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Abstract. Following our paper [Fund. Inform. 136 (2015),
345–379], we define a horizontal mesh algorithm that constructs

a Φ̂I -mesh translation quiver Γ(R̂I , Φ̂I) consisting of Φ̂I -orbits of

the finite set R̂I = {v ∈ Z
I ; q̂I(v) = 1} of Tits roots of a poset

I with positive definite Tits quadratic form q̂I : ZI → Z. Under
the assumption that q̂I : ZI → Z is positive definite, the algorithm
constructs Γ(R̂I , Φ̂I) such that it is isomorphic with the Φ̂D-mesh

translation quiver Γ(RD, ΦD) of Φ̂D-orbits of the finite set RD of
roots of a simply laced Dynkin quiver D associated with I.

1. Introduction

The paper is mainly devoted to the existence of a Φ̂I -mesh root
system Γ(R̂I , Φ̂I) in the sense of [30], that is, a Φ̂I -mesh translation quiver
Γ(R̂I , Φ̂I) consisting of Φ̂I -orbits of the set R̂I = {v ∈ Z

I ; q̂I(v) = 1} of
Tits roots of a finite poset I = (I, �) with positive quadratic Tits form
q̂I : ZI → Z, where Φ̂I : Z

I → Z
I is the Coxeter-Tits transformation

associated with I in [9, 28, 29, 34]. The reader is also referred to [14], [16],
and [30]-[34] for analogous existence mesh root system theorems in the
setting of positive edge-bipartite graphs and non-negative posets.
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Our interest in the Φ̂I -mesh analysis of Φ̂I -orbits of the set R̂I of Tits
roots is motivated by applications of matrix representations of posets in
representation theory, where a matrix representation of a partially ordered
set T = {p1, . . . , pn}, with a partial order �, means a block matrix

M = [M1|M2| . . . |Mn]

(over a field K) of size d∗ × (d1, . . . , dn) determined up to all elemen-
tary row transformations, elementary column transformations within
each of the substrips M1, M2, . . . , Mn, and additions of linear combina-
tions of columns of Mi to columns of Mj , if pi ≺ pj , see Nazarova and
Roiter [22]. In [9], Drozd proves that T has only a finite number of
direct-sum-indecomposable representetions if and only if its quadratic
Tits form

q(x1, . . . , xn, x∗) = x2
1 + · · ·+x2

n +x2
∗ +

∑

pi≺pj

xixj −x∗(x1 + · · ·+xn) (1.1)

is weakly positive (i.e., q(a1, . . . , an, a∗) > 0, for all non-zero vectors
(a1, . . . , an, a∗) with integer non-negative coefficients). In this case, there
exists an indecomposable representation M of size d∗ × (d1, . . . , dn) if and
only if (d1, . . . , dn, d∗) is a root of q, i.e., q(d1, . . . , dn, d∗) = 1, see [10]
and [26, Chapter 10] for more details.

In [5,6], Bondarenko and Stepochkina give a complete list of posets
T with positive Tits form q(x1, . . . , xn, x∗); it consists of four infinite
series and 108 exceptional posets, up to duality (see also [11,12] for an
alternative proof).

Throughout this paper, we assume that

I = (I, �)

is a poset (i.e., a finite partially ordered set). We denote by max I the
set of all maximal elements of I and let I− = I \ max I. For i, j ∈ I, we
write i ≺ j if i � j and i 6= j. Moreover, for i, j ∈ I, we write i → j, if
i ≺ j and there is no s in I such that i ≺ s ≺ j. We denote by Z the ring
of integers and by MI(Z) the ring of I by I square matrices with integer
coefficients.

Usually we define a poset I by presenting its Hasse quiver H(I) =
(H0(I), H1(I)), with the set of vertices H0(I) = I and the set H1(I) of
arrows i → j defined earlier, for i, j ∈ I.
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Following [26,28,29,34], with any poset I, we associate the incidence
matrix CI = [cij ] ∈ MI(Z) and the Tits matrix ĈI ∈ MI(Z), where

cij =

{
1 if i � j,

0 otherwise,
(1.2)

and

ĈI =

[
Ctr

I− U

0 E

]
, (1.3)

where U = [uiw]i∈I−;w∈max I and

uiw =

{
−1 if i � w,

0 otherwise,
(1.4)

Following [11,32,34], we call a poset I positive, if the symmetric Gram
matrix GI := 1

2(ĈI + Ĉtr
I ) is positive definite.

The following two sets of vectors associated with a poset I are playing
an important role in the representation theory of algebras: the set of Tits
roots

R̂I := {v ∈ Z
n; v · ĈI · vtr = 1} (1.5)

and the set of Euler roots

RI := {v ∈ Z
n; v · CI · vtr = 1} (1.6)

of a poset I, where

CI = C−1
I (1.7)

see [10, 21,24,26]. We recall from [30] that the sets of Tits roots R̂I and
Euler roots RI of I are finite, if I is positive. Moreover, if I is assumed to
be connected then the sets R̂I and RI are irreducible and reduced root
systems in the sense of Bourbaki, see [24, p. 40] and [16], for more details.

By [29, Corollary 1.8], given a positive poset I, the root systems R̂I

and RI are isomorphic, and we denote by DI the common Coxeter-Dynkin
type of these root systems. One should note that DI is one of the simply
laced Dynkin diagrams (see [24, p. 40] and [16])

Am : •1−−−−•2−−−−•3−−−− . . . −−−−•−−−−•m (m vertices, m > 1);

Dm :
•2

|
•1−−−−•3 −−−−•4−−−− . . . −−−−•−−−−•m (m vertices, m > 4);

E6 :
•4

|
•1−−−−•2−−−− •3 −−−−•5−−−−•6;
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E7 :
•4

|
•1−−−−•2−−−− •3 −−−−•5−−−−•6−−−−•7;

E8 :
•4

|
•1−−−−•2−−−− •3 −−−−•5−−−−•6−−−−•7−−−−•8;

It follows from [16] that the Dynkin diagram DI can be determined
by applying the inflation algorithm constructed in [20] and [32].

We recall from [29] that the square matrix

ĈoxI := −ĈI · Ĉ−tr
I ∈ Mn(Z), (1.8)

is called the Coxeter-Tits matrix of I. Here Ĉtr
I is the transpose of ĈI ,

and we set Ĉ−tr
I := (Ĉtr

I )−1. The charactristic polynomial

coxI(t) := det(t · E − ĈoxI) ∈ Z[t], (1.9)

of ĈoxI is called the Coxeter polynomial of I, the group isomorphism

Φ̂I : Zn → Z
n, x 7→ Φ̂I(x) := x · ĈoxI , (1.10)

is called the Coxeter-Tits transformation of I, and the Coxeter number
cI of I is the minimal integer r > 1 such that Φ̂r

I is the identity map on
Z

n. If Φ̂r
I 6= id, for all r > 1, we set cI = ∞.

Recall also that the matrix

CoxI := −CI · C
−tr

I ∈ Mn(Z), (1.11)

is called the Coxeter-Euler matrix of I, and the group isomorphism

ΦI : Zn → Z
n, x 7→ ΦI(x) := x · CoxI , (1.12)

is called the Coxeter-Euler transformation of I.

Following an idea introduced in [30, 31], we study in the paper a
Φ̂I -mesh root system structure Γ(R̂I , Φ̂I) on the set of roots R̂I ⊆ Z

n of
any connected positive poset I, with n > 2 vertices, where Φ̂I : Zn → Z

n

is the Coxeter-Tits transformation defined by the Tits matrix ĈI ∈ Mn(Z)
of I.

One of the main aims of the paper is to present a combinatorial
algorithm that constructs a Φ̂I -mesh root system structure Γ(R̂I , Φ̂I)
(see Definition 2.13) on the finite set of all Φ̂I -orbits of the irreducible
root system R̂I . Moreover, in Corollary 4.6, we prove that the Coxeter
polynomial coxI(t) and the Coxeter number cI of such poset I depend
only on the simply laced Dynkin type DI of R̂I and coxI(t) coincides
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with the Coxeter polynomial coxDI(t) of the Dynkin diagram DI, see
[29, Example 3.12].

The idea of construction of our horizontal mesh algorithm is inspired
by the method of a construction of postprojective component in some
categories of modules (see [7,8,15,26]). However, this well-known method
computes only a mesh quiver consisting of the positive vectors. In the
present paper we show that our modification of this algorithm computes
a Φ̂I -mesh root system structure Γ(R̂I , Φ̂I) for the set R̂I of all roots
(not only positive roots).

We recall that one of the motivations for the study of a Φ̂I -mesh root
system structure Γ(R̂I , Φ̂I) comes from the poset representation theory
(see [9, 10,21,24,26,28,29,34]).

The sets of roots and Tits roots are playing an important role in many
areas of mathematics. In the representation theory of finite dimensional
algebras over a field the roots control categories of indecomposable modules
for a large classes of algebras (see [1–3,24,25]), while in the theory of Lie
groups and Lie algebras they are connected with root spaces (see [4, 13]).
Moreover, they control linear bases, generators and relations of Ringel-Hall
algebras (see [18,19]).

Recall that in [17] the Tits roots were applied to get a classification
of two-peak sincere posets of finite prinjective type. Therefore, it is of
importance to have efficient combinatorial algorithms that compute roots,
Tits roots and Φ̂I -mesh root system structures.

2. Preliminaries

Throughout this paper all posets are assumed to be connected.

2.1. Unit quadratic forms associated with a poset

Let I be a poset. By a Tits quadratic form and an Euler quadratic
form of I we mean the unit quadratic forms

q̂I , qI : ZI → Z

defined by the formulae

q̂I(x) = x · ĈI · xtr, qI(x) = x · CI · xtr.

It is easy to see that

q̂I(x) =
∑

i∈I

x2
i +

∑

i≺j∈I−

xjxi −
∑

w∈max I

∑

i≺w

xixw. (2.1)
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Note also that the Tits quadratic form q(x1, . . . , xn, x∗) (1.1) of a
partially ordered set T = {p1, . . . , pn} (defined by Drozd [9]) coincides with
the Tits form q̂I(x1, . . . , xn, x∗) (2.1) of the one-peak poset I = T ∗ ∪ {∗}
obtained from T by adding a unique maximal element ∗.

Recall from [29, Corollary 1.8] that one of the quadratic forms q̂I , qI

is positive if and only if both of them are positive. Moreover, in this case
we have

qI(x) =
∑

i∈I

x2
i −

∑

i→j

xixj +
∑

i◭j

c•
ijxixj , (2.2)

where the relation i ◭ j holds if there exists a minimal commutativity
relation w′ − w′′ in I, where w′, w′′ are paths with the source i and the
terminus j and c•

ij is the maximal number of linearly independent minimal
commutativity relations w′ − w′′ in I with the source i and the terminus
j, see Corollary 1.8, Remark 3.5 and Proposition 4.2 in [29].

Remark 2.3. Let I be a positive poset. The formula (2.2) implies that
the matrix CI = (cij) satisfies the non-cycle condition defined in [14].
Let us recall this definition. With a poset I we associate the biquiver
QI = (Q0, Q1) with the set of vertices Q0 = I. Moreover, there are
−cij solid arrows i // j , if cij < 0 and cij broken arrows i // j , if
cij > 0. Let Q = (Q0, Q1) be a biquiver.

(a) We say that a (unoriented) cycle (x1, x2, . . . , xn, x1) in Q is simple
if for all i, j ∈ {1, . . . , n}, i 6= j we have xi 6= xj .

(b) We say that a simple cycle (x1, x2, . . . , xn, x1) is chordless if for any
arrow (xi, xj) we have i = j ± 1 (wherein 1 ≡ n + 1).

(c) Further, consider a simple cycle in Q of the form

//

�� // //

OO (2.4)

The biquiver Q satisfies the non-cycle condition, if every simple
chordless cycle in Q containing a broken arrow has the form (2.4).

(d) Given a poset I the matrix CI = (cij) satisfies the non-cycle condi-
tion, if the biquiver QI satisfies this condition.

For all i ∈ I, denote by p̂i the Tits-projective vector associated with i,
i.e. p̂i is defined by the formula

p̂i(j) =





1 for i = j;
1 for i � j ∈ max I;
0 otherwise.

(2.5)
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Let

P̂ = P̂(I) = {p̂i ; i ∈ I}

be the set of all Tits-projective vectors.
For all i ∈ I, denote by r̂i the Tits-radical vector associated with i,

i.e. r̂i is defined by the formula

r̂i(j) =





1 for all i → j;
1 for i ≺ j ∈ max I;
0 otherwise.

(2.6)

Let

R̂ad = R̂ad(I) = {r̂i ; i ∈ I}

be the set of all Tits-radical vectors.
Let i ∈ I and let r̂i be the corresponding Tits-radical vector. Consider

the convex subposet

I-supp(r̂i) = conv.hull{j ∈ I ; r̂i(j) 6= 0}

of I. Let I1, . . . , Iki
be the set of all connected components of the Hasse

quiver of I-supp(ri). We define the vectors r̂1
i , . . . , r̂ki

i by the following
formula:

r̂t
i(j) =

{
r̂i(j) if i ∈ It;
0 otherwise

(2.7)

for all t ∈ {1, . . . , ki}. We denote by R̂adcomp the set of vectors r̂1
i , . . . , r̂ki

i ,
where i ∈ I.

It is known that p̂i ∈ R̂I and r̂
j
i ∈ R̂I , for all i, j, see [23,26,27].

Denote by pi the Euler-projective vector associated with i, i.e. pi is
defined by the formula

pi(j) =

{
1 for all i � j;
0 otherwise.

(2.8)

Let

P = P(I) = {pi ; i ∈ I}

be the set of all Euler-projective vectors.
For all i ∈ I, denote by ri the Euler-radical vector associated with i,

i.e. ri is defined by the formula:

ri = pi − ei. (2.9)
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Let

Rad = Rad(I) = {ri ; i ∈ I}

be the set of all Euler-radical vectors.

Let i ∈ I and let ri be the corresponding Euler-radical vector. Consider
the convex subposet

I-supp(ri) = {j ∈ I ; ri(j) 6= 0}

of I. Let I1, . . . , Iki
be the set of all connected components of the Hasse

quiver of I-supp(ri). We define the vectors r1
i , . . . , rki

i by the following
formula:

rt
i(j) =

{
ri(j) if i ∈ It;
0 otherwise

(2.10)

for all t ∈ {1, . . . , ki}. We denote by Radcomp the set of vectors r1
i , . . . , rki

i ,
where i ∈ I.

It is known that pi ∈ RI and r
j
i ∈ RI , for all i, j, see [14,23,26,27].

2.2. Mesh translation quivers in Z
n

We recall from [30,31] the following definitions (see also [14]). They
are inspired by the definition of the Auslander-Reiten quiver of an algebra
(see [1, 2]).

Let Φ : Zn → Z
n be a group automorphism (e.g. the Coxeter-Tits

transformation Φ̂I or the Coxeter transformation ΦI of a poset I). A Φ-
orbit Φ − Orb(v) = {Φk(v)}k∈Z of a vector v ∈ Z

n will be visualised as
an infinite graph:

. . . Φ(v) v Φ−1(v) Φ−2(v) . . .

Definition 2.11. Let Φ : Zn → Z
n be a non-trivial group automorphism

(e.g. the Coxeter-Tits transformation Φ̂I or the Coxeter transformation ΦI

of a poset I). We say that the vectors u, v1, . . . , vs, w ∈ Z
n form a Φ-mesh

starting from u and terminating at w, if the following two conditions are
satisfied:

(i) u = Φ(w) and u + w =
s∑

i=1
vi,

(ii) the vectors v1, . . . , vs are pairwise different, lie in pairwise different
orbits of Φ and none of them lies in the Φ-orbit of u.
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A Φ-mesh we visualise as the following triangular quiver:

v1

��
v2

$$
Φ(w) = u

��

BB

99

w

vs

@@

(2.12)

Definition 2.13. Let n > 2, let Φ : Zn → Z
n be a non-trivial group

automorphism and let R be a Φ-invariant subset of Z
n (e.g. R = R̂I

if Φ = Φ̂I or R = RI if Φ = ΦI). We say that R admits a geometry
of Φ-mesh quiver if there exists a quiver ~R = ( ~R0, ~R1) with ~R0 = R,
such that ~R together with the bijection Φ : R → R induced by Φ is
a triangular translation quiver Γ(R, Φ) (see [1, IV.4.7]) with the following
property: for every vector w ∈ R, the full convex subquiver containing
the vertices w and Φ(w) is a Φ-mesh of the form (2.12), and if

v′
1

��
v′

2
##

Φ(w) = u

��

CC

::

w

v′
s′

@@

is a Φ-mesh, then s′ = s and v1 = v′
1, . . . , vs = v′

s, up to permutation of
the set {1, . . . , s}.

Definition 2.14. Let Γ(R, Φ) be a Φ-mesh quiver in Z
n as in Definition

2.13. A slice in Γ(R, Φ) is a full convex connected subquiver Σ = (Σ0, Σ1)
of Γ(R, Φ) such that for any v ∈ R the set Φ − Orb(v) ∩ Σ0 contains
exactly one element.

Example 2.15. Consider the posets I and I ′ defined by the following
Hasse quivers:

1

2

AA

3

OO

4,

^^ 1

2

OO

4

@@

3

^^
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respectively. Note that the set R̂I ⊆ Z
4 of Tits roots of I consists of 24

vectors. One easily see that the set R̂I admits the following geometry of
Φ̂I -mesh quiver Γ(R̂I , Φ̂I) (we identify the vectors in frames):

1010

��

1101

��

0010

��
1̂0̂10

��
1̂̂10̂1

��
00̂10

��
1000

��

@@

��

2111

@@

��

��

1111

@@

��

��

1̂000

@@

��

��

2̂̂1̂1̂1

@@

��

��

1̂̂1̂1̂1

@@

��

��

1000

1100

@@

1011

@@

0100

@@

1̂̂100

@@

1̂0̂1̂1

@@

0̂100

@@

1001

GG

1110

GG

0001

GG

1̂00̂1

GG

1̂̂1̂10

GG

000̂1

GG

Moreover the set R̂I′ of Tits roots of I ′ consists of 24 vectors and admits
the following geometry of Φ̂I′-mesh quiver Γ(R̂I′ , Φ̂I′) (we identify the
vectors in frames):

1101

��

0010

��
0̂101

��
1̂00̂1

��
00̂10

��
010̂1

��
1100

��

@@

��

1011

@@

��

��

0̂111

@@

��

��

1̂̂100

@@

��

��

1̂0̂1̂1

@@

��

��

01̂1̂1

@@

��

��

1100

0101

@@

0001

@@

0̂110

@@

1̂0̂10

@@

000̂1

@@

01̂10

@@

1000

GG

0100

GG

1̂100

GG

1̂000

GG

0̂100

GG

1̂1̂1̂1

GG

1000

GG

Here we set â = −a, for a ∈ N.
In the algorithm presented in Section 3 first we look for a slice canditate

Σ in Γ(R̂I , Φ̂I). Then the remaining part of Γ(R̂I , Φ̂I) is easy to compute.

In Γ(R̂I , Φ̂I) presented in Example 2.15 the quiver

1010

1000
&&

88

��
1100

1001

is a slice. Applying definition of a Φ̂I -mesh we can construct now the
Φ̂I -mesh translation quiver Γ(R̂I , Φ̂I) by knitting Φ̂I -meshes as follows:

1010

$$
a

  
1000

&&

88

��

b

>>

  

��

e

@@

��

��

1100

::

c

>>

1001

DD

d

GG

Indeed, we have
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b = (1 0 1 0) + (1 1 0 0) + (1 0 0 1) − (1 0 0 0),

a = b − (1 0 1 0),

c = b − (1 1 0 0),

d = b − (1 0 0 1),

e = a + c + d − b, and so on.

Note that Φ̂I(a) = (1010), Φ̂I(b) = (1000), Φ̂I(c) = (1100), Φ̂I(d) =
(1001), and Φ̂I(e) = b.

3. A horizontal mesh algorithm

The idea of construction of a horizontal mesh algorithm that we present
in this section is inspired by a construction of the postprojective component
of the Auslander-Reiten quiver of an algebra or a poset (see [7, 8, 15]).

We would like to stress that the algorithm

(I, P̂, R̂ad, R̂adcomp, k) 7→ Γ̂ := Γ(R̂I , Φ̂I)

presented below, called a horizontal mesh algorithm, associates to an arbi-
trary poset I, with initial data P̂, R̂ad, R̂adcomp, k, a Φ̂I -mesh translation

quiver Γ(R̃I , Φ̂I) such that Γ̂ defines a Φ̂I -mesh root system structure
Γ(R̂I , Φ̂I) on the set R̂I of Tits roots of I, in case when I is positive (see
Theorem 4.4 for a proof). The algorithm is a modification of a correspond-
ing horizontal mesh algorithm presented in [14], for positive edge-bipartite
graphs.

Algorithm 3.1. Input: A system (I, P̂, R̂ad, R̂adcomp, k), where

• I = (I, �) is a poset such that I = {1, . . . , n},
• P̂ = {p̂1, . . . , p̂n} is the set of Tits-projective vectors,
• R̂ad = {r̂1, . . . , r̂n} is the set of Tits-radical vectors,
• R̂adcomp = {r̂1

1, . . . , r̂k1

1 , . . . , r̂1
n, . . . , r̂kn

n }, where r̂
j
i are defined by

formula 2.7,
• k ∈ N.

Output: The quiver Γ̂ = Γ(R̂I , Φ̂I).

Step 1. Inductively, we construct the following data:

• ordered lists L̂[i], for any i = 1, . . . , n;
• quivers Ĝi = (Ĝi

0, Ĝi
1), for i = 0, 1, 2, . . .;

• quivers Γ̂i = (Γ̂i
0, Γ̂i

1), for i = 0, 1, 2, . . .;
• sets P̂0 ⊆ P̂1 ⊆ . . . ⊆ P̂k ⊆ P̂ = {p̂1, . . . , p̂n};

in the following way.

Step 1.1. For any i = 1, . . . , n, we put L̂[i] := [p̂i].
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Step 1.2. Let

P̂0 = Ĝ0
0 = {p̂i ∈ P̂ ; i ∈ max I} and Γ̂0

0 = Γ̂0
1 = Ĝ0

1 = ∅.

Step 1.3. We put

Ĉ1 = {p̂i ; r̂i 6= 0 and r̂
j
i ∈ Ĝ0

0 for all j = 1, . . . , ki},

P̂1 := Ĝ1
0 := Ĝ0

0 ∪ Ĉ1 and Γ̂1
0 = Γ̂1

1 = ∅

Ĝ1
1 = {r̂

j
i → p̂i ; for all p̂i ∈ Ĉ1 and all j = 1, . . . , ki}.

Step 1.4. Assume that, for i = 0, . . . , m − 1, m > 2, data Ĝi, Γ̂i, P̂i

are constructed. We set

P̂ ′
m = {p̂i ∈ P̂ \ P̂m−1 ; r̂i 6= 0 and r̂

j
i ∈ Ĝm−1

0 for all j = 1, . . . , ki}

and
P̂m = P̂ ′

m ∪ P̂m−1.

We define
Ĉm = P̂ ′

m ∪ {z = −x +
∑

x→y

y ; y ∈ Ĉm−1},

Ĝm
0 = Ĝm−1

0 ∪ Ĉm

and

Ĝm
1 = {r̂

j
i → p̂i ; for all p̂i ∈ Ĉm and all j = 1, . . . , ki}∪

∪{y → z ; for all y such that z = −x +
∑

x→y

y}.

Moreover, if P̂m 6= P̂, z = −x +
∑

x→y y and x ∈ L̂[i], then we add z

at the end of the list L̂[i] and delete the first element of the list L̂[i]. If
P̂m 6= P̂, then we set Γ̂m

0 = Γ̂m
1 = ∅; otherwise we set

Γ̂m
0 = Γ̂m−1

0 ∪ Ĉm

and

Γ̂m
1 = Γ̂m−1

1 ∪ {y → z ; for all y → z ∈ Ĝm
1 such that y, z ∈ Γ̂m−1

0 ∪ Γ̂m
0 }.

Moreover, if P̂m = P̂, z = −x +
∑

x→y y and x ∈ L̂[i], then we add z at

the end of the list L̂[i].
Step 2. If m = k, we finish and set Γ̂ = Γ̂k.
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Remark 3.2. In this algorithm the set P̂ of Tits-projective and the set
R̂ad of Tits-radical can be replaced by the set P of Euler-projective vectors
and the set Rad of Euler-radical vectors, respectively, i.e. as an input we
put (I, P, Rad, Radcomp, k). In this way, we obtain an algorithm that for
a positive poset I constructs a ΦI -mesh root system structure Γ(RI , ΦI),
see Theorem 4.4.

In the description of Algorithm 3.1 with input (I, P, Rad, Radcomp, k)
the data computed in Step 1 we denote by adding a dash over a corre-

sponding symbol (e.g. we replace L̂[i] by L[i], Γ̂k by Γ
k

etc.).

We illustrate Algorithm 3.1 by the following example.

Example 3.3. Consider the following poset

1

2

@@

3

^^

4

^^ @@

Note that

P̂ = {p̂1 = (1, 0, 0, 0), p̂2 = (1, 1, 0, 0), p̂3 = (1, 0, 1, 0), p̂4 = (1, 0, 0, 1)},

R̂ad = {r̂2 = (1, 0, 0, 0), r̂3 = (1, 0, 0, 0), r̂4 = (1, 1, 1, 0)}

and R̂adcomp = {r̂1
2 = r̂2, r̂1

3 = r̂3, r̂1
4 = r̂4}. We set k = 5. Applying

Algorithm 3.1 to (I, P̂, R̂ad, R̂adcomp, k) we get

1100

%%
0010

%%
00̂11

1000

99

��

1110

%%

99

��

0001

99

%%

��
1001

99

1̂000

1010

BB

0100

BB

0̂101

Indeed:
m=0: P̂0 = Ĝ0

0 = {p̂1 = (1, 0, 0, 0)}; Γ̂0
0 = Γ̂0

1 = Ĝ0
1 = ∅; L̂[1] =

[p̂1], L̂[2] = [p̂2], L̂[3] = [p̂3], L̂[4] = [p̂4].
m=1: Ĉ1 = {p̂2 = (1, 1, 0, 0), p̂3 = (1, 0, 1, 0)}, P̂1 = Ĝ1

0 = {p̂1, p̂2, p̂3},

Ĝ1
1 = {(p̂1, p̂2), (p̂1, p̂3)}, Γ̂1

0 = Γ̂1
1 = ∅. L̂[1] = [p̂1], L̂[2] = [p̂2],

L̂[3] = [p̂3], L̂[4] = [p̂4].
m=2: P̂ ′

2 = ∅, P̂2 = P̂1, Ĉ2 = {p̂2 + p̂3 − p̂1 = (1, 1, 1, 0)}, Ĝ2
0 = Ĝ1

0 ∪ Ĉ2,

Ĝ2
1 = {(p̂2, (1, 1, 1, 0)), (p̂3, (1, 1, 1, 0))}, Γ̂2

0 = Γ̂2
1 = ∅.

L̂[1] = [(1, 1, 1, 0)], L̂[2] = [p̂2], L̂[3] = [p̂3], L̂[4] = [p̂4].
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m=3: P̂ ′
3 = {p̂4 = (1, 0, 0, 1)}, P̂3 = {p̂1, p̂2, p̂3, p̂4}, Ĉ3 = {p̂4, (0, 1, 0, 0),

(0, 0, 1, 0)}, Ĝ3
0 = Ĝ2

0 ∪ Ĉ3, Ĝ3
1 = {((1, 1, 1, 0), p̂4),

((1, 1, 1, 0), (0, 1, 0, 0)), ((1, 1, 1, 0), (0, 0, 1, 0))}, Γ̂3
0 = Ĉ3, Γ̂3

1 = ∅.

L̂[1] = [(1, 1, 1, 0)], L̂[2] = [(0, 0, 1, 0)], L̂[3] = [(0, 1, 0, 0)], L̂[4] =
[p̂4].

m=4: P̂ ′
4 = ∅, P̂4 = P̂, Ĉ4 = {(0, 0, 0, 1)}, Ĝ4

0 = Ĝ3
0 ∪ Ĉ3, Ĝ4

1 =
{(p̂4, (0, 0, 0, 1)), ((0, 1, 0, 0), (0, 0, 0, 1)), ((0, 0, 1, 0), (0, 0, 0, 1))}, Γ̂4

0

= Γ̂3
0 ∪ Ĉ3, Γ̂4

1 = Ĝ4
1. L̂[1] = [(1, 1, 1, 0), (0, 0, 0, 1)], L̂[2] =

[(0, 0, 1, 0)], L̂[3] = [(0, 1, 0, 0)], L̂[4] = [p̂4].
m=5: P̂ ′

5 = ∅, P̂5 = P̂ , Ĉ5 = {(0, 0, 1̂, 1), (1̂, 0, 0, 0), (0, 1̂, 0, 1)}, Ĝ5
0 = Ĝ4

0 ∪
Ĉ4, Ĝ5

1 = {((0, 0, 0, 1), (0, 0, 1̂, 1)), ((0, 0, 0, 1), (1̂, 0, 0, 0)), ((0, 0, 0, 1),
(0, 1̂, 0, 1))}, Γ̂5

0 = Γ̂4
0∪Ĉ4, Γ̂5

1 = Γ̂4
1∪Ĝ5

1. L̂[1] = [(1, 1, 1, 0), (0, 0, 0, 1)],
L̂[2] = [(0, 0, 1, 0), (0, 0, 1̂, 1)], L̂[3] = [(0, 1, 0, 0), (0, 1̂, 0, 1)], L̂[4] =
[p̂4, (1̂, 0, 0, 0)].

Now we apply Algorithm 3.1 to (I, P, Rad, Radcomp, k). Note that

P = {p1 = (1, 0, 0, 0), p2 = (1, 1, 0, 0), p3 = (1, 0, 1, 0), p4 = (1, 1, 1, 1)},

Rad = {r1 = (0, 0, 0, 0), r2 = (1, 0, 0, 0), r3 = (1, 0, 0, 0), r4 = (1, 1, 1, 0)},

and Radcomp = {r1
1 = r1, r1

2 = r2, r1
3 = r3, r1

4 = r4}. We set k = 5 and get

1100
&&

0010
&&

0101

1000

88

��

1110

%%

88

��

0111

88

%%

��
1111

99

1̂000

1010

BB

0100

BB

0011

Indeed:
m=0: P0 = G

0
0 = {p1 = (1, 0, 0, 0)}; Γ

0
0 = Γ

0
1 = G

0
1 = ∅; L[1] =

[p1], L[2] = [p2], L[3] = [p3], L[4] = [p4].

m=1: C1 = {p2 = (1, 1, 0, 0), p3 = (1, 0, 1, 0)}, P1 = G
1
0 = {p1, p2, p3},

G
1
1 = {(p1, p2), (p1, p3)}, Γ

1
0 = Γ

1
1 = ∅. L[1] = [p1], L[2] = [p2],

L[3] = [p3], L[4] = [p4].

m=2: P
′
2 = ∅, P2 = P1, C2 = {p2 + p3 − p1 = (1, 1, 1, 0)}, G

2
0 = G

1
0 ∪ C2,

G
2
1 = {(p2, (1, 1, 1, 0)), (p3, (1, 1, 1, 0))}, Γ

2
0 = Γ

2
1 = ∅.

L[1] = [(1, 1, 1, 0)], L[2] = [p2], L[3] = [p3], L[4] = [p4].
m=3: P

′
3 = {p4 = (1, 1, 1, 1)}, P3 = {p1, p2, p3, p4}, C3 = {p4, (0, 1, 0, 0),

(0, 0, 1, 0)}, G
3
0 = G

2
0 ∪ C3, G

3
1 = {((1, 1, 1, 0), p4),

((1, 1, 1, 0), (0, 1, 0, 0)), ((1, 1, 1, 0), (0, 0, 1, 0))}, Γ
3
0 = C3, Γ

3
1 = ∅.

L[1] = [(1, 1, 1, 0)], L[2] = [(0, 0, 1, 0)], L[3] = [(0, 1, 0, 0)], L[4] =
[p4].
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m=4: P
′
4 = ∅, P4 = P, C4 = {(0, 1, 1, 1)}, G

4
0 = G

3
0 ∪ C3,

G
4
1 ={(p4, (0, 1, 1, 1)), ((0, 1, 0, 0), (0, 1, 1, 1)), ((0, 0, 1, 0), (0, 1, 1, 1))},

Γ
4
0 = Γ

3
0 ∪ C3, Γ

4
1 = G

4
1. L[1] = [(1, 1, 1, 0), (0, 1, 1, 1)], L[2] =

[(0, 0, 1, 0)], L[3] = [(0, 1, 0, 0)], L[4] = [p4].
m=5: P

′
5 = ∅, P5 = P, C5 = {(0, 1, 0, 1), (1̂, 0, 0, 0), (0, 0, 1, 1)},

G
5
0 = G

4
0 ∪ C4, G

5
1 = {((0, 1, 1, 1), (0, 1, 0, 1)), ((0, 1, 1, 1), (1̂, 0, 0, 0)),

((0, 1, 1, 1), (0, 0, 1, 1))}, Γ
5
0 = Γ

4
0 ∪ C4, Γ

5
1 = Γ

4
1 ∪ G

5
1.

L[1] = [(1, 1, 1, 0), (0, 1, 1, 1)], L[2] = [(0, 0, 1, 0), (0, 1, 0, 1)],
L[3] = [(0, 1, 0, 0), (0, 0, 1, 1)], L[4] = [p4, (1̂, 0, 0, 0)].

4. Correctness of Algorithm 3.1

Following [28,29], we define a group isomorphism

σ0
I : ZI → Z

I (4.1)

by the formula σ0
I (x) = x · C0

I , where C0
I is the reduced incidence matrix

C0
I =

[
CI− 0

0 E

]
, (4.2)

where E is the identity matrix. By [29, Proposition 3.13], σ0
I gives Z-

equivalence of q̂I and qI , i.e. qI(σ0
I (x)) = q̂(x).

Lemma 4.3. For any poset I and for all i ∈ I, we have (σ0
I )−1(pi) = p̂i

and (σ0
I )−1(ri) = r̂i, where p̂i, r̂i, pi and ri are projective and radical

vectors defined in Section 2.1, and σ0
I : ZI → Z

I is the isomorphism (4.1).

Proof. The proof is straightforward.

Theorem 4.4. Assume that I is a connected positive poset. Let Γ̂ be the
quiver constructed by Algorithm 3.1 with input (I, P̂, R̂ad, R̂adcomp, k)
with k large enough (e.g. k = |R̂I |). The following conditions are satisfied.

(a) P̂ =
⋃

k P̂k, in particular there exists m such that P̂m = P̂.
(b) The sequence Γ̂0 ⊆ Γ̂1 ⊆ . . . stabilizes.
(c) R̂I =

⋃
m Γ̂m

0 .
(d) L̂[1], . . . , L̂[n] are the Φ̂I-orbits in R̂I of the Coxeter-Tits transfor-

mation Φ̂I .
(e) The Φ̂I-mesh translation quiver Γ̂ = Γ(R̂I , Φ̂I) defines a Φ̂I-mesh

root system structure Γ(R̂I , Φ̂I) on the set R̂I of Tits roots of I.
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Proof. Assume that I is a connected positive poset. We apply Algo-
rithm 3.1 to the system (I, P, Rad, Radcomp, k) defined in Remark 3.2.
The formula (2.2) implies that the Euler matrix CI = C−1

I satisfies the
non-cycle condition defined in [14], see Remark 2.3. Therefore, [14, Theo-
rem 4.13] and [14, Section 5] yield:

(ā) P =
⋃

k Pk, in particular there exists m such that Pm = P.

(b̄) The sequence Γ
0

⊆ Γ
1

⊆ . . . stabilizes.
(c̄) RI =

⋃
m Γm

0 .
(d̄) L[1], . . . , L[n] are the ΦI -orbits in RI of the Coxeter transformation

ΦI .
(ē) The ΦI -mesh translation quiver Γ = Γ(RI , ΦI) defines a ΦI -mesh

root system structure Γ(RI , ΦI) on the set RI of Euler roots of I.

By Lemma 4.3, we have (σ0
I )−1(pi) = p̂i and (σ0

I )−1(ri) = r̂i, see (4.1).
It is easy to verify that the automorphism (σ0

i )−1 sends P, Rad, Radcomp

to P̂, R̂ad, R̂adcomp, respectively. From [29, Proposition 3.13], it follows

that Φ̂I = (σ0
I )−1 ◦ ΦI ◦ σ0

I . Now, applying the linearity of σ0
I , it is easy

to deduce that the conditions (ā)-(ē) imply the conditions (a)-(e), and
the theorem follows.

Remark 4.5. It follows from the proof of Theorem 4.4 that the Φ̂I -
mesh quiver Γ(RI , Φ̂I) is the image of Γ(RI , ΦI) via the automorphism
(σ0

I )−1 : ZI → Z
I (4.1).

We refer also to [11,12] for a discussion of ΦI -mesh quivers of one-peak
posets.

Corollary 4.6. Let I be a positive connected poset and let DI be the
Coxeter-Dynkin type of the root system R̂I . The Coxeter polynomial
coxI(t) is equal to the Coxeter polynomial coxDI(t) of the Dynkin diagram
DI and the Coxeter number cI is equal to the Coxeter number cDI of the
Dynkin diagram DI; they are listed in [29, Example 3.12].

Proof. By [14, Theorem 1.10] there exists a Z-invertible matrix B ∈ MI(Z)
such that CoxDI = B · CoxI · B−1, where CoxDI is the Coxeter matrix
associated with the simply laced Dynkin diagram DI. Moreover by [29,
Proposition 3.13], we have ĈoxI = C0

I · CoxI · (C0
I )−1. Now it is easy to

deduce that coxI(t) = coxDI(t) and cI = cDI .

Example 4.7. Consider the poset I given by the Hasse quiver

1 2oo 3oo 4oo (4.8)
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By applying Algorithm 3.1 to (I, P, Rad, Radcomp, k = 6) we get the

Φ̂I -mesh quiver Γ(RI , ΦI):

1111

��

1̂000

��
0̂100

��
00̂10

��
000̂1

��

1111

1110

��

AA

0111

AA

��

1̂̂100

AA

��
0̂1̂10

AA

��
00̂1̂1

AA

��

1110

AA

1100

��

AA

0110

AA

��

0011

AA

��

1̂̂1̂10

AA

��
0̂1̂1̂1

AA

��

1100

AA

1000

AA

0100

AA

0010

AA

0001

AA

1̂̂1̂1̂1

AA

1000

AA

where vectors in frames lying in the same orbit are identified.

Moreover, by applying Algorithm 3.1 to (I, P̂, R̂ad, R̂adcomp, k = 6)

we get the Φ̂I -mesh quiver Γ(R̂I , Φ̂I):

1001

��

1̂000

��
0̂100

��
01̂10

��
001̂1

��

1001

1010

��

AA

0001

AA

��
1̂̂100

AA

��
00̂10

AA

��
010̂1

AA

��

1010

AA

1100

��

AA

0010

AA

��
0̂101

AA

��
1̂0̂10

AA

��
000̂1

AA

��

1100

AA

1000

AA

0100

AA

0̂110

AA

00̂11

AA

1̂00̂1

AA

1000

AA

Note that the Φ̂I -mesh quiver Γ(RI , ΦI) is isomorphic with the Φ̂I -
mesh quiver Γ(R̂I , Φ̂I) via the authomorphism σ0

I : Z4 → Z
4 (4.1).

Example 4.9. Consider the poset I given by the Hasse quiver

1

2

@@

3

^^

4

OO 77

5

OO

(4.10)

By applying Algorithm 3.1 we get the Φ̂I -mesh quiver Γ(RI , ΦI):

00100

��

11111

��

1̂0000

��

00010

��

1̂̂1̂1̂10

��

00̂10̂1

��

0̂10̂10

��

11000

��

00100

11110

��

00101

��

01010

��

1̂̂1000

��

00̂100

��

1̂̂1̂1̂1̂1

��

10000

��

000̂10

��

11110

11100

��

CC

II

11211

��

CC

II

01111

��

CC

II

1̂0010

��

CC

II

1̂̂1̂100

��

CC

II

1̂̂1̂2̂1̂1

��

CC

II

0̂1̂1̂1̂1

��

CC

II

100̂10

��

CC

II

11100

CC

��

II

11101

��

CC

01110

��

CC

00111

��

CC

1̂0̂100

��

CC

1̂̂1̂10̂1

��

CC

0̂1̂1̂10

��

CC

00̂1̂1̂1

��

CC

10100

��

CC

11101

10101

CC

01000

CC

00110

CC

00001

CC

1̂0̂10̂1

CC

0̂1000

CC

00̂1̂10

CC

0000̂1

CC

10101

CC
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and the Φ̂I -mesh quiver Γ(R̂I , Φ̂I):

00100

��

10̂111

��

1̂0000

��

0̂1̂110

��

1̂00̂10

��

0000̂1

��

001̂10

��

11000

��

00100

10010

��

00001

��

00̂110

��

1̂̂1000

��

00̂100

��

1̂01̂1̂1

��

10000

��

011̂10

��

10010

11100

��

CC

II

10011

��

CC

II

00̂111

��

CC

II

1̂̂1̂110

��

CC

II

1̂̂1̂100

��

CC

II

1̂00̂1̂1

��

CC

II

001̂1̂1

��

CC

II

111̂10

��

CC

II

11100

CC

��

II

11001

��

CC

00010

��

CC

0̂1̂111

��

CC

1̂0̂100

��

CC

1̂̂100̂1

��

CC

000̂10

��

CC

011̂1̂1

��

CC

10100

��

CC

11001

10001

CC

01000

CC

0̂1010

CC

00̂101

CC

1̂000̂1

CC

0̂1000

CC

010̂10

CC

0010̂1

CC

10001

CC

Note that the Φ̂I -mesh quiver Γ(RI , ΦI) is isomorphic with the Φ̂I -
mesh quiver Γ(R̂I , Φ̂I) via the authomorphism σ0

I : Z5 → Z
5 (4.1).

Example 4.11. Consider the poset I given by the Hasse quiver

1 3oo

yy

5oo 6oo

tt2 4oo

By applying Algorithm 3.1 to (I, P, Rad, Radcomp, k = 24) we get the

Φ̂I -mesh quiver Γ(RI , ΦI):

111111

!!

001000

!!

000010

!!

000101

!!
0̂10̂100

!!
1̂0̂1000

!!
0̂1̂10̂10

��
112111

==

��

001010

==

��

000111

==

��

0̂10001

==

��

1̂̂1̂1̂100

==

��

1̂̂1̂20̂10

==

��
101010

!!

011111

!!

0̂10000

!!
000011

!!
1̂̂1̂10̂10

!!
0̂1̂1̂100

!!
112110

FF

==

!!

112121

FF

==

!!

001111

FF

==

!!

0̂10011

FF

==

!!
1̂̂1̂1001

FF

==

!!
1̂̂2̂2̂1̂10

FF

==

!!
1̂̂1̂2̂1̂10

JJ

DD

��
011110

==

!!

101111

==

!!

001011

==

!!
1̂̂1̂1000

==

!!
0̂1̂1001

==

!!

1̂̂1̂1̂1̂10

==

!!
011010

==

000100

==

101011

==

1̂00000

==

0̂1̂1000

==

000001

==

1̂̂1̂1̂1̂1̂1

DD

��
000̂100

!!
1̂0̂10̂1̂1

!!
100000

!!

011000

!!
00000̂1

!!

111111

!!
0̂1̂1̂1̂10

==

��

1̂0̂1̂1̂1̂1

==

��

00̂10̂1̂1

==

��

111000

==

��

01100̂1

==

��

111110

==

��

112111

1̂0̂10̂10

!!
0̂1̂1̂1̂1̂1

!!
010000

!!
0000̂1̂1

!!
111010

!!

011100

!!

101010

JJ

DD

��
1̂̂1̂2̂1̂2̂1

FF

==

!!
00̂1̂1̂1̂1

FF

==

!!
0100̂1̂1

FF

==

!!
11100̂1

FF

==

!!

122110

FF

==

!!

112110

FF

==

!!
1̂̂1̂2̂1̂1̂1

==

!!
00̂10̂10

==

!!
000̂1̂1̂1

==

!!
01000̂1

==

!!

111100

==

!!

112010

==

!!

011110DD

00̂1000

==

0000̂10

==

000̂10̂1

==

010100

==

101000

==

011010

==

where vectors in frames lying in the same orbit are identified.
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Moreover, by applying Algorithm 3.1 to (I, P̂, R̂ad, R̂adcomp, k = 24)

we get the Φ̂I -mesh quiver Γ(R̂I , Φ̂I):

110001

!!

001000

!!

00̂1010

!!
0000̂11

!!
0̂10̂100

!!
1̂0̂1000

!!
0̂100̂10

��
111001

==

��

000010

==

��

00̂1001

==

��

0̂10̂1̂11

==

��

1̂̂1̂1̂100

==

��

1̂̂1̂10̂10

==

��
100010

!!

010001

!!

0̂10000

!!
00̂1̂101

!!
1̂̂100̂10

!!
0̂1̂1̂100

!!
111110

FF

==

!!

110011

FF

==

!!

000001

FF

==

!!
0̂1̂1̂101

FF

==

!!
1̂̂1̂1̂1̂11

FF

==

!!
1̂̂2̂1̂1̂10

FF

==

!!
1̂̂1̂1̂1̂10

DD

JJ

��
010110

==

!!

100001

==

!!
000̂101

==

!!
1̂̂1̂1000

==

!!
0̂1̂1̂1̂11

==

!!
1̂̂10̂1̂10

==

!!
010010

==

000100

==

100̂101

==

1̂00000

==

0̂1̂1000

==

000̂1̂11

==

1̂̂1000̂1

DD

��
000̂100

!!
1̂0010̂1

!!
100000

!!

011000

!!
00011̂1

!!

110001

!!
0̂10̂1̂10

==

��

1̂0000̂1

==

��

00010̂1

==

��

111000

==

��

01111̂1

==

��

110110

==

��

111001

1̂000̂10

!!
0̂1000̂1

!!
010000

!!
00110̂1

!!
110010

!!

011100

!!

100010

JJ

DD

��
1̂̂100̂1̂1

FF

==

!!
00000̂1

FF

==

!!
01110̂1

FF

==

!!
11111̂1

FF

==

!!

121110

FF

==

!!

111110

FF

==

!!
1̂̂1̂100̂1

==

!!
0000̂10

==

!!
00100̂1

==

!!
01011̂1

==

!!

111100

==

!!

111010

==

!!

010110DD

00̂1000

==

0010̂10

==

00001̂1

==

010100

==

101000

==

010010

==

Note that the Φ̂I -mesh quiver Γ(RI , ΦI) is isomorphic with the Φ̂I -
mesh quiver Γ(R̂I , Φ̂I) via the authomorphism σ0

I : Z6 → Z
6 (4.1).

Example 4.12. Consider the poset I given by the Hasse quiver

1 3oo

xx

5oo

xx

6oo

2 4oo

By applying Algorithm 3.1 to (I, P, Rad, Radcomp, k = 24) we get

theΦ̂I -mesh quiver Γ(RI , ΦI):

111111

!!

001000

!!

000110

!!

101011

!!

1̂00000

!!
0̂1̂1000

!!
000̂100

��
112111

==

��

001110

==

��

101121

==

��

001011

==

��

1̂̂1̂1000

==

��

0̂1̂1̂100

==

��
011110

!!

101111

!!

001010

!!

000111

!!
0̂10̂100

!!
1̂0̂1000

!!
112110

FF

==

!!

112221

FF

==

!!

102121

FF

==

!!

001121

FF

==

!!
0̂10011

FF

==

!!

1̂̂1̂1̂100

FF

==

!!
1̂̂1̂2̂1̂10

JJ

DD

��
101110

==

!!

112121

==

!!

001111

==

!!
0̂10010

==

!!

000011

==

!!

1̂̂1̂1̂1̂10

==

!!
000100

==

101010

==

011111

==

0̂10000

==

000010

==

000001

==

1̂̂1̂1̂1̂1̂1

DD
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��
1̂0̂10̂10

!!
0̂1̂1̂1̂1̂1

!!
010000

!!
0000̂10

!!
00000̂1

!!

111111

!!
1̂0̂1̂1̂10

==

��

1̂̂1̂2̂1̂2̂1

==

��

00̂1̂1̂1̂1

==

��

0100̂10

==

��

0000̂1̂1

==

��

111110

==

��

112111

0̂1̂1̂1̂10

!!
1̂0̂1̂1̂1̂1

!!
00̂10̂10

!!
000̂1̂1̂1

!!
010100

!!

101000

!!

011110

JJ

DD

��
1̂̂1̂2̂2̂2̂1

FF

==

!!
1̂0̂2̂1̂2̂1

FF

==

!!
00̂1̂1̂2̂1

FF

==

!!
0100̂1̂1

FF

==

!!

111100

FF

==

!!

112110

FF

==

!!
1̂̂1̂2̂1̂1̂1

==

!!
00̂1̂1̂10

==

!!
1̂0̂1̂1̂2̂1

==

!!
00̂10̂1̂1

==

!!

111000

==

!!

011100

==

!!

101110DD

00̂1000

==

000̂1̂10

==

1̂0̂10̂1̂1

==

100000

==

011000

==

000100

==

where vectors in frames lying in the same orbit are identified.

Moreover, by applying Algorithm 3.1 to (I, P̂, R̂ad, R̂adcomp, k = 24)

we get the Φ̂I -mesh quiver Γ(R̂I , Φ̂I):

110001

!!

001000

!!

00̂1010

""
100̂101

!!
1̂00000

!!
0̂1̂1000

!!
000̂100

��
111001

==

��

000010

==

��

10̂1̂111

<<

��

000̂101

==

��

1̂̂1̂1000

==

��

0̂1̂1̂100

==

��
010010

!!

100001

!!
000̂1100

""
00̂1001

!!
0̂10̂100

!!
1̂0̂1000

!!
111010

FF

==

!!

110011

FF

==

!!
100̂111

EE

<<

""

00̂1̂111

FF

==

!!
0̂1̂1̂101

FF

==

!!
1̂̂1̂1̂100

FF

==

!!
1̂̂1̂10̂10

DD

JJ

��
100010

==

!!
110̂111

==

!!

000001

<<

""
0̂1̂1̂110

==

!!
00̂1̂101

==

!!
1̂̂100̂10

==

!!
000100

==

100̂110

==

010001

<<

0̂10000

==

00̂1̂110

==

0000̂11

==

1̂̂1000̂1

DD

��
1̂001̂10

!!
0̂1000̂1

!!
010000

!!
0011̂10

!!
00001̂1

!!
110001

!!
1̂000̂10

==

��

1̂̂101̂1̂1

==

��

00000̂1

==

��

0111̂10

==

��

00110̂1

==

��

1̂10010

==

��

111001

0̂100̂10

!!
1̂0000̂1

!!
0001̂10

!!
00100̂1

!!
010100

!!

101000

!!

010010

JJ

DD

��
1̂̂100̂1̂1

FF

==

!!
1̂001̂1̂1

FF

==

!!
0011̂1̂1

FF

==

!!
01110̂1

FF

==

!!

111100

FF

==

!!

111010

FF

==

!!
1̂̂1̂100̂1

==

!!
0000̂10

==

!!
1̂011̂1̂1

==

!!
00010̂1

==

!!

111000

==

!!

011100

==

!!

100010DD

00̂1000

==

0010̂10

==

1̂0010̂1

==

100000

==

011000

==

000100

==

Note that the Φ̂I -mesh quiver Γ(RI , ΦI) is isomorphic with the Φ̂I -
mesh quiver Γ(R̂I , Φ̂I) via the authomorphism σ0

I : Z6 → Z
6 (4.1).
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