Therefore, it follows that u(k) and v(k) can not divide p simultaneously. It is obvious that $\nu_p(C_2) \ge 2$ (the strict inequality holds for the cases $k = 0, \frac{p+1}{2}, \frac{3(p+1)}{2}, p+1$). That is why, when $\nu_p(C_1) < \nu_p(C_2), S = 0$. So, from the well-known relation, for $(b, p) = 1, f(x) \in \mathbb{Z}[x]$,

$$\sum_{x \in \mathbb{Z}_{p^n}} e^{2\pi i \frac{ax + pbx^2 + p^2 f(x)}{p^n}} = \begin{cases} 0 & if \quad (a, p) = 1, \\ 2p^{\frac{n-1}{2}} & if \quad a \equiv 0 \pmod{p} \end{cases}$$

we get

$$\sum_{\alpha \in E_n^+} e^{\pi i \operatorname{Sp} \frac{\alpha^2}{p^n}} \leqslant 4p^{\frac{n}{2}}.$$

In case n = 1 we take into account that

$$E_1 = \left\{ \pm 1, \pm i, \frac{a-i}{a+i}, i\frac{a-i}{a+i} \mid a = 1, 2, \dots, p-1 \right\}.$$

Thus, we conclude that $\text{Sp}(\alpha^2)$ can be represented as the ratio of the polynomials of degree 2. Then, following Weil [11], we have

$$\sum_{\alpha \in E_1} e^{\pi i \operatorname{Sp} \frac{\alpha^2}{p}} \leqslant 2\sqrt{p}.$$

Hence, the assertion of lemma follows.

Lemma 6 ([7], Lemma 5). Let p be a prime number, let u_1, u_2 be integers and $(u_1, u_2, p^n) = p^m$. Then

ı

$$\left| \sum_{l_1^2 + l_2^2 \equiv 1 \pmod{p^n}} e^{2\pi i \frac{u_1 l_1 + u_2 l_2}{p^n}} \right| \leq 2p^{\frac{n+m}{2}}.$$

Corollary 2. For $m \neq 0$ the following estimate

$$\sum_{\alpha \in E_n^+} \zeta_m\left(0; \frac{\alpha}{p^n}, 0\right) \ll p^{\frac{3}{2}n} M \log M, \quad M = |m| + 10,$$

holds.

This statement follows immediately from the functional equation for $\zeta_m(s; \delta_0, \delta)$ for $m \neq 0$ and Lemma 6.

The following Lemma was proved in [10] (see Lemma 11, pp. 259–260).

Lemma 7 (Vinogradov's 'glasses'). Let $r \in \mathbb{N}$, $\Omega > 0$, $0 < \Delta < \frac{1}{2}\Omega$ and let ϕ_1, ϕ_2 be real numbers, $\Delta \leq \phi_2 - \phi_1 \leq \Omega - 2\Delta$. Then there exists a periodic function $f(\phi)$ with the period Ω such that:

(i) $f(\phi) = 1$, in the segment $\phi \in [\phi_1, \phi_2]$; $0 \leq f(\phi) \leq 1$ in the segments $[\phi_1 - \Delta, \phi_1]$ and $[\phi_2, \phi_2 + \Delta]$; $f(\phi) = 0$, in the segment $[\phi_2 + \Delta, \phi_1 + \Omega - \Delta]$; (ii) $f(\phi)$ has the expansion in a Fourier series

$$f(\phi) = \sum_{m=-\infty}^{+\infty} a_m e^{2\pi i \frac{m\phi}{\Omega}}$$

where $a_0 = \frac{1}{\Omega}(\phi_2 - \phi_1 + \Delta)$, and for $m \neq 0$ and $r \in \mathbb{N}$ each of the following inequalities holds

$$|a_m| \leqslant \begin{cases} \frac{1}{\Omega}(\phi_2 - \phi_1 + \Delta), \\ \frac{2}{\pi |m|}, \\ \frac{2}{\pi |m|} \left(\frac{r\Omega}{\pi |m|\Delta}\right)^r. \end{cases}$$

3. Main results

Let us consider the function of a natural argument

$$r_m(k) = \sum_{\substack{u,v \in \mathbb{Z} \\ u^2 + v^2 = k}} e^{4mi \arg(u+iv)}.$$

In view of (3) we can write

$$F_m(s) = \sum_{\substack{k \leq x \\ k \equiv 1 \pmod{p^n}}}^{\infty} \frac{r_m(k)}{k^s}$$

Theorem 1. Let $m \neq 0$, $p^n \leq x \leq p^{2n}$. Then

$$\sum_{\substack{k \leq x \\ k \equiv 1 \pmod{p^n}}} r_m(k) \ll \frac{\sqrt{x}}{p^{\frac{n}{2}}} + p^{\frac{n}{2}} \log x + p^{\frac{n}{2}} M \log M.$$

Proof. Our assertion is trivial for $x \ll p^n M$. That is why we will assume that $x \ge C \cdot Mp^n$, C > 0. It follows from Lemma 1 that $\zeta_m(s; \delta_0, \delta)$ is an entire function. In view of the fact

$$\frac{1}{p^{2ns}}\zeta_m\left(s;\frac{\alpha}{p^n},0\right) = \sum_{\substack{w\in G\\w\equiv\alpha\,(\mathrm{mod}\ p^n)}} e^{\frac{4mi\arg\,w}{N(w)^s}}$$

for $\Re s > 1$ and every $\alpha \in G$ the usage of the theorem of the residues gives

$$\frac{1}{2\pi i} \int_{2-i\cdot\infty}^{2+i\cdot\infty} \frac{x^{s+2}\zeta_m\left(s;\frac{\alpha}{p^n},0\right)}{p^{2ns}s(s+1)(s+2)} ds$$

$$= \frac{x^2}{2}\delta_m\left(s;\frac{\alpha}{p^n},0\right) + \frac{1}{2\pi i} \int_{a-i\cdot\infty}^{a+i\cdot\infty} \frac{x^{s+2}\zeta_m\left(s;\frac{\alpha}{p^n},0\right)}{p^{2ns}s(s+1)(s+2)} \tag{6}$$

for every -1 < a < 0.

Let us denote

$$S_2(x,\alpha) = \frac{1}{2} \sum_{\substack{0 < N(w) \le x \\ w \equiv \alpha \pmod{p^n}}} e^{4mi \arg w} (x - N(w))^2.$$
(7)

Using the relation

$$\frac{1}{2\pi i} \int_{2-i\cdot\infty}^{2+i\cdot\infty} \frac{y^{s+l}}{s(s+1)\dots(s+k)} = \begin{cases} \frac{1}{l!}(y-1)^l & if \quad y>1\\ 0 & if \quad 0< y<1 \end{cases}$$

and taking into account the uniform convergence of the series for zeta-function $\zeta_m\left(s;\frac{\alpha}{p^n},0\right)$ in the semiplane $\Re s \ge 1 + \varepsilon, \ \varepsilon > 0$, we get

$$\frac{1}{2\pi i} \int_{2-i\cdot\infty}^{2+i\cdot\infty} \frac{x^{s+2}\zeta_m\left(s;\frac{\alpha}{p^n},0\right)}{p^{2ns}s(s+1)(s+2)} ds$$

= $\sum_{\substack{w\equiv\alpha\ (\text{mod }p^n)}} \frac{e^{4mi\arg w}}{N(w)^{-2}} \cdot \frac{1}{2\pi i} \int_{2-i\cdot\infty}^{2+i\cdot\infty} \frac{\left(\frac{x}{N(w)}\right)^{s+2}}{s(s+1)(s+2)} ds$ (8)
= $\frac{1}{2} \sum_{\substack{w\equiv\alpha\ (\text{mod }p^n)\\N(w)\leqslant x}} e^{4mi\arg w} (x-N(w))^2 = S_2(x,\alpha).$

The application of the functional equation for $\zeta_m(s; \delta_0, \delta)$ (see Lemma 1) and the estimate $\zeta_m(s; \delta_0, \delta)$ in critical strip (see Lemma 2) give

$$\frac{1}{2\pi i} \int_{a-i\cdot\infty}^{a+i\cdot\infty} \frac{x^{s+2} \zeta_m\left(s; \frac{\alpha}{p^n}, 0\right)}{p^{2ns} s(s+1)(s+2)} = \sum_{w\in G\setminus\{0\}} e^{-4mi \arg w} e^{\pi i \operatorname{Sp}\left(\frac{\alpha w}{p^n}\right)} N(w)^{-s} \frac{1}{2\pi i} \int_{a-i\cdot\infty}^{a+i\cdot\infty} \frac{(xN(w))^{s+2} \frac{\Gamma(2|m|+1-s)}{\Gamma(2|m|+s)}}{\pi^{1-2s} s(s+1)(s+2)p^{2ns}} ds.$$
(9)

From (6)-(9) we deduce the formula:

$$S_2(x,\alpha) = \frac{x^2}{2} \zeta_m\left(0;\frac{\alpha}{p^n},0\right) + \sum_{w \in G \setminus \{0\}} e^{-4mi \arg w} e^{\pi i \operatorname{Sp}\left(\frac{\alpha w}{p^n}\right)} N(w)^{-s} W\left(\frac{xN(w)}{p^{2n}}\right) p^{2(n+1)},$$

where

$$W(y) = \frac{1}{2\pi i} \int_{a-i\cdot\infty}^{a+i\cdot\infty} \frac{y^{s+2}\Gamma(2|m|+1-s)}{s(s+1)(s+2)\Gamma(2|m|+s)} ds.$$

We consider the following operator

$$\Delta_z F(x) = \sum_{j=0}^2 (-1)^j F(x+jz) = \int_x^{x+z} dy_1 \int_{y_1}^{y_1+z} F''(y_2) dy_2.$$

Then

$$\Delta_z \left(\frac{x^2}{2} \zeta_m \left(0; \frac{\alpha}{p^n}, 0 \right) \right) = z^2 \zeta_m \left(0; \frac{\alpha}{p^n}, 0 \right).$$

It is obvious that for every b, -1 < b < 0, we have

$$W(y) = \frac{1}{2\pi i} \int_{b-i\cdot\infty}^{b+i\cdot\infty} \frac{y^{s+2}\Gamma(2|m|+1-s)}{s(s+1)(s+2)\Gamma(2|m|+s)} ds.$$

We put $b = -1 + \frac{1}{\log y}$, if y > 1. Using Lemma 3, we conclude that

$$W(y) \ll K(y,m),\tag{10}$$

where

$$K(y,m) = p^{3n} M^3 y \left(\log y + \log M\right).$$

It means that

$$\Delta_z W\left(\frac{xN(w)}{p^{2n}}\right) \ll K\left(\frac{xN(w)}{p^{2n}}, m\right),\tag{11}$$

if only $z \ll \frac{xN(w)}{p^{2n}}$. The value $\Delta_z W\left(\frac{xN(w)}{p^{2n}}\right)$ may be defined in a different way. We put

$$\Phi(y) = \frac{1}{2\pi i} \int_{c-i\cdot\infty}^{c+i\cdot\infty} \frac{y^{s+2}\Gamma(2|m|+1-s)}{s(s+1)(s+2)\Gamma(2|m|+s)} ds, \quad c > 1.$$

Then

$$\Phi(y) = \frac{y^2}{2} \frac{\Gamma(2|m|+1)}{\Gamma(2|m|)} + W(y).$$

For all y > 0 the integrals

$$\frac{1}{2\pi i} \int_{c-i\cdot\infty}^{c+i\cdot\infty} \frac{y^{s+2}\Gamma(2|m|+1-s)}{s\cdot\ldots\cdot(s+2-j)\Gamma(2|m|+s)} ds, \ j=0,1,2,$$

converge absolutely and uniformly. Hence, for the derivatives of $\Phi(y)$ we have

$$\Phi^{(j)}(y) = \frac{1}{2\pi i} \int_{c-i\cdot\infty}^{c+i\cdot\infty} \frac{y^{s+2-j}\Gamma(2|m|+1-s)}{s\cdot\ldots\cdot(s+2-j)\Gamma(2|m|+s)} ds, \quad j=0,1,2.$$

Thus,

$$W''(y) = -\frac{\Gamma(2|m|+1)}{\Gamma(2|m|)} + \frac{1}{2\pi i} \int_{c-i\cdot\infty}^{c+i\cdot\infty} \frac{y^s}{s} \frac{\Gamma(2|m|+1-s)}{\Gamma(2|m|+s)} ds.$$
(12)

Now we will take into account that the subintegral function doesn't have singularities in the semiplane $\Re s > 0$. Then, transfering the contour of the integration in (12) to the line $\Re s = \frac{1}{\log y}$ and using Lemma 3, Stirling formula for the gamma-function, we get

$$W^{''}(y) \ll L(y,m),$$

where $L(y,m) = p^n (M \log M + y^{\frac{1}{4}})$. But then

$$\Delta_{z}\left(W\left(\frac{N(w)x}{p^{2n}}\right)\right) = \int_{\frac{N(w)}{p^{2n}}x}^{\frac{N(w)}{p^{2n}}(x+z)} dy_{1} \int_{y_{1}}^{y_{1}+\frac{N(w)}{p^{2n}}z} W''(y_{2}) dy_{2}$$

$$\ll L\left(\frac{xN(\alpha)}{p^{2n}}, m\right) \frac{z^{2}N(w)^{2}}{p^{4n}}.$$
(13)

Let us denote as $S_2(x)$ the following sum

$$S_2(x) = \sum_{\alpha \in E_n^+} S_2(x, \alpha).$$

We have

$$S_{2}(x) = \frac{x^{2}}{2} \sum_{\alpha \in E_{n}^{+}} \zeta_{m}\left(0; \frac{\alpha}{p^{n}}, 0\right)$$

$$+ \sum_{\alpha \in E_{n}^{+}} \sum_{w \equiv \alpha \pmod{p^{n}}} e^{4mi \arg w} e^{\pi i \operatorname{Sp}\left(\frac{\alpha w}{p^{n}}\right)} \frac{W\left(\frac{xN(w)}{p^{2n}}\right)}{N(w)^{3}}$$

$$= \frac{x^{2}}{2} \sum_{\alpha \in E_{n}^{+}} \zeta_{m}\left(0; \frac{\alpha}{p^{n}}, 0\right) + \sum_{\chi E_{n}} \frac{1}{|E_{n}|} \sum_{\alpha \in E_{n}} \bar{\chi}(\alpha)$$

$$\times \sum_{N(w) \equiv 1 \pmod{p^{n}}} \frac{\chi(w) e^{4mi \arg w}}{N(w)^{3}} \cdot e^{\pi i \operatorname{Sp}\left(\frac{\alpha w}{p^{n}}\right)} W\left(\frac{xN(w)}{p^{n}}\right).$$
(14)

Applying the operator Δ_z to both parts of (14), we obtain

$$\Delta_z \left(S_2(x) \right) = z^2 \sum_{\alpha \in E_n^+} \zeta_m \left(0; \frac{\alpha}{p^n}, 0 \right)$$

+
$$\sum_{\substack{w \in G \\ N(w) \equiv 1 \pmod{p^n}}} e^{-4mi \arg w} N(w)^{-3} W \left(\frac{xN(w)}{p^{2n}} \right) \sum_{\alpha \in E_n^+} e^{\pi i \operatorname{Sp} \frac{\alpha^2}{p^n}}.$$

In virtue of (10), (11) and (13), Lemma 5 and Corollary 2 we infer $\Delta_z \left(S_2(x)\right)$ $\ll z^2 n^{\frac{3}{2}n} M \log M + n^{\frac{n}{2}} z^2 \sum_{w \in W} N(w)^{-1} L\left(\frac{xN(w)}{w}, m\right)$

$$\ll z^{2}p^{\frac{n}{2}n}M\log M + p^{\frac{n}{2}}z^{2}\sum_{N(w)\leqslant x}N(w)^{-1}L\left(\frac{wN(w)}{p^{2n}},m\right) + p^{\frac{n}{2}}\sum_{N(w)>x}N(w)^{-3}K\left(\frac{xN(w)}{p^{2n}},m\right) \ll z^{2}p^{\frac{n}{2}}p^{n}M\log M + z^{2}p^{\frac{n}{2}}\sum_{N(w)\leqslant x}p^{n}\left(M\log M + \frac{N(w)^{\frac{1}{4}}x^{\frac{1}{4}}}{p^{\frac{n}{2}}}\right)N(w)^{-1} + z^{2}p^{\frac{n}{2}}\sum_{N(w)>x}p^{3n}M^{3}N(w)^{-2}p^{-2n}\log N(w).$$
(15)

From this we get

$$\Delta_z \left(S_2(x) \right) \ll \\ \ll p^{\frac{3}{2}} \left\{ z^2 M \log M + z^2 M \log M \log x + z^2 p^{-\frac{n}{2}} \sqrt{x} + M^3 \log x \right\}.$$
(16)

The application of the estimates (10), (14) requires that $z \ll \frac{xN(w)}{p^{2n}}$. Thus the condition N(w) > x in the second sum of (15) allows to assume $z = p^n M \leqslant \frac{x^2}{p^{2n}}$ for $M \ll \frac{x^2}{p^{2n}}$. Then the following inequality

$$\Delta_z \left(S_2(x) \right) \ll z^2 p^{\frac{3}{2}n} M \log M$$

holds.

Let $H_2(x)$ stands for the sum

$$H_2(x) = \sum_{\alpha \in E_n^+} \sum_{\substack{w \in G \\ w \equiv \alpha \pmod{p^n} \\ N(w) \leq x}} e^{4mi \arg w}.$$
 (17)

Then from the definition of $S_2(x)$ we easily find

$$H_2(x) = \frac{d^2}{dx^2}(S_2(x)).$$

It is clear that

$$\int_{x}^{x+z} dy_1 \int_{y_1}^{y_1+z} H_2(y_2) dy_2 = \Delta_z \left(S_2(x) \right).$$

By $x \leq y_1 \leq x + 2z$ and Lemma 4 we have

$$|H_{2}(y_{2}) - H_{2}(x)| = |E_{n}^{+}| \cdot \left| \sum_{\substack{x < N(w) \le y_{2} \\ N(w) \equiv 1 \pmod{p^{n}}}} e^{4mi \arg w} \right|$$

$$\leq (p+1)p^{n-1} \sum_{\substack{x < n \le x+2z \\ n \equiv 1 \pmod{p^{n}}}} r(n)$$

$$\leq \frac{\pi z}{p^{n}} \cdot \frac{p+1}{p} + O\left(\frac{\sqrt{x}}{p^{\frac{n}{2}}}\right) + O\left(p^{\frac{n}{2}} \exp\left(c\frac{(\log p^{n})^{\frac{1}{2}}}{\log \log p^{n}}\right)\right).$$

Consequently,

$$|H_2(y_2) - H_2(x)| = O\left(\frac{z}{p^n}\right) + O\left(\sqrt{x}p^{-\frac{n}{2}}\right) + O\left(p^{\frac{n}{2}}\exp\left(c\frac{(\log p^n)^{\frac{1}{2}}}{\log\log p^n}\right)\right)$$

It follows that

$$H_{2}(y_{2}) = H_{2}(x) + O\left(\frac{z}{p^{n}}\right) + O\left(\sqrt{x}p^{-\frac{n}{2}}\right) + O\left(p^{\frac{n}{2}}\exp\left(c\frac{(\log p^{n})^{\frac{1}{2}}}{\log\log p^{n}}\right)\right).$$
(18)

Now from (17) and (18) we get

$$z^{2}\left(H_{2}(x)+O\left(\frac{z}{p^{n}}\right)+O\left(\sqrt{x}p^{-\frac{n}{2}}\right)+O\left(p^{\frac{n}{2}}\exp\left(c\frac{(\log p^{n})^{\frac{1}{2}}}{\log\log p^{n}}\right)\right)\right)$$
$$=O(z^{2}p^{\frac{n}{2}}M\log M).$$

Thus,

$$H_2(x) = x^{\frac{1}{2}} p^{-\frac{n}{2}} + p^{\frac{n}{2}} \exp\left(c\frac{(\log p^n)^{\frac{1}{2}}}{\log \log p^n}\right) + p^{\frac{n}{2}} M \log M$$

So, the proof of Theorem 1 is completed.

Now we can investigate the distribution of quadratic residues modulo p^n in narrow sectors.

Theorem 2. Let $p^{\frac{3}{2}n} \leq x \leq p^{2n}$, $0 \leq \phi_1 < \phi_2 \leq \frac{\pi}{2}$ and let $0 < s \leq \frac{1}{8}$. Then for $\phi_2 - \phi_1 \geq x^{-s}$ the asymptotic formula

$$R(x;\phi) = \frac{\phi_2 - \phi_1}{2} \cdot \frac{p+1}{p} \cdot \frac{x}{p^n} + O\left(3^n \frac{x^{1-s}}{p^n} \log x\right)$$

holds.

Proof. It is known that the distribution of the arguments of Gaussian integers (being considered up to the association) has the period $\frac{\pi}{2}$. In view of this fact the application of Lemma 7 with $\Omega = \frac{\pi}{2}$ gives for every $T \ge 1$

$$\sum_{\substack{\alpha \in E_n^+ \\ \phi_1 \leqslant \alpha < \phi_2 \\ N(\alpha) \leqslant x}} 1 = \Phi(\phi_1, \phi_2) + \theta_1 \Phi(\phi_1 - \Delta, \phi_1) + \theta_2 \Phi(\phi_2, \phi_2 + \Delta),$$

$$|\theta_i| \leqslant 1, \quad i = 1, 2, \qquad \Phi(\phi_1, \phi_2) = \frac{1}{4} \sum_{\substack{w \in E_n^+ \\ N(w) \leqslant x)}} f(\arg w)$$

and $f(\phi)$ is the function from Lemma 7, $0 < \Delta = \frac{1}{2}\Omega$. Furthermore

$$\Phi(\phi_1, \phi_2) = \sum_{\substack{w \in E_n^+ \\ N(w) \leqslant x)}} \sum_{m = -\infty}^{+\infty} a_m e^{4mi \arg \alpha} = \sum_{m = -\infty}^{+\infty} a_m \sum_{\substack{k \equiv 1 \pmod{p^n} \\ k \leqslant x}} r_m(x),$$

where a_m is the Fourier coefficient from Lemma 7.

We put $\delta = x^s$, 0 < s < 1 (we will find the more precise estimate for s later). Let us use the estimates for the coefficients a_m (see Lemma 7 with r = 2):

$$|a_m| \ll \begin{cases} \frac{1}{|m|}, & |m| \leq \delta = \Delta^{-1};\\ \frac{1}{|m|^3 \Delta^2}, & |m| > \delta. \end{cases}$$

After simple calculations we get

$$\Phi(\phi_1, \phi_2) = \frac{\phi_2 - \phi_1}{2} \cdot \frac{p+1}{p} \cdot \frac{x}{p^n} + O\left(\frac{x^{1-s}}{p^n}\right) + O\left(s\frac{\sqrt{x}}{p^{\frac{n}{2}}}\log^2 x\right) + O\left(sp^{\frac{n}{2}}\log^2 x\right) + O\left(\frac{x^{\frac{1}{2}+s}}{p^{\frac{n}{2}}}\right) + O\left(3^n p^{\frac{n}{2}} x^s \log x\right).$$

In view of the assumption of the theorem the following inequalities

$$\frac{x^{1-s}}{p^n} \gg p^{\frac{n}{2}} x^s, \qquad \frac{x^{1-s}}{p^n} \gg \frac{x^{\frac{1}{2}+s}}{p^{\frac{n}{2}}}$$

hold. Therefore,

$$\Phi(\phi_1, \phi_2) = \frac{\phi_2 - \phi_1}{2} \cdot \frac{p+1}{p} \cdot \frac{x}{p^n} + O\left(3^n \frac{x^{1-s}}{p^n} \log x\right).$$
(19)

It follows from (19) that

$$\Phi(\phi_1 - \Delta, \phi_1), \Phi(\phi_2, \phi_2 + \Delta) \ll 3^n \frac{x^{1-s}}{p^n} \log x.$$
 (20)

The relations (19) and (20) show that Theorem 2 is proved for every s, $0 < s \leq \frac{1}{8}$.

Acknowledgment

The authors would like to thank the referee for useful remarks and suggestions.

References

- D. Burgess, The Distribution of quadratic residues and non-residues, Mathematika, N.4, 1957, pp.106–112.
- [2] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen I-II, Math.Z., T.1, 1918, ss.357-376; T.6, 1920, pp.11–51.

- [3] J. Kubilius, On one problem of multidimensional analytic number theory, Proc. Vilnius Univ., N.4, 1955, pp.5–41 (in Lithuanian).
- H. Montgomery, R. Vaughan, Exponential sums with multiplicative coefficients, Inventiones math., N.43, 1977, pp.69–82.
- [5] S. Sergeev, P. Varbanets, *Exponential sums over norm group*, Siauliai Math.Seminar, N.9(17), 2014, pp.83–92.
- [6] Elias M. Stein, Guido Weiss, Introduction to Fourier analysis on Euclidian spaces, Princeton, New Jersey, Princeton University Press, 1971, P.312.
- [7] P. Varbanets, Problem of circle in aritmetic progression, Mat. Zametki, N.8(6), 1970, pp.787–798 (in Russian).
- [8] P. Varbanec, P. Zarzycki, Divisors of the Gaussian integers in an Arithmetic Progression, Journal of Number Theory, V.33, N.2, 1989, pp.152–169.
- S. Varbanets, General Klosterman sums over ring of Gaussian integers, Ukr. Math. J., N.59(9), 2007, pp.1179–2000.
- [10] I.M. Vinogradov, Selectas, Academic Press USSR, Moscow, 1952 (in Russian).
- [11] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A., 34, 1948, pp. 204–207.

CONTACT INFORMATION

L. Balyas,	Department of Computer Algebra and Dis-
P. Varbanets	crete Mathematics, I. I. Mechnikov Odessa Na-
	tional University, Dvoryanskaya 2 65026 Odessa,
	Ukraine
	E-Mail(s): balyas@ukr.net,
	varb@sana.od.ua Web-page(s): onu.edu.ua

Received by the editors: 29.01.2016 and in final form 29.12.2016.