Algebra and Discrete Mathematics Volume **22** (2016). Number 2, pp. 240–261 © Journal "Algebra and Discrete Mathematics"

A horizontal mesh algorithm for posets with positive Tits form

Mariusz Kaniecki, Justyna Kosakowska, Piotr Malicki and Grzegorz Marczak

Communicated by D. Simson

ABSTRACT. Following our paper [Fund. Inform. 136 (2015), 345–379], we define a horizontal mesh algorithm that constructs a $\widehat{\Phi}_I$ -mesh translation quiver $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$ consisting of $\widehat{\Phi}_I$ -orbits of the finite set $\widehat{\mathcal{R}}_I = \{v \in \mathbb{Z}^I : \widehat{q}_I(v) = 1\}$ of Tits roots of a poset I with positive definite Tits quadratic form $\widehat{q}_I : \mathbb{Z}^I \to \mathbb{Z}$. Under the assumption that $\widehat{q}_I : \mathbb{Z}^I \to \mathbb{Z}$ is positive definite, the algorithm constructs $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$ such that it is isomorphic with the $\widehat{\Phi}_D$ -mesh translation quiver $\Gamma(\mathcal{R}_D, \Phi_D)$ of $\widehat{\Phi}_D$ -orbits of the finite set \mathcal{R}_D of roots of a simply laced Dynkin quiver D associated with I.

1. Introduction

The paper is mainly devoted to the existence of a $\widehat{\Phi}_I$ -mesh root system $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$ in the sense of [30], that is, a $\widehat{\Phi}_I$ -mesh translation quiver $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$ consisting of $\widehat{\Phi}_I$ -orbits of the set $\widehat{\mathcal{R}}_I = \{v \in \mathbb{Z}^I : \widehat{q}_I(v) = 1\}$ of Tits roots of a finite poset $I = (I, \preceq)$ with positive quadratic Tits form $\widehat{q}_I : \mathbb{Z}^I \to \mathbb{Z}$, where $\widehat{\Phi}_I : \mathbb{Z}^I \to \mathbb{Z}^I$ is the Coxeter-Tits transformation associated with I in [9,28,29,34]. The reader is also referred to [14], [16], and [30]-[34] for analogous existence mesh root system theorems in the setting of positive edge-bipartite graphs and non-negative posets.

²⁰¹⁰ MSC: 68R10, 05C50, 06A07, 15A63.

Key words and phrases: poset, combinatorial algorithm, Dynkin diagram, mesh geometry of roots, quadratic form.

Our interest in the $\widehat{\Phi}_I$ -mesh analysis of $\widehat{\Phi}_I$ -orbits of the set $\widehat{\mathcal{R}}_I$ of Tits roots is motivated by applications of matrix representations of posets in representation theory, where a matrix representation of a partially ordered set $T = \{p_1, \ldots, p_n\}$, with a partial order \preceq , means a block matrix

$$M = [M_1|M_2|\dots|M_n]$$

(over a field K) of size $d_* \times (d_1, \ldots, d_n)$ determined up to all elementary row transformations, elementary column transformations within each of the substrips M_1, M_2, \ldots, M_n , and additions of linear combinations of columns of M_i to columns of M_j , if $p_i \prec p_j$, see Nazarova and Roiter [22]. In [9], Drozd proves that T has only a finite number of direct-sum-indecomposable representations if and only if its quadratic Tits form

$$q(x_1, \dots, x_n, x_*) = x_1^2 + \dots + x_n^2 + x_*^2 + \sum_{p_i \prec p_j} x_i x_j - x_* (x_1 + \dots + x_n) \quad (1.1)$$

is weakly positive (i.e., $q(a_1, \ldots, a_n, a_*) > 0$, for all non-zero vectors (a_1, \ldots, a_n, a_*) with integer non-negative coefficients). In this case, there exists an indecomposable representation M of size $d_* \times (d_1, \ldots, d_n)$ if and only if (d_1, \ldots, d_n, d_*) is a root of q, i.e., $q(d_1, \ldots, d_n, d_*) = 1$, see [10] and [26, Chapter 10] for more details.

In [5,6], Bondarenko and Stepochkina give a complete list of posets T with positive Tits form $q(x_1, \ldots, x_n, x_*)$; it consists of four infinite series and 108 exceptional posets, up to duality (see also [11,12] for an alternative proof).

Throughout this paper, we assume that

$$I = (I, \preceq)$$

is a poset (i.e., a finite partially ordered set). We denote by max I the set of all maximal elements of I and let $I^- = I \setminus \max I$. For $i, j \in I$, we write $i \prec j$ if $i \preceq j$ and $i \neq j$. Moreover, for $i, j \in I$, we write $i \rightarrow j$, if $i \prec j$ and there is no s in I such that $i \prec s \prec j$. We denote by \mathbb{Z} the ring of integers and by $\mathbb{M}_I(\mathbb{Z})$ the ring of I by I square matrices with integer coefficients.

Usually we define a poset I by presenting its Hasse quiver $\mathcal{H}(I) = (\mathcal{H}_0(I), \mathcal{H}_1(I))$, with the set of vertices $\mathcal{H}_0(I) = I$ and the set $\mathcal{H}_1(I)$ of arrows $i \to j$ defined earlier, for $i, j \in I$.

Following [26, 28, 29, 34], with any poset I, we associate the *incidence* matrix $C_I = [c_{ij}] \in \mathbb{M}_I(\mathbb{Z})$ and the Tits matrix $\widehat{C}_I \in \mathbb{M}_I(\mathbb{Z})$, where

$$c_{ij} = \begin{cases} 1 & \text{if } i \leq j, \\ 0 & \text{otherwise,} \end{cases}$$
(1.2)

and

$$\widehat{C}_{I} = \begin{bmatrix} C_{I^{-}}^{tr} & U \\ 0 & E \end{bmatrix}, \qquad (1.3)$$

where $U = [u_{iw}]_{i \in I^-; w \in \max I}$ and

$$u_{iw} = \begin{cases} -1 & \text{if } i \leq w, \\ 0 & \text{otherwise,} \end{cases}$$
(1.4)

Following [11,32,34], we call a poset I positive, if the symmetric Gram matrix $G_I := \frac{1}{2}(\hat{C}_I + \hat{C}_I^{tr})$ is positive definite.

The following two sets of vectors associated with a poset I are playing an important role in the representation theory of algebras: the set of *Tits roots*

$$\widehat{\mathcal{R}}_I := \{ v \in \mathbb{Z}^n; \ v \cdot \widehat{C}_I \cdot v^{tr} = 1 \}$$
(1.5)

and the set of *Euler roots*

$$\overline{\mathcal{R}}_I := \{ v \in \mathbb{Z}^n; \ v \cdot \overline{C}_I \cdot v^{tr} = 1 \}$$
(1.6)

of a poset I, where

$$\overline{C}_I = C_I^{-1} \tag{1.7}$$

see [10, 21, 24, 26]. We recall from [30] that the sets of Tits roots $\widehat{\mathcal{R}}_I$ and Euler roots $\overline{\mathcal{R}}_I$ of I are finite, if I is positive. Moreover, if I is assumed to be connected then the sets $\widehat{\mathcal{R}}_I$ and $\overline{\mathcal{R}}_I$ are irreducible and reduced root systems in the sense of Bourbaki, see [24, p. 40] and [16], for more details.

By [29, Corollary 1.8], given a positive poset I, the root systems $\hat{\mathcal{R}}_I$ and $\overline{\mathcal{R}}_I$ are isomorphic, and we denote by DI the common Coxeter-Dynkin type of these root systems. One should note that DI is one of the simply laced Dynkin diagrams (see [24, p. 40] and [16])

It follows from [16] that the Dynkin diagram DI can be determined by applying the inflation algorithm constructed in [20] and [32].

We recall from [29] that the square matrix

$$\widehat{\mathrm{C}}\mathrm{ox}_I := -\widehat{C}_I \cdot \widehat{C}_I^{-tr} \in \mathbb{M}_n(\mathbb{Z}), \qquad (1.8)$$

is called the *Coxeter-Tits matrix* of *I*. Here \widehat{C}_{I}^{tr} is the transpose of \widehat{C}_{I} , and we set $\widehat{C}_{I}^{-tr} := (\widehat{C}_{I}^{tr})^{-1}$. The characteristic polynomial

$$\cos_I(t) := \det(t \cdot E - \widehat{\mathrm{C}} \operatorname{ox}_I) \in \mathbb{Z}[t], \qquad (1.9)$$

of $\widehat{C}ox_I$ is called the *Coxeter polynomial* of *I*, the group isomorphism

$$\widehat{\Phi}_I : \mathbb{Z}^n \to \mathbb{Z}^n, \quad x \mapsto \widehat{\Phi}_I(x) := x \cdot \widehat{\mathrm{Cox}}_I,$$
 (1.10)

is called the *Coxeter-Tits transformation* of I, and the *Coxeter number* \mathbf{c}_I of I is the minimal integer $r \ge 1$ such that $\widehat{\Phi}_I^r$ is the identity map on \mathbb{Z}^n . If $\widehat{\Phi}_I^r \ne id$, for all $r \ge 1$, we set $\mathbf{c}_I = \infty$.

Recall also that the matrix

$$\overline{\mathrm{C}}\mathrm{ox}_I := -\overline{C}_I \cdot \overline{C}_I^{-tr} \in \mathbb{M}_n(\mathbb{Z}), \qquad (1.11)$$

is called the Coxeter-Euler matrix of I, and the group isomorphism

$$\overline{\Phi}_I : \mathbb{Z}^n \to \mathbb{Z}^n, \quad x \mapsto \overline{\Phi}_I(x) := x \cdot \overline{\mathrm{Cox}}_I, \tag{1.12}$$

is called the *Coxeter-Euler transformation* of *I*.

Following an idea introduced in [30, 31], we study in the paper a $\widehat{\Phi}_I$ -mesh root system structure $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$ on the set of roots $\widehat{\mathcal{R}}_I \subseteq \mathbb{Z}^n$ of any connected positive poset I, with $n \ge 2$ vertices, where $\widehat{\Phi}_I : \mathbb{Z}^n \to \mathbb{Z}^n$ is the Coxeter-Tits transformation defined by the Tits matrix $\widehat{C}_I \in \mathbb{M}_n(\mathbb{Z})$ of I.

One of the main aims of the paper is to present a combinatorial algorithm that constructs a $\widehat{\Phi}_I$ -mesh root system structure $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$ (see Definition 2.13) on the finite set of all $\widehat{\Phi}_I$ -orbits of the irreducible root system $\widehat{\mathcal{R}}_I$. Moreover, in Corollary 4.6, we prove that the Coxeter polynomial $\operatorname{cox}_I(t)$ and the Coxeter number \mathbf{c}_I of such poset I depend only on the simply laced Dynkin type DI of $\widehat{\mathcal{R}}_I$ and $\operatorname{cox}_I(t)$ coincides with the Coxeter polynomial $\cos_{DI}(t)$ of the Dynkin diagram DI, see [29, Example 3.12].

The idea of construction of our horizontal mesh algorithm is inspired by the method of a construction of postprojective component in some categories of modules (see [7, 8, 15, 26]). However, this well-known method computes only a mesh quiver consisting of the positive vectors. In the present paper we show that our modification of this algorithm computes a $\hat{\Phi}_I$ -mesh root system structure $\Gamma(\hat{\mathcal{R}}_I, \hat{\Phi}_I)$ for the set $\hat{\mathcal{R}}_I$ of all roots (not only positive roots).

We recall that one of the motivations for the study of a $\widehat{\Phi}_I$ -mesh root system structure $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$ comes from the poset representation theory (see [9, 10, 21, 24, 26, 28, 29, 34]).

The sets of roots and Tits roots are playing an important role in many areas of mathematics. In the representation theory of finite dimensional algebras over a field the roots control categories of indecomposable modules for a large classes of algebras (see [1-3, 24, 25]), while in the theory of Lie groups and Lie algebras they are connected with root spaces (see [4, 13]). Moreover, they control linear bases, generators and relations of Ringel-Hall algebras (see [18, 19]).

Recall that in [17] the Tits roots were applied to get a classification of two-peak sincere posets of finite prinjective type. Therefore, it is of importance to have efficient combinatorial algorithms that compute roots, Tits roots and $\hat{\Phi}_I$ -mesh root system structures.

2. Preliminaries

Throughout this paper all posets are assumed to be connected.

2.1. Unit quadratic forms associated with a poset

Let I be a poset. By a *Tits quadratic form* and an *Euler quadratic form* of I we mean the unit quadratic forms

$$\widehat{q}_I, \overline{q}_I : \mathbb{Z}^I \to \mathbb{Z}$$

defined by the formulae

$$\widehat{q}_I(x) = x \cdot \widehat{C}_I \cdot x^{tr}, \quad \overline{q}_I(x) = x \cdot \overline{C}_I \cdot x^{tr}.$$

It is easy to see that

$$\widehat{q}_I(x) = \sum_{i \in I} x_i^2 + \sum_{i \prec j \in I^-} x_j x_i - \sum_{w \in \max I} \sum_{i \prec w} x_i x_w.$$
(2.1)

Note also that the Tits quadratic form $q(x_1, \ldots, x_n, x_*)$ (1.1) of a partially ordered set $T = \{p_1, \ldots, p_n\}$ (defined by Drozd [9]) coincides with the Tits form $\hat{q}_I(x_1, \ldots, x_n, x_*)$ (2.1) of the one-peak poset $I = T^* \cup \{*\}$ obtained from T by adding a unique maximal element *.

Recall from [29, Corollary 1.8] that one of the quadratic forms \hat{q}_I, \bar{q}_I is positive if and only if both of them are positive. Moreover, in this case we have

$$\overline{q}_I(x) = \sum_{i \in I} x_i^2 - \sum_{i \to j} x_i x_j + \sum_{i \blacktriangleleft j} c^{\bullet}_{ij} x_i x_j, \qquad (2.2)$$

where the relation $i \triangleleft j$ holds if there exists a minimal commutativity relation w' - w'' in I, where w', w'' are paths with the source i and the terminus j and c_{ij}^{\bullet} is the maximal number of linearly independent minimal commutativity relations w' - w'' in I with the source i and the terminus j, see Corollary 1.8, Remark 3.5 and Proposition 4.2 in [29].

Remark 2.3. Let *I* be a positive poset. The formula (2.2) implies that the matrix $\overline{C}_I = (\overline{c}_{ij})$ satisfies the non-cycle condition defined in [14]. Let us recall this definition. With a poset *I* we associate the biquiver $\overline{Q}_I = (\overline{Q}_0, \overline{Q}_1)$ with the set of vertices $\overline{Q}_0 = I$. Moreover, there are $-\overline{c}_{ij}$ solid arrows $i \longrightarrow j$, if $\overline{c}_{ij} < 0$ and \overline{c}_{ij} broken arrows $i - \rightarrow j$, if $\overline{c}_{ij} > 0$. Let $Q = (Q_0, Q_1)$ be a biquiver.

- (a) We say that a (unoriented) cycle $(x_1, x_2, \ldots, x_n, x_1)$ in Q is simple if for all $i, j \in \{1, \ldots, n\}, i \neq j$ we have $x_i \neq x_j$.
- (b) We say that a simple cycle $(x_1, x_2, ..., x_n, x_1)$ is *chordless* if for any arrow (x_i, x_j) we have $i = j \pm 1$ (wherein $1 \equiv n + 1$).
- (c) Further, consider a simple cycle in Q of the form

The biquiver Q satisfies the non-cycle condition, if every simple chordless cycle in Q containing a broken arrow has the form (2.4).

(d) Given a poset I the matrix $\overline{C}_I = (\overline{c}_{ij})$ satisfies the non-cycle condition, if the biquiver \overline{Q}_I satisfies this condition.

For all $i \in I$, denote by \hat{p}_i the *Tits-projective* vector associated with i, i.e. \hat{p}_i is defined by the formula

$$\widehat{p}_i(j) = \begin{cases}
1 & \text{for} & i = j; \\
1 & \text{for} & i \leq j \in \max I; \\
0 & \text{otherwise.}
\end{cases}$$
(2.5)

$$\widehat{\mathcal{P}} = \widehat{\mathcal{P}}(I) = \{\widehat{p}_i \; ; \; i \in I\}$$

be the set of all Tits-projective vectors.

For all $i \in I$, denote by \hat{r}_i the *Tits-radical* vector associated with i, i.e. \hat{r}_i is defined by the formula

$$\widehat{r}_i(j) = \begin{cases} 1 & \text{for all} \quad i \to j; \\ 1 & \text{for} \quad i \prec j \in \max I; \\ 0 & \text{otherwise.} \end{cases}$$
(2.6)

Let

$$\widehat{\operatorname{Rad}} = \widehat{\operatorname{Rad}}(I) = \{\widehat{r}_i \; ; \; i \in I\}$$

be the set of all Tits-radical vectors.

Let $i \in I$ and let \hat{r}_i be the corresponding Tits-radical vector. Consider the convex subposet

$$I\text{-supp}(\hat{r}_i) = conv.hull\{j \in I ; \hat{r}_i(j) \neq 0\}$$

of *I*. Let I_1, \ldots, I_{k_i} be the set of all connected components of the Hasse quiver of *I*-supp (r_i) . We define the vectors $\hat{r}_i^1, \ldots, \hat{r}_i^{k_i}$ by the following formula:

$$\widehat{r}_i^t(j) = \begin{cases} \widehat{r}_i(j) & \text{if } i \in I_t; \\ 0 & \text{otherwise} \end{cases}$$
(2.7)

for all $t \in \{1, \ldots, k_i\}$. We denote by $\widehat{\text{Rad}}_{comp}$ the set of vectors $\widehat{r}_i^1, \ldots, \widehat{r}_i^{k_i}$, where $i \in I$.

It is known that $\hat{p}_i \in \hat{\mathcal{R}}_I$ and $\hat{r}_i^j \in \hat{\mathcal{R}}_I$, for all i, j, see [23, 26, 27].

Denote by \overline{p}_i the *Euler-projective* vector associated with i, i.e. \overline{p}_i is defined by the formula

$$\overline{p}_i(j) = \begin{cases} 1 & \text{for all} \quad i \leq j; \\ 0 & \text{otherwise.} \end{cases}$$
(2.8)

Let

$$\overline{\mathcal{P}} = \overline{\mathcal{P}}(I) = \{\overline{p}_i \; ; \; i \in I\}$$

be the set of all Euler-projective vectors.

For all $i \in I$, denote by \overline{r}_i the *Euler-radical* vector associated with i, i.e. \overline{r}_i is defined by the formula:

$$\overline{r}_i = \overline{p}_i - e_i. \tag{2.9}$$

Let

$$\overline{\text{Rad}} = \overline{\text{Rad}}(I) = \{\overline{r}_i \; ; \; i \in I\}$$

be the set of all Euler-radical vectors.

Let $i \in I$ and let \overline{r}_i be the corresponding Euler-radical vector. Consider the convex subposet

$$I\text{-supp}(\overline{r}_i) = \{ j \in I ; \overline{r}_i(j) \neq 0 \}$$

of *I*. Let I_1, \ldots, I_{k_i} be the set of all connected components of the Hasse quiver of *I*-supp(\overline{r}_i). We define the vectors $\overline{r}_i^1, \ldots, \overline{r}_i^{k_i}$ by the following formula:

$$\overline{r}_i^t(j) = \begin{cases} \overline{r}_i(j) & \text{if } i \in I_t; \\ 0 & \text{otherwise} \end{cases}$$
(2.10)

for all $t \in \{1, \ldots, k_i\}$. We denote by $\overline{\text{Rad}}_{comp}$ the set of vectors $\overline{r}_i^1, \ldots, \overline{r}_i^{k_i}$, where $i \in I$.

It is known that $\overline{p_i} \in \overline{\mathcal{R}}_I$ and $\overline{r}_i^j \in \overline{\mathcal{R}}_I$, for all i, j, see [14, 23, 26, 27].

2.2. Mesh translation quivers in \mathbb{Z}^n

We recall from [30, 31] the following definitions (see also [14]). They are inspired by the definition of the Auslander-Reiten quiver of an algebra (see [1, 2]).

Let $\Phi : \mathbb{Z}^n \to \mathbb{Z}^n$ be a group automorphism (e.g. the Coxeter-Tits transformation $\widehat{\Phi}_I$ or the Coxeter transformation $\overline{\Phi}_I$ of a poset I). A Φ -orbit $\Phi - \mathcal{O}rb(v) = \{\Phi^k(v)\}_{k\in\mathbb{Z}}$ of a vector $v \in \mathbb{Z}^n$ will be visualised as an infinite graph:

$$\dots - - \Phi(v) - - v - - \Phi^{-1}(v) - - \Phi^{-2}(v) - - \dots$$

Definition 2.11. Let $\Phi : \mathbb{Z}^n \to \mathbb{Z}^n$ be a non-trivial group automorphism (e.g. the Coxeter-Tits transformation $\widehat{\Phi}_I$ or the Coxeter transformation $\overline{\Phi}_I$ of a poset I). We say that the vectors $u, v_1, \ldots, v_s, w \in \mathbb{Z}^n$ form a Φ -mesh starting from u and terminating at w, if the following two conditions are satisfied:

(i)
$$u = \Phi(w)$$
 and $u + w = \sum_{i=1}^{s} v_i$,

(ii) the vectors v_1, \ldots, v_s are pairwise different, lie in pairwise different orbits of Φ and none of them lies in the Φ -orbit of u.

(2.12)

A Φ -mesh we visualise as the following triangular quiver:

Definition 2.13. Let $n \ge 2$, let $\Phi : \mathbb{Z}^n \to \mathbb{Z}^n$ be a non-trivial group automorphism and let \mathcal{R} be a Φ -invariant subset of \mathbb{Z}^n (e.g. $\mathcal{R} = \widehat{\mathcal{R}}_I$ if $\Phi = \widehat{\Phi}_I$ or $\mathcal{R} = \overline{\mathcal{R}}_I$ if $\Phi = \overline{\Phi}_I$). We say that \mathcal{R} admits a geometry of Φ -mesh quiver if there exists a quiver $\mathcal{R} = (\mathcal{R}_0, \mathcal{R}_1)$ with $\mathcal{R}_0 = \mathcal{R}$, such that \mathcal{R} together with the bijection $\Phi : \mathcal{R} \to \mathcal{R}$ induced by Φ is a triangular translation quiver $\Gamma(\mathcal{R}, \Phi)$ (see [1, IV.4.7]) with the following property: for every vector $w \in \mathcal{R}$, the full convex subquiver containing the vertices w and $\Phi(w)$ is a Φ -mesh of the form (2.12), and if

is a Φ -mesh, then s' = s and $v_1 = v'_1, \ldots, v_s = v'_s$, up to permutation of the set $\{1, \ldots, s\}$.

Definition 2.14. Let $\Gamma(\mathcal{R}, \Phi)$ be a Φ -mesh quiver in \mathbb{Z}^n as in Definition 2.13. A *slice* in $\Gamma(\mathcal{R}, \Phi)$ is a full convex connected subquiver $\Sigma = (\Sigma_0, \Sigma_1)$ of $\Gamma(\mathcal{R}, \Phi)$ such that for any $v \in \mathcal{R}$ the set $\Phi - \mathcal{O}rb(v) \cap \Sigma_0$ contains exactly one element.

Example 2.15. Consider the posets I and I' defined by the following Hasse quivers:

respectively. Note that the set $\widehat{\mathcal{R}}_I \subseteq \mathbb{Z}^4$ of Tits roots of I consists of 24 vectors. One easily see that the set $\widehat{\mathcal{R}}_I$ admits the following geometry of $\widehat{\Phi}_I$ -mesh quiver $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$ (we identify the vectors in frames):

Moreover the set $\widehat{\mathcal{R}}_{I'}$ of Tits roots of I' consists of 24 vectors and admits the following geometry of $\widehat{\Phi}_{I'}$ -mesh quiver $\Gamma(\widehat{\mathcal{R}}_{I'}, \widehat{\Phi}_{I'})$ (we identify the vectors in frames):

Here we set $\hat{a} = -a$, for $a \in \mathbb{N}$.

In the algorithm presented in Section 3 first we look for a slice canditate Σ in $\Gamma(\hat{\mathcal{R}}_I, \hat{\Phi}_I)$. Then the remaining part of $\Gamma(\hat{\mathcal{R}}_I, \hat{\Phi}_I)$ is easy to compute. In $\Gamma(\hat{\mathcal{R}}_I, \hat{\Phi}_I)$ presented in Example 2.15 the quiver

is a slice. Applying definition of a $\widehat{\Phi}_I$ -mesh we can construct now the $\widehat{\Phi}_I$ -mesh translation quiver $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$ by knitting $\widehat{\Phi}_I$ -meshes as follows:

Indeed, we have

b = (1010) + (1100) + (1001) - (1000),a = b - (1010),c = b - (1100),d = b - (1001),e = a + c + d - b, and so on. Note that $\hat{\Phi}_I(a) = (1010), \ \hat{\Phi}_I(b) = (1000), \ \hat{\Phi}_I(c) = (1100), \ \hat{\Phi}_I(d) =$ (1001), and $\widehat{\Phi}_I(e) = b$.

3. A horizontal mesh algorithm

The idea of construction of a horizontal mesh algorithm that we present in this section is inspired by a construction of the postprojective component of the Auslander-Reiten quiver of an algebra or a poset (see [7, 8, 15]).

We would like to stress that the algorithm

$$(I, \widehat{\mathcal{P}}, \widehat{\operatorname{Rad}}, \widehat{\operatorname{Rad}}_{comp}, k) \mapsto \widehat{\Gamma} := \Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$$

presented below, called a horizontal mesh algorithm, associates to an arbitrary poset I, with initial data $\widehat{\mathcal{P}}, \widehat{\text{Rad}}, \widehat{\text{Rad}}_{comp}, k, a \widehat{\Phi}_{I}$ -mesh translation quiver $\Gamma(\tilde{\mathcal{R}}_I, \hat{\Phi}_I)$ such that $\hat{\Gamma}$ defines a $\hat{\Phi}_I$ -mesh root system structure $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$ on the set $\widehat{\mathcal{R}}_I$ of Tits roots of I, in case when I is positive (see Theorem 4.4 for a proof). The algorithm is a modification of a corresponding horizontal mesh algorithm presented in [14], for positive edge-bipartite graphs.

Algorithm 3.1. Input: A system $(I, \widehat{\mathcal{P}}, \widehat{\text{Rad}}, \widehat{\text{Rad}}_{comp}, k)$, where

- $I = (I, \preceq)$ is a poset such that $I = \{1, \ldots, n\},\$
- $\widehat{\mathcal{P}} = \{\widehat{p}_1, \dots, \widehat{p}_n\}$ is the set of Tits-projective vectors,
- Rad = { î₁,..., î_n} is the set of Tits-radical vectors,
 Rad_{comp} = { î₁¹,..., î_n^{k₁},..., î_n¹,..., î_n^{k_n}}, where î_i^j are defined by formula 2.7,
- $k \in \mathbb{N}$.

Output: The quiver $\widehat{\Gamma} = \Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$.

STEP 1. Inductively, we construct the following data:

- ordered lists L[i], for any $i = 1, \ldots, n$;
- quivers $\widehat{G}^i = (\widehat{G}_0^i, \widehat{G}_1^i)$, for $i = 0, 1, 2, \ldots$;
- quivers $\widehat{\Gamma}^i = (\widehat{\Gamma}^i_0, \widehat{\Gamma}^i_1)$, for $i = 0, 1, 2, \ldots$;
- sets $\widehat{\mathcal{P}}_0 \subseteq \widehat{\mathcal{P}}_1 \subseteq \ldots \subseteq \widehat{\mathcal{P}}_k \subseteq \widehat{\mathcal{P}} = \{\widehat{p}_1, \ldots, \widehat{p}_n\};$

in the following way.

STEP 1.1. For any $i = 1, \ldots, n$, we put $\widehat{L}[i] := [\widehat{p}_i]$.

Step 1.2. Let

$$\widehat{\mathcal{P}}_0 = \widehat{G}_0^0 = \{ \widehat{p}_i \in \widehat{\mathcal{P}} ; i \in \max I \} \text{ and } \widehat{\Gamma}_0^0 = \widehat{\Gamma}_1^0 = \widehat{G}_1^0 = \varnothing.$$

STEP 1.3. We put

$$\widehat{\mathcal{C}}_1 = \{ \widehat{p}_i \; ; \; \widehat{r}_i \neq 0 \text{ and } \widehat{r}_i^j \in \widehat{G}_0^0 \text{ for all } j = 1, \dots, k_i \},
\widehat{\mathcal{P}}_1 := \widehat{G}_0^1 := \widehat{G}_0^0 \cup \widehat{\mathcal{C}}_1 \text{ and } \widehat{\Gamma}_0^1 = \widehat{\Gamma}_1^1 = \varnothing
\widehat{G}_1^1 = \{ \widehat{r}_i^j \to \widehat{p}_i \; ; \text{ for all } \widehat{p}_i \in \widehat{\mathcal{C}}_1 \text{ and all } j = 1, \dots, k_i \}.$$

STEP 1.4. Assume that, for $i = 0, ..., m - 1, m \ge 2$, data $\widehat{G}^i, \widehat{\Gamma}^i, \widehat{\mathcal{P}}_i$ are constructed. We set

$$\widehat{\mathcal{P}}'_m = \{\widehat{p}_i \in \widehat{\mathcal{P}} \setminus \widehat{\mathcal{P}}_{m-1} ; \ \widehat{r}_i \neq 0 \text{ and } \widehat{r}_i^j \in \widehat{G}_0^{m-1} \text{ for all } j = 1, \dots, k_i\}$$

and

$$\widehat{\mathcal{P}}_m = \widehat{\mathcal{P}}'_m \cup \widehat{\mathcal{P}}_{m-1}.$$

We define

$$\begin{aligned} \widehat{\mathcal{C}}_m &= \widehat{\mathcal{P}}'_m \cup \{ z = -x + \sum_{x \to y} y \; ; \; y \in \widehat{\mathcal{C}}_{m-1} \}, \\ \widehat{G}_0^m &= \widehat{G}_0^{m-1} \cup \widehat{\mathcal{C}}_m \end{aligned}$$

and

$$\widehat{G}_1^m = \{\widehat{r}_i^j \to \widehat{p}_i ; \text{ for all } \widehat{p}_i \in \widehat{\mathcal{C}}_m \text{ and all } j = 1, \dots, k_i\} \cup \{y \to z ; \text{ for all } y \text{ such that } z = -x + \sum_{x \to y} y\}.$$

Moreover, if $\widehat{\mathcal{P}}_m \neq \widehat{\mathcal{P}}$, $z = -x + \sum_{x \to y} y$ and $x \in \widehat{L}[i]$, then we add z at the end of the list $\widehat{L}[i]$ and delete the first element of the list $\widehat{L}[i]$. If $\widehat{\mathcal{P}}_m \neq \widehat{\mathcal{P}}$, then we set $\widehat{\Gamma}_0^m = \widehat{\Gamma}_1^m = \emptyset$; otherwise we set

$$\widehat{\Gamma}_0^m = \widehat{\Gamma}_0^{m-1} \cup \widehat{\mathcal{C}}_m$$

and

$$\begin{split} \widehat{\Gamma}_1^m &= \widehat{\Gamma}_1^{m-1} \cup \{ y \to z \,;\, \text{for all } y \to z \in \widehat{G}_1^m \text{ such that } y, z \in \widehat{\Gamma}_0^{m-1} \cup \widehat{\Gamma}_0^m \}. \\ \text{Moreover, if } \widehat{\mathcal{P}}_m &= \widehat{\mathcal{P}}, \, z = -x + \sum_{x \to y} y \text{ and } x \in \widehat{L}[i], \text{ then we add } z \text{ at the end of the list } \widehat{L}[i]. \\ \text{STEP 2. If } m = k, \text{ we finish and set } \widehat{\Gamma} = \widehat{\Gamma}^k. \end{split}$$

Remark 3.2. In this algorithm the set $\widehat{\mathcal{P}}$ of Tits-projective and the set $\widehat{\text{Rad}}$ of Tits-radical can be replaced by the set $\overline{\mathcal{P}}$ of Euler-projective vectors and the set $\overline{\text{Rad}}$ of Euler-radical vectors, respectively, i.e. as an input we put $(I, \overline{\mathcal{P}}, \overline{\text{Rad}}, \overline{\text{Rad}}_{comp}, k)$. In this way, we obtain an algorithm that for a positive poset I constructs a $\overline{\Phi}_I$ -mesh root system structure $\Gamma(\overline{\mathcal{R}}_I, \overline{\Phi}_I)$, see Theorem 4.4.

In the description of Algorithm 3.1 with input $(I, \overline{\mathcal{P}}, \overline{\text{Rad}}, \overline{\text{Rad}}_{comp}, k)$ the data computed in Step 1 we denote by adding a dash over a corresponding symbol (e.g. we replace $\widehat{L}[i]$ by $\overline{L}[i]$, $\widehat{\Gamma}^k$ by $\overline{\Gamma}^k$ etc.).

We illustrate Algorithm 3.1 by the following example.

Example 3.3. Consider the following poset

Note that

$$\widehat{\mathcal{P}} = \{ \widehat{p}_1 = (1, 0, 0, 0), \widehat{p}_2 = (1, 1, 0, 0), \widehat{p}_3 = (1, 0, 1, 0), \widehat{p}_4 = (1, 0, 0, 1) \},$$

 $\widehat{\text{Rad}} = \{ \widehat{r}_2 = (1, 0, 0, 0), \widehat{r}_3 = (1, 0, 0, 0), \widehat{r}_4 = (1, 1, 1, 0) \}$

and $\widehat{\text{Rad}}_{comp} = \{\widehat{r}_2^1 = \widehat{r}_2, \widehat{r}_3^1 = \widehat{r}_3, \widehat{r}_4^1 = \widehat{r}_4\}$. We set k = 5. Applying Algorithm 3.1 to $(I, \widehat{\mathcal{P}}, \widehat{\text{Rad}}, \widehat{\text{Rad}}_{comp}, k)$ we get

Indeed:

$$\begin{split} \mathbf{m} = 0: \ \widehat{\mathcal{P}}_0 \ = \ \widehat{G}_0^0 \ = \ \{\widehat{p}_1 \ = \ (1,0,0,0)\}; \ \widehat{\Gamma}_0^0 \ = \ \widehat{\Gamma}_1^0 \ = \ \widehat{G}_1^0 \ = \ \varnothing; \ \widehat{L}[1] \ = \\ & [\widehat{p}_1], \ \widehat{L}[2] = [\widehat{p}_2], \ \widehat{L}[3] = [\widehat{p}_3], \ \widehat{L}[4] = [\widehat{p}_4]. \end{split} \\ \mathbf{m} = 1: \ \widehat{C}_1 \ = \ \{\widehat{p}_2 \ = \ (1,1,0,0), \ \widehat{p}_3 \ = \ (1,0,1,0)\}, \ \widehat{\mathcal{P}}_1 \ = \ \widehat{G}_0^1 \ = \ \{\widehat{p}_1,\widehat{p}_2,\widehat{p}_3\}, \\ & \widehat{G}_1^1 \ = \ \{(\widehat{p}_1,\widehat{p}_2),(\widehat{p}_1,\widehat{p}_3)\}, \ \widehat{\Gamma}_0^1 \ = \ \widehat{\Gamma}_1^1 \ = \ \varnothing. \ \widehat{L}[1] \ = \ [\widehat{p}_1], \ \widehat{L}[2] \ = \ [\widehat{p}_2], \\ & \widehat{L}[3] \ = \ [\widehat{p}_3], \ \widehat{L}[4] \ = \ [\widehat{p}_4]. \end{split} \\ \mathbf{m} = 2: \ \widehat{\mathcal{P}}_2' \ = \ \varnothing, \ \widehat{\mathcal{P}}_2 \ = \ \widehat{\mathcal{P}}_1, \ \widehat{\mathcal{C}}_2 \ = \ \{\widehat{p}_2 + \widehat{p}_3 - \widehat{p}_1 \ = \ (1,1,1,0)\}, \ \widehat{G}_0^2 \ = \ \widehat{G}_0^1 \cup \ \widehat{\mathcal{C}}_2, \\ & \widehat{G}_1^2 \ = \ \ \{(\widehat{p}_2,(1,1,1,0)),(\widehat{p}_3,(1,1,1,0))\}, \ \ \widehat{\Gamma}_0^2 \ = \ \ \widehat{\Gamma}_1^2 \ = \ \varnothing. \\ & \widehat{L}[1] \ = \ [(1,1,1,0)], \ \widehat{L}[2] \ = \ [\widehat{p}_2], \ \widehat{L}[3] \ = \ [\widehat{p}_3], \ \widehat{L}[4] \ = \ [\widehat{p}_4]. \end{split}$$

$$\begin{array}{l} \mathbf{m}=3: \ \widehat{\mathcal{P}}_3' = \{\widehat{p}_4 = (1,0,0,1)\}, \ \widehat{\mathcal{P}}_3 = \{\widehat{p}_1,\widehat{p}_2,\widehat{p}_3,\widehat{p}_4\}, \ \widehat{\mathcal{C}}_3 = \{\widehat{p}_4,(0,1,0,0), \\ (0,0,1,0)\}, \ \widehat{G}_0^3 = \widehat{G}_0^2 \cup \widehat{\mathcal{C}}_3, \ \widehat{G}_1^3 = \{((1,1,1,0),\widehat{p}_4), \\ ((1,1,1,0),(0,1,0,0)), \ ((1,1,1,0),(0,0,1,0))\}, \ \widehat{\Gamma}_0^3 = \widehat{\mathcal{C}}_3, \ \widehat{\Gamma}_1^3 = \varnothing, \\ \widehat{L}[1] = [(1,1,1,0)], \ \widehat{L}[2] = [(0,0,1,0)], \ \widehat{L}[3] = [(0,1,0,0)], \ \widehat{L}[4] = \\ [\widehat{p}_4]. \end{array}$$

$$\begin{split} \mathbf{m} = & 5: \ \widehat{\mathcal{P}}_5' = \varnothing, \widehat{\mathcal{P}}_5 = \widehat{\mathcal{P}}, \widehat{\mathcal{C}}_5 = \{(0,0,\widehat{1},1), (\widehat{1},0,0,0), (0,\widehat{1},0,1)\}, \widehat{G}_0^5 = \widehat{G}_0^4 \cup \\ \widehat{\mathcal{C}}_4, \widehat{G}_1^5 = \{((0,0,0,1), (0,0,\widehat{1},1)), ((0,0,0,1), (\widehat{1},0,0,0)), ((0,0,0,1), \\ (0,\widehat{1},0,1))\}, \widehat{\Gamma}_0^5 = \widehat{\Gamma}_0^4 \cup \widehat{\mathcal{C}}_4, \widehat{\Gamma}_1^5 = \widehat{\Gamma}_1^4 \cup \widehat{G}_1^5, \widehat{L}[1] = [(1,1,1,0), (0,0,0,1)], \\ \widehat{L}[2] = [(0,0,1,0), (0,0,\widehat{1},1)], \ \widehat{L}[3] = [(0,1,0,0), (0,\widehat{1},0,1)], \ \widehat{L}[4] = \\ [\widehat{p}_4, (\widehat{1},0,0,0)]. \end{split}$$

Now we apply Algorithm 3.1 to $(I, \overline{\mathcal{P}}, \overline{\text{Rad}}, \overline{\text{Rad}}_{comp}, k)$. Note that

$$\overline{\mathcal{P}} = \{ \overline{p}_1 = (1,0,0,0), \overline{p}_2 = (1,1,0,0), \overline{p}_3 = (1,0,1,0), \overline{p}_4 = (1,1,1,1) \},$$

 $\overline{\text{Rad}} = \{\overline{r}_1 = (0, 0, 0, 0), \overline{r}_2 = (1, 0, 0, 0), \overline{r}_3 = (1, 0, 0, 0), \overline{r}_4 = (1, 1, 1, 0)\},\$ and $\overline{\text{Rad}}_{comp} = \{\overline{r}_1^1 = \overline{r}_1, \overline{r}_2^1 = \overline{r}_2, \overline{r}_3^1 = \overline{r}_3, \overline{r}_4^1 = \overline{r}_4\}.$ We set k = 5 and get

Indeed:

 $\begin{array}{l} \mathrm{matchin} \\ \mathrm{m=0:} \ \overline{\mathcal{P}}_0 \ = \ \overline{G}_0^0 \ = \ \{\overline{p}_1 \ = \ (1,0,0,0)\}; \ \overline{\Gamma}_0^0 \ = \ \overline{\Gamma}_1^0 \ = \ \overline{G}_1^0 \ = \ \varnothing; \ \overline{L}[1] \ = \\ [\overline{p}_1], \ \overline{L}[2] \ = \ [\overline{p}_2], \ \overline{L}[3] \ = \ [\overline{p}_3], \ \overline{L}[4] \ = \ [\overline{p}_4]. \end{array}$

m=1:
$$\overline{C}_1 = \{\overline{p}_2 = (1, 1, 0, 0), \overline{p}_3 = (1, 0, 1, 0)\}, \overline{\mathcal{P}}_1 = \overline{G}_0^1 = \{\overline{p}_1, \overline{p}_2, \overline{p}_3\}, \overline{G}_1^1 = \{(\overline{p}_1, \overline{p}_2), (\overline{p}_1, \overline{p}_3)\}, \overline{\Gamma}_0^1 = \overline{\Gamma}_1^1 = \emptyset, \overline{L}[1] = [\overline{p}_1], \overline{L}[2] = [\overline{p}_2], \overline{L}[3] = [\overline{p}_3], \overline{L}[4] = [\overline{p}_4].$$

$$\begin{array}{l} \mathbf{m} = 2: \ \overline{\mathcal{P}}_{2}' = \varnothing, \ \overline{\mathcal{P}}_{2} = \overline{\mathcal{P}}_{1}, \ \overline{\mathcal{C}}_{2} = \{\overline{p}_{2} + \overline{p}_{3} - \overline{p}_{1} = (1, 1, 1, 0)\}, \ \overline{G}_{0}^{2} = \overline{G}_{0}^{1} \cup \overline{\mathcal{C}}_{2}, \\ \overline{G}_{1}^{2} = \{(\overline{p}_{2}, (1, 1, 1, 0)), (\overline{p}_{3}, (1, 1, 1, 0))\}, \ \overline{\Gamma}_{0}^{2} = \overline{\Gamma}_{1}^{2} = \varnothing, \\ \overline{L}[1] = [(1, 1, 1, 0)], \ \overline{L}[2] = [\overline{p}_{2}], \ \overline{L}[3] = [\overline{p}_{3}], \ \overline{L}[4] = [\overline{p}_{4}]. \end{array}$$

$$\begin{array}{l} \mathbf{m}{=}3: \ \overline{\mathcal{P}}_3' = \{\overline{p}_4 = (1,1,1,1)\}, \ \overline{\mathcal{P}}_3 = \{\overline{p}_1,\overline{p}_2,\overline{p}_3,\overline{p}_4\}, \ \overline{\mathcal{C}}_3 = \{\overline{p}_4,(0,1,0,0), \\ (0,0,1,0)\}, \ \overline{G}_0^3 = \overline{G}_0^2 \cup \overline{\mathcal{C}}_3, \ \overline{G}_1^3 = \{((1,1,1,0),\overline{p}_4), \\ ((1,1,1,0),(0,1,0,0)), \ ((1,1,1,0),(0,0,1,0))\}, \ \overline{\Gamma}_0^3 = \overline{\mathcal{C}}_3, \ \overline{\Gamma}_1^3 = \varnothing, \\ \overline{L}[1] = [(1,1,1,0)], \ \overline{L}[2] = [(0,0,1,0)], \ \overline{L}[3] = [(0,1,0,0)], \ \overline{L}[4] = \\ [\overline{p}_4]. \end{array}$$

$$\begin{split} \mathbf{m} = & 4: \ \overline{\mathcal{P}}_4' = \varnothing, \ \overline{\mathcal{P}}_4 = \overline{\mathcal{P}}, \ \overline{\mathcal{C}}_4 = \{(0,1,1,1)\}, \ \overline{G}_0^4 = \overline{G}_0^3 \cup \overline{\mathcal{C}}_3, \\ & \overline{G}_1^4 = \{(\overline{p}_4,(0,1,1,1)), ((0,1,0,0),(0,1,1,1)), ((0,0,1,0),(0,1,1,1))\}, \\ & \overline{\Gamma}_0^4 = \overline{\Gamma}_0^3 \cup \overline{\mathcal{C}}_3, \ \overline{\Gamma}_1^4 = \overline{G}_1^4. \ \overline{L}[1] = [(1,1,1,0),(0,1,1,1)], \ \overline{L}[2] = \\ & [(0,0,1,0)], \ \overline{L}[3] = [(0,1,0,0)], \ \overline{L}[4] = [\overline{p}_4]. \\ & \mathbf{m} = 5: \ \overline{\mathcal{P}}_5' = \varnothing, \ \overline{\mathcal{P}}_5 = \overline{\mathcal{P}}, \ \overline{\mathcal{C}}_5 = \{(0,1,0,1), (\widehat{1},0,0,0), (0,0,1,1)\}, \\ & \overline{G}_0^5 = \overline{G}_0^4 \cup \overline{\mathcal{C}}_4, \ \overline{G}_1^5 = \{((0,1,1,1),(0,1,0,1)), ((0,1,1,1),(\widehat{1},0,0,0)), \\ & ((0,1,1,1),(0,0,1,1))\}, \ \overline{\Gamma}_0^5 = \overline{\Gamma}_0^4 \cup \overline{\mathcal{C}}_4, \ \overline{\Gamma}_1^5 = \overline{\Gamma}_1^4 \cup \overline{G}_1^5. \\ & \overline{L}[1] = [(1,1,1,0), (0,1,1,1)], \ \overline{L}[2] = [(0,0,1,0), (0,1,0,1)], \\ & \overline{L}[3] = [(0,1,0,0), (0,0,1,1)], \ \overline{L}[4] = [\overline{p}_4, (\widehat{1},0,0,0)]. \end{split}$$

4. Correctness of Algorithm 3.1

Following [28, 29], we define a group isomorphism

$$\sigma_I^0 : \mathbb{Z}^I \to \mathbb{Z}^I \tag{4.1}$$

by the formula $\sigma_I^0(x) = x \cdot C_I^0$, where C_I^0 is the reduced incidence matrix

$$C_I^0 = \begin{bmatrix} C_{I^-} & 0\\ \hline 0 & E \end{bmatrix}, \tag{4.2}$$

where E is the identity matrix. By [29, Proposition 3.13], σ_I^0 gives \mathbb{Z} -equivalence of \hat{q}_I and \bar{q}_I , i.e. $\bar{q}_I(\sigma_I^0(x)) = \hat{q}(x)$.

Lemma 4.3. For any poset I and for all $i \in I$, we have $(\sigma_I^0)^{-1}(\overline{p}_i) = \hat{p}_i$ and $(\sigma_I^0)^{-1}(\overline{r}_i) = \hat{r}_i$, where \hat{p}_i , \hat{r}_i , \overline{p}_i and \overline{r}_i are projective and radical vectors defined in Section 2.1, and $\sigma_I^0 : \mathbb{Z}^I \to \mathbb{Z}^I$ is the isomorphism (4.1).

Proof. The proof is straightforward.

Theorem 4.4. Assume that I is a connected positive poset. Let $\widehat{\Gamma}$ be the quiver constructed by Algorithm 3.1 with input $(I, \widehat{\mathcal{P}}, \widehat{\operatorname{Rad}}, \widehat{\operatorname{Rad}}_{comp}, k)$ with k large enough (e.g. $k = |\widehat{\mathcal{R}}_I|$). The following conditions are satisfied.

- (a) $\widehat{\mathcal{P}} = \bigcup_k \widehat{\mathcal{P}}_k$, in particular there exists m such that $\widehat{\mathcal{P}}_m = \widehat{\mathcal{P}}$.
- (b) The sequence $\widehat{\Gamma}^0 \subseteq \widehat{\Gamma}^1 \subseteq \ldots$ stabilizes.
- (c) $\widehat{\mathcal{R}}_I = \bigcup_m \widehat{\Gamma}_0^m$.
- (d) $\widehat{L}[1], \ldots, \widehat{L}[n]$ are the $\widehat{\Phi}_I$ -orbits in $\widehat{\mathcal{R}}_I$ of the Coxeter-Tits transformation $\widehat{\Phi}_I$.
- (e) The $\widehat{\Phi}_I$ -mesh translation quiver $\widehat{\Gamma} = \Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$ defines a $\widehat{\Phi}_I$ -mesh root system structure $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$ on the set $\widehat{\mathcal{R}}_I$ of Tits roots of I.

Proof. Assume that I is a connected positive poset. We apply Algorithm 3.1 to the system $(I, \overline{\mathcal{P}}, \overline{\text{Rad}}, \overline{\text{Rad}}_{comp}, k)$ defined in Remark 3.2. The formula (2.2) implies that the Euler matrix $\overline{C}_I = C_I^{-1}$ satisfies the non-cycle condition defined in [14], see Remark 2.3. Therefore, [14, Theorem 4.13] and [14, Section 5] yield:

- (ā) $\overline{\mathcal{P}} = \bigcup_k \overline{\mathcal{P}}_k$, in particular there exists m such that $\overline{\mathcal{P}}_m = \overline{\mathcal{P}}$. (b) The sequence $\overline{\Gamma}^0 \subseteq \overline{\Gamma}^1 \subseteq \dots$ stabilizes.
- $(\overline{c}) \ \overline{\mathcal{R}}_I = \bigcup_m \overline{\Gamma_0^m}.$
- $(\overline{\mathbf{d}})$ $\overline{L}[1], \ldots, \overline{L}[n]$ are the $\overline{\Phi}_I$ -orbits in $\overline{\mathcal{R}}_I$ of the Coxeter transformation Φ_I .
- (ē) The $\overline{\Phi}_I$ -mesh translation quiver $\overline{\Gamma} = \Gamma(\overline{\mathcal{R}}_I, \overline{\Phi}_I)$ defines a $\overline{\Phi}_I$ -mesh root system structure $\Gamma(\overline{\mathcal{R}}_I, \overline{\Phi}_I)$ on the set $\overline{\mathcal{R}}_I$ of Euler roots of I.

By Lemma 4.3, we have $(\sigma_I^0)^{-1}(\overline{p}_i) = \hat{p}_i$ and $(\sigma_I^0)^{-1}(\overline{r}_i) = \hat{r}_i$, see (4.1). It is easy to verify that the automorphism $(\sigma_i^0)^{-1}$ sends $\overline{\mathcal{P}}, \overline{\text{Rad}}, \overline{\text{Rad}}_{comp}$ to $\widehat{\mathcal{P}}, \widehat{\operatorname{Rad}}, \widehat{\operatorname{Rad}}_{comp}$, respectively. From [29, Proposition 3.13], it follows that $\widehat{\Phi}_I = (\sigma_I^0)^{-1} \circ \overline{\Phi}_I \circ \sigma_I^0$. Now, applying the linearity of σ_I^0 , it is easy to deduce that the conditions (\bar{a}) - (\bar{e}) imply the conditions (a)-(e), and the theorem follows.

Remark 4.5. It follows from the proof of Theorem 4.4 that the $\widehat{\Phi}_{I}$ mesh quiver $\Gamma(\mathcal{R}_I, \widehat{\Phi}_I)$ is the image of $\Gamma(\overline{\mathcal{R}}_I, \overline{\Phi}_I)$ via the automorphism $(\sigma_I^0)^{-1}: \mathbb{Z}^I \to \mathbb{Z}^I$ (4.1).

We refer also to [11,12] for a discussion of Φ_I -mesh quivers of one-peak posets.

Corollary 4.6. Let I be a positive connected poset and let DI be the Coxeter-Dynkin type of the root system $\widehat{\mathcal{R}}_I$. The Coxeter polynomial $\cos_I(t)$ is equal to the Coxeter polynomial $\cos_{DI}(t)$ of the Dynkin diagram DI and the Coxeter number \mathbf{c}_I is equal to the Coxeter number c_{DI} of the Dynkin diagram DI; they are listed in [29, Example 3.12].

Proof. By [14, Theorem 1.10] there exists a \mathbb{Z} -invertible matrix $B \in \mathbb{M}_I(\mathbb{Z})$ such that $\operatorname{Cox}_{DI} = B \cdot \overline{\operatorname{Cox}}_I \cdot B^{-1}$, where Cox_{DI} is the Coxeter matrix associated with the simply laced Dynkin diagram DI. Moreover by [29, Proposition 3.13], we have $\widehat{C}ox_I = C_I^0 \cdot \overline{C}ox_I \cdot (C_I^0)^{-1}$. Now it is easy to deduce that $\cos_I(t) = \cos_{DI}(t)$ and $\mathbf{c}_I = \mathbf{c}_{DI}$.

Example 4.7. Consider the poset I given by the Hasse quiver

$$1 \leftarrow 2 \leftarrow 3 \leftarrow 4$$
 (4.8)

By applying Algorithm 3.1 to $(I, \overline{\mathcal{P}}, \overline{\text{Rad}}, \overline{\text{Rad}}_{comp}, k = 6)$ we get the $\widehat{\Phi}_I$ -mesh quiver $\Gamma(\overline{\mathcal{R}}_I, \overline{\Phi}_I)$:

where vectors in frames lying in the same orbit are identified.

Moreover, by applying Algorithm 3.1 to $(I, \widehat{\mathcal{P}}, \operatorname{Rad}, \operatorname{Rad}_{comp}, k = 6)$ we get the $\widehat{\Phi}_I$ -mesh quiver $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$:

Note that the $\widehat{\Phi}_I$ -mesh quiver $\Gamma(\overline{\mathcal{R}}_I, \overline{\Phi}_I)$ is isomorphic with the $\widehat{\Phi}_I$ mesh quiver $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$ via the authomorphism $\sigma_I^0 : \mathbb{Z}^4 \to \mathbb{Z}^4$ (4.1).

Example 4.9. Consider the poset I given by the Hasse quiver

(4.10)

By applying Algorithm 3.1 we get the $\widehat{\Phi}_I$ -mesh quiver $\Gamma(\overline{\mathcal{R}}_I, \overline{\Phi}_I)$:

and the $\widehat{\Phi}_I$ -mesh quiver $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$:

Note that the $\widehat{\Phi}_I$ -mesh quiver $\Gamma(\overline{\mathcal{R}}_I, \overline{\Phi}_I)$ is isomorphic with the $\widehat{\Phi}_I$ mesh quiver $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$ via the authomorphism $\sigma_I^0 : \mathbb{Z}^5 \to \mathbb{Z}^5$ (4.1).

Example 4.11. Consider the poset I given by the Hasse quiver

By applying Algorithm 3.1 to $(I, \overline{\mathcal{P}}, \overline{\text{Rad}}, \overline{\text{Rad}}_{comp}, k = 24)$ we get the $\widehat{\Phi}_{I}$ -mesh quiver $\Gamma(\overline{\mathcal{R}}_{I}, \overline{\Phi}_{I})$:

where vectors in frames lying in the same orbit are identified.

Moreover, by applying Algorithm 3.1 to $(I, \widehat{\mathcal{P}}, \widehat{\text{Rad}}, \widehat{\text{Rad}}_{comp}, k = 24)$ we get the $\widehat{\Phi}_I$ -mesh quiver $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$:

Note that the $\widehat{\Phi}_I$ -mesh quiver $\Gamma(\overline{\mathcal{R}}_I, \overline{\Phi}_I)$ is isomorphic with the $\widehat{\Phi}_I$ mesh quiver $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$ via the authomorphism $\sigma_I^0 : \mathbb{Z}^6 \to \mathbb{Z}^6$ (4.1).

Example 4.12. Consider the poset I given by the Hasse quiver

$$1 \underbrace{\qquad} 3 \underbrace{\qquad} 5 \underbrace{\qquad} 2 \underbrace{\longleftarrow} 4 \underbrace{\qquad} 4 \underbrace{\qquad} 5 \underbrace{\qquad} 5 \underbrace{\longleftarrow} 4 \underbrace{\qquad} 5 \underbrace{\longleftarrow} 5 \underbrace{\longleftarrow} 1 \underbrace{\qquad} 5 \underbrace{\longleftarrow} 1 \underbrace{\bigcup} 1 \underbrace{\bigcup}$$

By applying Algorithm 3.1 to $(I, \overline{\mathcal{P}}, \overline{\text{Rad}}, \overline{\text{Rad}}_{comp}, k = 24)$ we get the $\widehat{\Phi}_I$ -mesh quiver $\Gamma(\overline{\mathcal{R}}_I, \overline{\Phi}_I)$:

where vectors in frames lying in the same orbit are identified.

Moreover, by applying Algorithm 3.1 to $(I, \hat{\mathcal{P}}, \hat{\operatorname{Rad}}, \hat{\operatorname{Rad}}_{comp}, k = 24)$ we get the $\hat{\Phi}_I$ -mesh quiver $\Gamma(\hat{\mathcal{R}}_I, \hat{\Phi}_I)$:

Note that the $\widehat{\Phi}_I$ -mesh quiver $\Gamma(\overline{\mathcal{R}}_I, \overline{\Phi}_I)$ is isomorphic with the $\widehat{\Phi}_I$ mesh quiver $\Gamma(\widehat{\mathcal{R}}_I, \widehat{\Phi}_I)$ via the authomorphism $\sigma_I^0 : \mathbb{Z}^6 \to \mathbb{Z}^6$ (4.1).

References

- I. Assem, D. Simson and A. Skowroński, *Elements of the Representation Theory* of Associative Algebras, Volume 1. Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge-New York, 2006.
- [2] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge Univ. Press, 1995.

- [3] M. Barot, A characterization of positive unit forms, II, Bol. Soc. Mat. Mexicana (3) 7 (2001), 13–22.
- M. Barot, D. Kussin and H. Lenzing, The Lie algebra associated to a unit form, J. Algebra 296 (2007), 1–17.
- [5] V. M. Bondarenko and M. V. Stepochkina, On posets of width two with positive Tits form, Algebra and Discrete Math. 2 (2005), 20–35.
- [6] V. M. Bondarenko and M. V. Stepochkina, (Min, max)-equivalence of partially ordered sets and quadratic Tits form (in Russian, English Summary), Zb. Pr. Inst. Mat. NAN Ukr. 2, No. 3, 2005, 18–58 (Zbl. 1174.16310).
- [7] K. Bongartz, A criterion for finite representation type, Math. Ann. 269 (1984), 1–12.
- [8] S. Brenner, Unfoldings of algebras, Proc. London Math. Soc. (3) 62 (1991), 242–274.
- J. A. Drozd, Coxeter transformations and representations of partially ordered sets, Funct. Anal. Appl. 8(1974), 219–225.
- [10] P. Gabriel and A. V. Roiter, *Representations of Finite Dimensional Algebras*, in: Algebra VIII, Encyclopaedia of Math. Sci., vol. 73, Springer-Verlag, 1992.
- [11] M. Gąsiorek and D. Simson, One-peak posets with positive Tits quadratic form, their mesh quivers of roots, and programming in Maple and Python, Linear Algebra Appl. 436 (2012), 2240–2272.
- [12] M. Gąsiorek and D. Simson, A computation of positive one-peak posets that are Tits sincere, Colloq. Math. 127 (2012), 83–103.
- [13] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York-Heilderberg-Berlin, 1972.
- [14] M. Kaniecki, J. Kosakowska, P. Malicki and G. Marczak, A horizontal mesh algorithm for a class of edge-bipartite graphs and their matrix morsifications, Fund. Inform. 136 (2015), 345–379.
- [15] S. Kasjan and J. A. de la Peña, Constructing the preprojective components of an algebra, J. Algebra 179 (1996), 793–807.
- [16] S. Kasjan and D. Simson, Mesh algorithms for Coxeter spectral classification of Cox-regular edge-bipartite graphs with loops, I. Mesh root systems, Fundam. Inform. 139 (2015), 153-184.
- [17] J. Kosakowska, A classification of two-peak sincere posets of finite prinjective type and their sincere prinjective representations, Colloq. Math. 87 (2001), 27–77.
- [18] J. Kosakowska, A specialization of prinjective Ringel-Hall algebra and the associated Lie algebra, Acta Mathematica Sinica, English Series, 24 (2008), 1687–1702.
- [19] J. Kosakowska, Lie algebras associated with quadratic forms and their applications to Ringel-Hall algebras, Algebra and Discrete Math. 4 (2008), 49–79.
- [20] J. Kosakowska, Inflation algorithms for positive and principal edge-bipartite graphs and unit quadratic forms, Fund. Inform. 119 (2012), 149–162.
- [21] J. Kosakowska and D. Simson, On Tits form and prinjective representations of posets of finite prinjective type, Comm. Algebra, 26 (1998), 1613–1623.
- [22] L. A. Nazarova and A.V. Roiter, *Representations of partially ordered sets*, in Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 28(1972), 5–31 (in Russian); English version: J. Soviet Math. 3 (no. 5) (1975), 585–606.

- [23] J. A. de la Peña and D. Simson, Prinjective modules, reflection functors, quadratic forms and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733-753.
- [24] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.
- [25] M. Sato, Periodic Coxeter matrices and their associated quadratic forms, Linear Algebra Appl. 406 (2005), 99–108.
- [26] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon & Breach, London (1992).
- [27] D. Simson, Posets of finite prinjective type and a class of orders, J. Pure Appl. Algebra 90 (1993), 71-103.
- [28] D. Simson, Incidence coalgebras of intervally finite posets, their integral quadratic forms and comodule categories, Colloq. Math. 115 (2009), 259–295.
- [29] D. Simson, Integral bilinear forms, Coxeter transformations and Coxeter polynomials of finite posets, Linear Algebra Appl. 433 (2010), 699–717.
- [30] D. Simson, Mesh geometries of root orbits of integral quadratic forms, J. Pure Appl. Algebra 215 (2011), 13–34.
- [31] D. Simson, Mesh algorithms for solving principal Diophantine equations, sand-glass tubes and tori of roots, Fund. Inform. 109 (2011), 425–462.
- [32] D. Simson, A Coxeter-Gram classification of positive simply laced edge-bipartite graphs, SIAM J. Discrete Math. 27 (2013), 827–854.
- [33] D. Simson, A framework for Coxeter spectral analysis of edge-bipartite graphs, their rational morsifications and mesh geometries of root orbits, Fund. Inform. 124 (2013), 309-338.
- [34] D. Simson and K. Zając, A framework for Coxeter spectral classification of finite posets and their mesh geometries of roots, Intern. J. Math. Mathematical Sciences, Volume 2013, Article ID 743734, 22 pages, doi: 10.1155/2013/743734.

CONTACT INFORMATION

M. Kaniecki,	Faculty of Mathematics and Computer Science,
J. Kosakowska,	Nicolaus Copernicus University, ul. Chopina
P. Malicki,	12/18, 87-100 Toruń, Poland
G. Marczak	E-Mail(s): kanies@mat.umk.pl,
	justus@mat.umk.pl,
	pmalicki@mat.umk.pl,
	lielow@mat.umk.pl
	$Web\text{-}page(s) ext{:www.mat.umk.pl/}{ ext{-}justus}$,
	www.mat.umk.pl/ \sim pmalicki,
	www.mat.umk.pl/ \sim lielow

Received by the editors: 22.12.2015 and in final form 05.01.2016.