A horizontal mesh algorithm for posets with positive Tits form

Mariusz Kaniecki, Justyna Kosakowska, Piotr Malicki and Grzegorz Marczak

Communicated by D. Simson

Abstract. Following our paper [Fund. Inform. 136 (2015), 345-379], we define a horizontal mesh algorithm that constructs a $\widehat{\Phi}_{I}$-mesh translation quiver $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ consisting of $\widehat{\Phi}_{I}$-orbits of the finite set $\widehat{\mathcal{R}}_{I}=\left\{v \in \mathbb{Z}^{I} ; \widehat{q}_{I}(v)=1\right\}$ of Tits roots of a poset I with positive definite Tits quadratic form $\widehat{q}_{I}: \mathbb{Z}^{I} \rightarrow \mathbb{Z}$. Under the assumption that $\widehat{q}_{I}: \mathbb{Z}^{I} \rightarrow \mathbb{Z}$ is positive definite, the algorithm constructs $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ such that it is isomorphic with the $\widehat{\Phi}_{D}$-mesh translation quiver $\Gamma\left(\mathcal{R}_{D}, \Phi_{D}\right)$ of $\widehat{\Phi}_{D \text {-orbits of the finite set } \mathcal{R}_{D} \text { of }}^{\text {on }}$ roots of a simply laced Dynkin quiver D associated with I.

1. Introduction

The paper is mainly devoted to the existence of a $\widehat{\Phi}_{I}$-mesh root system $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ in the sense of $[30]$, that is, a $\widehat{\Phi}_{I}$-mesh translation quiver $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ consisting of $\widehat{\Phi}_{I}$-orbits of the set $\widehat{\mathcal{R}}_{I}=\left\{v \in \mathbb{Z}^{I} ; \widehat{q}_{I}(v)=1\right\}$ of Tits roots of a finite poset $I=(I, \preceq)$ with positive quadratic Tits form $\widehat{q}_{I}: \mathbb{Z}^{I} \rightarrow \mathbb{Z}$, where $\widehat{\Phi}_{I}: \mathbb{Z}^{I} \rightarrow \mathbb{Z}^{I}$ is the Coxeter-Tits transformation associated with I in $[9,28,29,34]$. The reader is also referred to [14], [16], and [30]-[34] for analogous existence mesh root system theorems in the setting of positive edge-bipartite graphs and non-negative posets.

[^0]Our interest in the $\widehat{\Phi}_{I}$-mesh analysis of $\widehat{\Phi}_{I \text {-orbits of the set }} \widehat{\mathcal{R}}_{I}$ of Tits roots is motivated by applications of matrix representations of posets in representation theory, where a matrix representation of a partially ordered set $T=\left\{p_{1}, \ldots, p_{n}\right\}$, with a partial order \preceq, means a block matrix

$$
M=\left[M_{1}\left|M_{2}\right| \ldots \mid M_{n}\right]
$$

(over a field K) of size $d_{*} \times\left(d_{1}, \ldots, d_{n}\right)$ determined up to all elementary row transformations, elementary column transformations within each of the substrips $M_{1}, M_{2}, \ldots, M_{n}$, and additions of linear combinations of columns of M_{i} to columns of M_{j}, if $p_{i} \prec p_{j}$, see Nazarova and Roiter [22]. In [9], Drozd proves that T has only a finite number of direct-sum-indecomposable representetions if and only if its quadratic Tits form

$$
\begin{equation*}
q\left(x_{1}, \ldots, x_{n}, x_{*}\right)=x_{1}^{2}+\cdots+x_{n}^{2}+x_{*}^{2}+\sum_{p_{i} \prec p_{j}} x_{i} x_{j}-x_{*}\left(x_{1}+\cdots+x_{n}\right) \tag{1.1}
\end{equation*}
$$

is weakly positive (i.e., $q\left(a_{1}, \ldots, a_{n}, a_{*}\right)>0$, for all non-zero vectors $\left(a_{1}, \ldots, a_{n}, a_{*}\right)$ with integer non-negative coefficients). In this case, there exists an indecomposable representation M of size $d_{*} \times\left(d_{1}, \ldots, d_{n}\right)$ if and only if $\left(d_{1}, \ldots, d_{n}, d_{*}\right)$ is a root of q, i.e., $q\left(d_{1}, \ldots, d_{n}, d_{*}\right)=1$, see [10] and [26, Chapter 10] for more details.

In $[5,6]$, Bondarenko and Stepochkina give a complete list of posets T with positive Tits form $q\left(x_{1}, \ldots, x_{n}, x_{*}\right)$; it consists of four infinite series and 108 exceptional posets, up to duality (see also [11, 12] for an alternative proof).

Throughout this paper, we assume that

$$
I=(I, \preceq)
$$

is a poset (i.e., a finite partially ordered set). We denote by max I the set of all maximal elements of I and let $I^{-}=I \backslash \max I$. For $i, j \in I$, we write $i \prec j$ if $i \preceq j$ and $i \neq j$. Moreover, for $i, j \in I$, we write $i \rightarrow j$, if $i \prec j$ and there is no s in I such that $i \prec s \prec j$. We denote by \mathbb{Z} the ring of integers and by $\mathbb{M}_{I}(\mathbb{Z})$ the ring of I by I square matrices with integer coefficients.

Usually we define a poset I by presenting its Hasse quiver $\mathcal{H}(I)=$ $\left(\mathcal{H}_{0}(I), \mathcal{H}_{1}(I)\right)$, with the set of vertices $\mathcal{H}_{0}(I)=I$ and the set $\mathcal{H}_{1}(I)$ of arrows $i \rightarrow j$ defined earlier, for $i, j \in I$.

Following $[26,28,29,34]$, with any poset I, we associate the incidence matrix $C_{I}=\left[c_{i j}\right] \in \mathbb{M}_{I}(\mathbb{Z})$ and the Tits matrix $\widehat{C}_{I} \in \mathbb{M}_{I}(\mathbb{Z})$, where

$$
c_{i j}= \begin{cases}1 & \text { if } i \preceq j \tag{1.2}\\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\widehat{C}_{I}=\left[\begin{array}{cc}
C_{I^{-}}^{t r} & U \tag{1.3}\\
0 & E
\end{array}\right]
$$

where $U=\left[u_{i w}\right]_{i \in I^{-} ; w \in \max I}$ and

$$
u_{i w}= \begin{cases}-1 & \text { if } i \preceq w \tag{1.4}\\ 0 & \text { otherwise }\end{cases}
$$

Following [11,32,34], we call a poset I positive, if the symmetric Gram $\operatorname{matrix} G_{I}:=\frac{1}{2}\left(\widehat{C}_{I}+\widehat{C}_{I}^{t r}\right)$ is positive definite.

The following two sets of vectors associated with a poset I are playing an important role in the representation theory of algebras: the set of Tits roots

$$
\begin{equation*}
\widehat{\mathcal{R}}_{I}:=\left\{v \in \mathbb{Z}^{n} ; v \cdot \widehat{C}_{I} \cdot v^{t r}=1\right\} \tag{1.5}
\end{equation*}
$$

and the set of Euler roots

$$
\begin{equation*}
\overline{\mathcal{R}}_{I}:=\left\{v \in \mathbb{Z}^{n} ; v \cdot \bar{C}_{I} \cdot v^{t r}=1\right\} \tag{1.6}
\end{equation*}
$$

of a poset I, where

$$
\begin{equation*}
\bar{C}_{I}=C_{I}^{-1} \tag{1.7}
\end{equation*}
$$

see $[10,21,24,26]$. We recall from [30] that the sets of Tits roots $\widehat{\mathcal{R}}_{I}$ and Euler roots $\overline{\mathcal{R}}_{I}$ of I are finite, if I is positive. Moreover, if I is assumed to be connected then the sets $\widehat{\mathcal{R}}_{I}$ and $\overline{\mathcal{R}}_{I}$ are irreducible and reduced root systems in the sense of Bourbaki, see [24, p. 40] and [16], for more details.

By [29, Corollary 1.8], given a positive poset I, the root systems $\widehat{\mathcal{R}}_{I}$ and $\overline{\mathcal{R}}_{I}$ are isomorphic, and we denote by $D I$ the common Coxeter-Dynkin type of these root systems. One should note that $D I$ is one of the simply laced Dynkin diagrams (see [24, p. 40] and [16])

It follows from [16] that the Dynkin diagram $D I$ can be determined by applying the inflation algorithm constructed in [20] and [32].

We recall from [29] that the square matrix

$$
\begin{equation*}
\widehat{\operatorname{Cox}}_{I}:=-\widehat{C}_{I} \cdot \widehat{C}_{I}^{-t r} \in \mathbb{M}_{n}(\mathbb{Z}) \tag{1.8}
\end{equation*}
$$

is called the Coxeter-Tits matrix of I. Here $\widehat{C}_{I}^{t r}$ is the transpose of \widehat{C}_{I}, and we set $\widehat{C}_{I}^{-t r}:=\left(\widehat{C}_{I}^{t r}\right)^{-1}$. The charactristic polynomial

$$
\begin{equation*}
\operatorname{cox}_{I}(t):=\operatorname{det}(t \cdot E-\widehat{\operatorname{Cox}} I) \in \mathbb{Z}[t] \tag{1.9}
\end{equation*}
$$

of $\widehat{\mathrm{Cox}}_{I}$ is called the Coxeter polynomial of I, the group isomorphism

$$
\begin{equation*}
\widehat{\Phi}_{I}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}, \quad x \mapsto \widehat{\Phi}_{I}(x):=x \cdot \widehat{\operatorname{Cox}}_{I} \tag{1.10}
\end{equation*}
$$

is called the Coxeter-Tits transformation of I, and the Coxeter number \mathbf{c}_{I} of I is the minimal integer $r \geqslant 1$ such that $\widehat{\Phi}_{I}^{r}$ is the identity map on \mathbb{Z}^{n}. If $\widehat{\Phi}_{I}^{r} \neq i d$, for all $r \geqslant 1$, we set $\mathbf{c}_{I}=\infty$.

Recall also that the matrix

$$
\begin{equation*}
\overline{\operatorname{Cox}}_{I}:=-\bar{C}_{I} \cdot \bar{C}_{I}^{-t r} \in \mathbb{M}_{n}(\mathbb{Z}) \tag{1.11}
\end{equation*}
$$

is called the Coxeter-Euler matrix of I, and the group isomorphism

$$
\begin{equation*}
\bar{\Phi}_{I}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}, \quad x \mapsto \bar{\Phi}_{I}(x):=x \cdot \overline{\operatorname{Cox}}_{I} \tag{1.12}
\end{equation*}
$$

is called the Coxeter-Euler transformation of I.
Following an idea introduced in [30,31], we study in the paper a $\widehat{\Phi}_{I}$-mesh root system structure $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ on the set of roots $\widehat{\mathcal{R}}_{I} \subseteq \mathbb{Z}^{n}$ of any connected positive poset I, with $n \geqslant 2$ vertices, where $\widehat{\Phi}_{I}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ is the Coxeter-Tits transformation defined by the Tits matrix $\widehat{C}_{I} \in \mathbb{M}_{n}(\mathbb{Z})$ of I.

One of the main aims of the paper is to present a combinatorial algorithm that constructs a $\widehat{\Phi}_{I}$-mesh root system structure $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ (see Definition 2.13) on the finite set of all $\widehat{\Phi}_{I^{\text {-orbits }}}$ of the irreducible root system $\widehat{\mathcal{R}}_{I}$. Moreover, in Corollary 4.6 , we prove that the Coxeter polynomial $\operatorname{cox}_{I}(t)$ and the Coxeter number \mathbf{c}_{I} of such poset I depend only on the simply laced Dynkin type $D I$ of $\widehat{\mathcal{R}}_{I}$ and $\operatorname{cox}_{I}(t)$ coincides
with the Coxeter polynomial $\operatorname{cox}_{D I}(t)$ of the Dynkin diagram $D I$, see [29, Example 3.12].

The idea of construction of our horizontal mesh algorithm is inspired by the method of a construction of postprojective component in some categories of modules (see $[7,8,15,26]$). However, this well-known method computes only a mesh quiver consisting of the positive vectors. In the present paper we show that our modification of this algorithm computes a $\widehat{\Phi}_{I}$-mesh root system structure $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ for the set $\widehat{\mathcal{R}}_{I}$ of all roots (not only positive roots).

We recall that one of the motivations for the study of a $\widehat{\Phi}_{I}$-mesh root system structure $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ comes from the poset representation theory (see $[9,10,21,24,26,28,29,34]$).

The sets of roots and Tits roots are playing an important role in many areas of mathematics. In the representation theory of finite dimensional algebras over a field the roots control categories of indecomposable modules for a large classes of algebras (see $[1-3,24,25]$), while in the theory of Lie groups and Lie algebras they are connected with root spaces (see $[4,13]$). Moreover, they control linear bases, generators and relations of Ringel-Hall algebras (see $[18,19]$).

Recall that in [17] the Tits roots were applied to get a classification of two-peak sincere posets of finite prinjective type. Therefore, it is of importance to have efficient combinatorial algorithms that compute roots, Tits roots and $\widehat{\Phi}_{I}$-mesh root system structures.

2. Preliminaries

Throughout this paper all posets are assumed to be connected.

2.1. Unit quadratic forms associated with a poset

Let I be a poset. By a Tits quadratic form and an Euler quadratic form of I we mean the unit quadratic forms

$$
\widehat{q}_{I}, \bar{q}_{I}: \mathbb{Z}^{I} \rightarrow \mathbb{Z}
$$

defined by the formulae

$$
\widehat{q}_{I}(x)=x \cdot \widehat{C}_{I} \cdot x^{t r}, \quad \bar{q}_{I}(x)=x \cdot \bar{C}_{I} \cdot x^{t r}
$$

It is easy to see that

$$
\begin{equation*}
\widehat{q}_{I}(x)=\sum_{i \in I} x_{i}^{2}+\sum_{i \prec j \in I^{-}} x_{j} x_{i}-\sum_{w \in \max } \sum_{i \prec w} x_{i} x_{w} . \tag{2.1}
\end{equation*}
$$

Note also that the Tits quadratic form $q\left(x_{1}, \ldots, x_{n}, x_{*}\right)$ (1.1) of a partially ordered set $T=\left\{p_{1}, \ldots, p_{n}\right\}$ (defined by Drozd [9]) coincides with the Tits form $\widehat{q}_{I}\left(x_{1}, \ldots, x_{n}, x_{*}\right)(2.1)$ of the one-peak poset $I=T^{*} \cup\{*\}$ obtained from T by adding a unique maximal element $*$.

Recall from [29, Corollary 1.8] that one of the quadratic forms $\widehat{q}_{I}, \bar{q}_{I}$ is positive if and only if both of them are positive. Moreover, in this case we have

$$
\begin{equation*}
\bar{q}_{I}(x)=\sum_{i \in I} x_{i}^{2}-\sum_{i \rightarrow j} x_{i} x_{j}+\sum_{i \triangleleft j} c_{i j}^{\bullet} x_{i} x_{j}, \tag{2.2}
\end{equation*}
$$

where the relation $i<j$ holds if there exists a minimal commutativity relation $w^{\prime}-w^{\prime \prime}$ in I, where $w^{\prime}, w^{\prime \prime}$ are paths with the source i and the terminus j and $c_{i j}^{\bullet}$ is the maximal number of linearly independent minimal commutativity relations $w^{\prime}-w^{\prime \prime}$ in I with the source i and the terminus j, see Corollary 1.8, Remark 3.5 and Proposition 4.2 in [29].

Remark 2.3. Let I be a positive poset. The formula (2.2) implies that the matrix $\bar{C}_{I}=\left(\bar{c}_{i j}\right)$ satisfies the non-cycle condition defined in [14]. Let us recall this definition. With a poset I we associate the biquiver $\bar{Q}_{I}=\left(\bar{Q}_{0}, \bar{Q}_{1}\right)$ with the set of vertices $\bar{Q}_{0}=I$. Moreover, there are $-\bar{c}_{i j}$ solid arrows $i \longrightarrow j$, if $\bar{c}_{i j}<0$ and $\bar{c}_{i j}$ broken arrows $i-->j$, if $\bar{c}_{i j}>0$. Let $Q=\left(Q_{0}, Q_{1}\right)$ be a biquiver.
(a) We say that a (unoriented) cycle $\left(x_{1}, x_{2}, \ldots, x_{n}, x_{1}\right)$ in Q is simple if for all $i, j \in\{1, \ldots, n\}, i \neq j$ we have $x_{i} \neq x_{j}$.
(b) We say that a simple cycle $\left(x_{1}, x_{2}, \ldots, x_{n}, x_{1}\right)$ is chordless if for any arrow $\left(x_{i}, x_{j}\right)$ we have $i=j \pm 1$ (wherein $1 \equiv n+1$).
(c) Further, consider a simple cycle in Q of the form

The biquiver Q satisfies the non-cycle condition, if every simple chordless cycle in Q containing a broken arrow has the form (2.4).
(d) Given a poset I the matrix $\bar{C}_{I}=\left(\bar{c}_{i j}\right)$ satisfies the non-cycle condition, if the biquiver \bar{Q}_{I} satisfies this condition.

For all $i \in I$, denote by \widehat{p}_{i} the Tits-projective vector associated with i, i.e. \widehat{p}_{i} is defined by the formula

$$
\widehat{p}_{i}(j)=\left\{\begin{array}{lll}
1 & \text { for } & i=j \tag{2.5}\\
1 & \text { for } & i \preceq j \in \max I \\
0 & \text { otherwise. }
\end{array}\right.
$$

Let

$$
\widehat{\mathcal{P}}=\widehat{\mathcal{P}}(I)=\left\{\widehat{p}_{i} ; i \in I\right\}
$$

be the set of all Tits-projective vectors.
For all $i \in I$, denote by \widehat{r}_{i} the Tits-radical vector associated with i, i.e. \widehat{r}_{i} is defined by the formula

$$
\widehat{r}_{i}(j)=\left\{\begin{array}{lll}
1 & \text { for all } & i \rightarrow j \tag{2.6}\\
1 & \text { for } & i \prec j \in \max I \\
0 & \text { otherwise. }
\end{array}\right.
$$

Let

$$
\widehat{\operatorname{Rad}}=\widehat{\operatorname{Rad}}(I)=\left\{\widehat{r}_{i} ; i \in I\right\}
$$

be the set of all Tits-radical vectors.
Let $i \in I$ and let \widehat{r}_{i} be the corresponding Tits-radical vector. Consider the convex subposet

$$
I-\operatorname{supp}\left(\widehat{r}_{i}\right)=\text { conv.hull }\left\{j \in I ; \widehat{r}_{i}(j) \neq 0\right\}
$$

of I. Let $I_{1}, \ldots, I_{k_{i}}$ be the set of all connected components of the Hasse quiver of $I-\operatorname{supp}\left(r_{i}\right)$. We define the vectors $\widehat{r}_{i}^{1}, \ldots, \widehat{r}_{i}^{k_{i}}$ by the following formula:

$$
\widehat{r}_{i}^{t}(j)= \begin{cases}\widehat{r}_{i}(j) & \text { if } i \in I_{t} \tag{2.7}\\ 0 & \text { otherwise }\end{cases}
$$

for all $t \in\left\{1, \ldots, k_{i}\right\}$. We denote by $\widehat{\operatorname{Rad}}_{\text {comp }}$ the set of vectors $\widehat{r}_{i}^{1}, \ldots, \widehat{r}_{i}^{k_{i}}$, where $i \in I$.

It is known that $\widehat{p} i \in \widehat{\mathcal{R}}_{I}$ and $\widehat{r}_{i}^{j} \in \widehat{\mathcal{R}}_{I}$, for all i, j, see [23,26, 27].
Denote by \bar{p}_{i} the Euler-projective vector associated with i, i.e. \bar{p}_{i} is defined by the formula

$$
\bar{p}_{i}(j)=\left\{\begin{array}{lll}
1 & \text { for all } & i \preceq j \tag{2.8}\\
0 & \text { otherwise } &
\end{array}\right.
$$

Let

$$
\overline{\mathcal{P}}=\overline{\mathcal{P}}(I)=\left\{\bar{p}_{i} ; i \in I\right\}
$$

be the set of all Euler-projective vectors.
For all $i \in I$, denote by \bar{r}_{i} the Euler-radical vector associated with i, i.e. \bar{r}_{i} is defined by the formula:

$$
\begin{equation*}
\bar{r}_{i}=\bar{p}_{i}-e_{i} . \tag{2.9}
\end{equation*}
$$

Let

$$
\overline{\operatorname{Rad}}=\overline{\operatorname{Rad}}(I)=\left\{\bar{r}_{i} ; i \in I\right\}
$$

be the set of all Euler-radical vectors.
Let $i \in I$ and let \bar{r}_{i} be the corresponding Euler-radical vector. Consider the convex subposet

$$
I-\operatorname{supp}\left(\bar{r}_{i}\right)=\left\{j \in I ; \bar{r}_{i}(j) \neq 0\right\}
$$

of I. Let $I_{1}, \ldots, I_{k_{i}}$ be the set of all connected components of the Hasse quiver of $I-\operatorname{supp}\left(\bar{r}_{i}\right)$. We define the vectors $\bar{r}_{i}^{1}, \ldots, \bar{r}_{i}^{k_{i}}$ by the following formula:

$$
\bar{r}_{i}^{t}(j)= \begin{cases}\bar{r}_{i}(j) & \text { if } i \in I_{t} \tag{2.10}\\ 0 & \text { otherwise }\end{cases}
$$

for all $t \in\left\{1, \ldots, k_{i}\right\}$. We denote by $\overline{\operatorname{Rad}}_{\text {comp }}$ the set of vectors $\bar{r}_{i}^{1}, \ldots, \bar{r}_{i}^{k_{i}}$, where $i \in I$.

It is known that $\overline{p_{i}} \in \overline{\mathcal{R}}_{I}$ and $\bar{r}_{i}^{j} \in \overline{\mathcal{R}}_{I}$, for all i, j, see $[14,23,26,27]$.

2.2. Mesh translation quivers in \mathbb{Z}^{n}

We recall from [30,31] the following definitions (see also [14]). They are inspired by the definition of the Auslander-Reiten quiver of an algebra (see $[1,2]$).

Let $\Phi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a group automorphism (e.g. the Coxeter-Tits transformation $\widehat{\Phi}_{I}$ or the Coxeter transformation $\bar{\Phi}_{I}$ of a poset I). A Φ orbit $\Phi-\mathcal{O} r b(v)=\left\{\Phi^{k}(v)\right\}_{k \in \mathbb{Z}}$ of a vector $v \in \mathbb{Z}^{n}$ will be visualised as an infinite graph:

$$
\ldots---\Phi(v)---v---\Phi^{-1}(v)---\Phi^{-2}(v)---\ldots
$$

Definition 2.11. Let $\Phi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a non-trivial group automorphism (e.g. the Coxeter-Tits transformation $\widehat{\Phi}_{I}$ or the Coxeter transformation $\bar{\Phi}_{I}$ of a poset I). We say that the vectors $u, v_{1}, \ldots, v_{s}, w \in \mathbb{Z}^{n}$ form a Φ-mesh starting from u and terminating at w, if the following two conditions are satisfied:
(i) $u=\Phi(w)$ and $u+w=\sum_{i=1}^{s} v_{i}$,
(ii) the vectors v_{1}, \ldots, v_{s} are pairwise different, lie in pairwise different orbits of Φ and none of them lies in the Φ-orbit of u.

A Φ-mesh we visualise as the following triangular quiver:

Definition 2.13. Let $n \geqslant 2$, let $\Phi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be a non-trivial group automorphism and let \mathcal{R} be a Φ-invariant subset of \mathbb{Z}^{n} (e.g. $\mathcal{R}=\widehat{\mathcal{R}}_{I}$ if $\Phi=\widehat{\Phi}_{I}$ or $\mathcal{R}=\overline{\mathcal{R}}_{I}$ if $\Phi=\bar{\Phi}_{I}$). We say that \mathcal{R} admits a geometry of Φ-mesh quiver if there exists a quiver $\overrightarrow{\mathcal{R}}=\left(\overrightarrow{\mathcal{R}}_{0}, \overrightarrow{\mathcal{R}}_{1}\right)$ with $\overrightarrow{\mathcal{R}}_{0}=\mathcal{R}$, such that $\overrightarrow{\mathcal{R}}$ together with the bijection $\Phi: \mathcal{R} \rightarrow \mathcal{R}$ induced by Φ is a triangular translation quiver $\Gamma(\mathcal{R}, \Phi)$ (see [1, IV.4.7]) with the following property: for every vector $w \in \mathcal{R}$, the full convex subquiver containing the vertices w and $\Phi(w)$ is a Φ-mesh of the form (2.12), and if

is a Φ-mesh, then $s^{\prime}=s$ and $v_{1}=v_{1}^{\prime}, \ldots, v_{s}=v_{s}^{\prime}$, up to permutation of the set $\{1, \ldots, s\}$.

Definition 2.14. Let $\Gamma(\mathcal{R}, \Phi)$ be a Φ-mesh quiver in \mathbb{Z}^{n} as in Definition 2.13. A slice in $\Gamma(\mathcal{R}, \Phi)$ is a full convex connected subquiver $\Sigma=\left(\Sigma_{0}, \Sigma_{1}\right)$ of $\Gamma(\mathcal{R}, \Phi)$ such that for any $v \in \mathcal{R}$ the set $\Phi-\mathcal{O} r b(v) \cap \Sigma_{0}$ contains exactly one element.

Example 2.15. Consider the posets I and I^{\prime} defined by the following Hasse quivers:

respectively. Note that the set $\widehat{\mathcal{R}}_{I} \subseteq \mathbb{Z}^{4}$ of Tits roots of I consists of 24 vectors. One easily see that the set $\widehat{\mathcal{R}}_{I}$ admits the following geometry of $\widehat{\Phi}_{I \text {-mesh quiver }} \Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ (we identify the vectors in frames):

Moreover the set $\widehat{\mathcal{R}}_{I^{\prime}}$ of Tits roots of I^{\prime} consists of 24 vectors and admits the following geometry of $\widehat{\Phi}_{I^{\prime}}$-mesh quiver $\Gamma\left(\widehat{\mathcal{R}}_{I^{\prime}}, \widehat{\Phi}_{I^{\prime}}\right)$ (we identify the vectors in frames):

Here we set $\widehat{a}=-a$, for $a \in \mathbb{N}$.
In the algorithm presented in Section 3 first we look for a slice canditate Σ in $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$. Then the remaining part of $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ is easy to compute. In $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ presented in Example 2.15 the quiver

is a slice. Applying definition of a $\widehat{\Phi}_{I}$-mesh we can construct now the $\widehat{\Phi}_{I \text {-mesh translation quiver }}^{\Gamma}\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ by knitting $\widehat{\Phi}_{I}$-meshes as follows:

Indeed, we have
$b=(1010)+(1100)+(1001)-(1000)$,
$a=b-(1010)$,
$c=b-(1100)$,
$d=b-(1001)$,
$e=a+c+d-b$, and so on.
Note that $\widehat{\Phi}_{I}(a)=(1010), \widehat{\Phi}_{I}(b)=(1000), \widehat{\Phi}_{I}(c)=(1100), \widehat{\Phi}_{I}(d)=$ (1001), and $\widehat{\Phi}_{I}(e)=b$.

3. A horizontal mesh algorithm

The idea of construction of a horizontal mesh algorithm that we present in this section is inspired by a construction of the postprojective component of the Auslander-Reiten quiver of an algebra or a poset (see $[7,8,15]$).

We would like to stress that the algorithm

$$
\left(I, \widehat{\mathcal{P}}, \widehat{\operatorname{Rad}}, \widehat{\operatorname{Rad}}_{c o m p}, k\right) \mapsto \widehat{\Gamma}:=\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)
$$

presented below, called a horizontal mesh algorithm, associates to an arbitrary poset I, with initial data $\widehat{\mathcal{P}}, \widehat{\operatorname{Rad}}, \widehat{\operatorname{Rad}}_{\text {comp }}, k$, a $\widehat{\Phi}_{I}$-mesh translation quiver $\Gamma\left(\widetilde{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ such that $\widehat{\Gamma}$ defines a $\widehat{\Phi}_{I \text {-mesh root system structure }}$ $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ on the set $\widehat{\mathcal{R}}_{I}$ of Tits roots of I, in case when I is positive (see Theorem 4.4 for a proof). The algorithm is a modification of a corresponding horizontal mesh algorithm presented in [14], for positive edge-bipartite graphs.

Algorithm 3.1. Input: A system $\left(I, \widehat{\mathcal{P}}, \widehat{\operatorname{Rad}}, \widehat{\operatorname{Rad}}_{\text {comp }}, k\right)$, where

- $I=(I, \preceq)$ is a poset such that $I=\{1, \ldots, n\}$,
- $\widehat{\mathcal{P}}=\left\{\widehat{p}_{1}, \ldots, \widehat{p}_{n}\right\}$ is the set of Tits-projective vectors,
- $\widehat{\operatorname{Rad}}=\left\{\widehat{r}_{1}, \ldots, \widehat{r}_{n}\right\}$ is the set of Tits-radical vectors,
- $\widehat{\operatorname{Rad}}_{c o m p}=\left\{\widehat{r}_{1}^{1}, \ldots, \widehat{r}_{1}^{k_{1}}, \ldots, \widehat{r}_{n}^{1}, \ldots, \widehat{r}_{n}^{k_{n}}\right\}$, where \widehat{r}_{i}^{j} are defined by formula 2.7,
- $k \in \mathbb{N}$.

Output: The quiver $\widehat{\Gamma}=\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$.
Step 1. Inductively, we construct the following data:

- ordered lists $\widehat{L}[i]$, for any $i=1, \ldots, n$;
- quivers $\widehat{G}^{i}=\left(\widehat{G}_{0}^{i}, \widehat{G}_{1}^{i}\right)$, for $i=0,1,2, \ldots$;
- quivers $\widehat{\Gamma}^{i}=\left(\widehat{\Gamma}_{0}^{i}, \widehat{\Gamma}_{1}^{i}\right)$, for $i=0,1,2, \ldots$;
- sets $\widehat{\mathcal{P}}_{0} \subseteq \widehat{\mathcal{P}}_{1} \subseteq \ldots \subseteq \widehat{\mathcal{P}}_{k} \subseteq \widehat{\mathcal{P}}=\left\{\widehat{p}_{1}, \ldots, \widehat{p}_{n}\right\} ;$
in the following way.
STEP 1.1. For any $i=1, \ldots, n$, we put $\widehat{L}[i]:=\left[\widehat{p}_{i}\right]$.

Step 1.2. Let

$$
\widehat{\mathcal{P}}_{0}=\widehat{G}_{0}^{0}=\left\{\widehat{p}_{i} \in \widehat{\mathcal{P}} ; i \in \max I\right\} \quad \text { and } \quad \widehat{\Gamma}_{0}^{0}=\widehat{\Gamma}_{1}^{0}=\widehat{G}_{1}^{0}=\varnothing
$$

Step 1.3. We put

$$
\begin{aligned}
\widehat{\mathcal{C}}_{1}= & \left\{\widehat{p}_{i} ; \widehat{r}_{i} \neq 0 \text { and } \widehat{r}_{i}^{j} \in \widehat{G}_{0}^{0} \text { for all } j=1, \ldots, k_{i}\right\}, \\
& \widehat{\mathcal{P}}_{1}:=\widehat{G}_{0}^{1}:=\widehat{G}_{0}^{0} \cup \widehat{\mathcal{C}}_{1} \text { and } \widehat{\Gamma}_{0}^{1}=\widehat{\Gamma}_{1}^{1}=\varnothing \\
\widehat{G}_{1}^{1}= & \left\{\widehat{r}_{i}^{j} \rightarrow \widehat{p}_{i} ; \text { for all } \widehat{p}_{i} \in \widehat{\mathcal{C}}_{1} \text { and all } j=1, \ldots, k_{i}\right\} .
\end{aligned}
$$

STEP 1.4. Assume that, for $i=0, \ldots, m-1, m \geqslant 2$, data $\widehat{G}^{i}, \widehat{\Gamma}^{i}, \widehat{\mathcal{P}}_{i}$ are constructed. We set

$$
\widehat{\mathcal{P}}_{m}^{\prime}=\left\{\widehat{p}_{i} \in \widehat{\mathcal{P}} \backslash \widehat{\mathcal{P}}_{m-1} ; \widehat{r}_{i} \neq 0 \text { and } \widehat{r}_{i}^{j} \in \widehat{G}_{0}^{m-1} \text { for all } j=1, \ldots, k_{i}\right\}
$$

and

$$
\widehat{\mathcal{P}}_{m}=\widehat{\mathcal{P}}_{m}^{\prime} \cup \widehat{\mathcal{P}}_{m-1}
$$

We define

$$
\begin{gathered}
\widehat{\mathcal{C}}_{m}=\widehat{\mathcal{P}}_{m}^{\prime} \cup\left\{z=-x+\sum_{x \rightarrow y} y ; y \in \widehat{\mathcal{C}}_{m-1}\right\}, \\
\widehat{G}_{0}^{m}=\widehat{G}_{0}^{m-1} \cup \widehat{\mathcal{C}}_{m}
\end{gathered}
$$

and

$$
\begin{aligned}
& \widehat{G}_{1}^{m}=\left\{\widehat{r}_{i}^{j} \rightarrow \widehat{p}_{i} ; \text { for all } \widehat{p}_{i} \in \widehat{\mathcal{C}}_{m} \text { and all } j=1, \ldots, k_{i}\right\} \cup \\
& \left.\qquad \cup y \rightarrow z ; \text { for all } y \text { such that } z=-x+\sum_{x \rightarrow y} y\right\}
\end{aligned}
$$

Moreover, if $\widehat{\mathcal{P}}_{m} \neq \widehat{\mathcal{P}}, z=-x+\sum_{x \rightarrow y} y$ and $x \in \widehat{L}[i]$, then we add z at the end of the list $\widehat{L}[i]$ and delete the first element of the list $\widehat{L}[i]$. If $\widehat{\mathcal{P}}_{m} \neq \widehat{\mathcal{P}}$, then we set $\widehat{\Gamma}_{0}^{m}=\widehat{\Gamma}_{1}^{m}=\varnothing$; otherwise we set

$$
\widehat{\Gamma}_{0}^{m}=\widehat{\Gamma}_{0}^{m-1} \cup \widehat{\mathcal{C}}_{m}
$$

and
$\widehat{\Gamma}_{1}^{m}=\widehat{\Gamma}_{1}^{m-1} \cup\left\{y \rightarrow z\right.$; for all $y \rightarrow z \in \widehat{G}_{1}^{m}$ such that $\left.y, z \in \widehat{\Gamma}_{0}^{m-1} \cup \widehat{\Gamma}_{0}^{m}\right\}$.
Moreover, if $\widehat{\mathcal{P}}_{m}=\widehat{\mathcal{P}}, z=-x+\sum_{x \rightarrow y} y$ and $x \in \widehat{L}[i]$, then we add z at the end of the list $\widehat{L}[i]$.
STEP 2. If $m=k$, we finish and set $\widehat{\Gamma}=\widehat{\Gamma}^{k}$.

Remark 3.2. In this algorithm the set $\widehat{\mathcal{P}}$ of Tits-projective and the set $\widehat{R a d}$ of Tits-radical can be replaced by the set $\overline{\mathcal{P}}$ of Euler-projective vectors and the set $\overline{\mathrm{Rad}}$ of Euler-radical vectors, respectively, i.e. as an input we put $\left(I, \overline{\mathcal{P}}, \overline{\operatorname{Rad}}^{\operatorname{Rad}} \overline{\operatorname{Rad}}_{c o m p}, k\right)$. In this way, we obtain an algorithm that for a positive poset I constructs a $\bar{\Phi}_{I}$-mesh root system structure $\Gamma\left(\overline{\mathcal{R}}_{I}, \bar{\Phi}_{I}\right)$, see Theorem 4.4.

In the description of Algorithm 3.1 with input ($I, \overline{\mathcal{P}}, \overline{\operatorname{Rad}}, \overline{\operatorname{Rad}}_{\text {comp }}, k$) the data computed in Step 1 we denote by adding a dash over a corresponding symbol (e.g. we replace $\widehat{L}[i]$ by $\bar{L}[i], \widehat{\Gamma}^{k}$ by $\bar{\Gamma}^{k}$ etc.).

We illustrate Algorithm 3.1 by the following example.
Example 3.3. Consider the following poset

Note that

$$
\begin{gathered}
\widehat{\mathcal{P}}=\left\{\widehat{p}_{1}=(1,0,0,0), \widehat{p}_{2}=(1,1,0,0), \widehat{p}_{3}=(1,0,1,0), \widehat{p}_{4}=(1,0,0,1)\right\} \\
\widehat{\operatorname{Rad}}=\left\{\widehat{r}_{2}=(1,0,0,0), \widehat{r}_{3}=(1,0,0,0), \widehat{r}_{4}=(1,1,1,0)\right\}
\end{gathered}
$$

and $\widehat{\operatorname{Rad}}_{\text {comp }}=\left\{\widehat{r}_{2}^{1}=\widehat{r}_{2}, \widehat{r}_{3}^{1}=\widehat{r}_{3}, \widehat{r}_{4}^{1}=\widehat{r}_{4}\right\}$. We set $k=5$. Applying Algorithm 3.1 to ($I, \widehat{\mathcal{P}}, \widehat{\operatorname{Rad}}, \widehat{\operatorname{Rad}}_{\text {comp }}, k$) we get

Indeed:
$\mathrm{m}=0: \widehat{\mathcal{P}}_{0}=\widehat{G}_{0}^{0}=\left\{\widehat{p}_{1}=(1,0,0,0)\right\} ; \widehat{\Gamma}_{0}^{0}=\widehat{\Gamma}_{1}^{0}=\widehat{G}_{1}^{0}=\varnothing ; \widehat{L}[1]=$ $\left[\widehat{p}_{1}\right], \widehat{L}[2]=\left[\widehat{p}_{2}\right], \widehat{L}[3]=\left[\widehat{p}_{3}\right], \widehat{L}[4]=\left[\widehat{p}_{4}\right]$.
$\mathrm{m}=1: \widehat{\mathcal{C}}_{1}=\left\{\widehat{p}_{2}=(1,1,0,0), \widehat{p}_{3}=(1,0,1,0)\right\}, \widehat{\mathcal{P}}_{1}=\widehat{G}_{0}^{1}=\left\{\widehat{p}_{1}, \widehat{p}_{2}, \widehat{p}_{3}\right\}$, $\widehat{G}_{1}^{1}=\left\{\left(\widehat{p}_{1}, \widehat{p}_{2}\right),\left(\widehat{p}_{1}, \widehat{p}_{3}\right)\right\}, \widehat{\Gamma}_{0}^{1}=\widehat{\Gamma}_{1}^{1}=\varnothing . \widehat{L}[1]=\left[\widehat{p}_{1}\right], \widehat{L}[2]=\left[\widehat{p}_{2}\right]$, $\widehat{L}[3]=\left[\widehat{p}_{3}\right], \widehat{L}[4]=\left[\widehat{p}_{4}\right]$.
$\mathrm{m}=2: \widehat{\mathcal{P}}_{2}^{\prime}=\varnothing, \widehat{\mathcal{P}}_{2}=\widehat{\mathcal{P}}_{1}, \widehat{\mathcal{C}}_{2}=\left\{\widehat{p}_{2}+\widehat{p}_{3}-\widehat{p}_{1}=(1,1,1,0)\right\}, \widehat{G}_{0}^{2}=\widehat{G}_{0}^{1} \cup \widehat{\mathcal{C}}_{2}$, $\widehat{G}_{1}^{2}=\left\{\left(\widehat{p}_{2},(1,1,1,0)\right),\left(\widehat{p}_{3},(1,1,1,0)\right)\right\}, \widehat{\Gamma}_{0}^{2}=\widehat{\Gamma}_{1}^{2}=\varnothing$. $\widehat{L}[1]=[(1,1,1,0)], \widehat{L}[2]=\left[\widehat{p}_{2}\right], \widehat{L}[3]=\left[\widehat{p}_{3}\right], \widehat{L}[4]=\left[\widehat{p}_{4}\right]$.
$\mathrm{m}=3: \widehat{\mathcal{P}}_{3}^{\prime}=\left\{\widehat{p}_{4}=(1,0,0,1)\right\}, \widehat{\mathcal{P}}_{3}=\left\{\widehat{p}_{1}, \widehat{p}_{2}, \widehat{p}_{3}, \widehat{p}_{4}\right\}, \widehat{\mathcal{C}}_{3}=\left\{\widehat{p}_{4},(0,1,0,0)\right.$, $(0,0,1,0)\}, \quad \widehat{G}_{0}^{3}=\widehat{G}_{0}^{2} \cup \widehat{\mathcal{C}}_{3}, \quad \widehat{G}_{1}^{3}=\left\{\left((1,1,1,0), \widehat{p}_{4}\right)\right.$, $((1,1,1,0),(0,1,0,0)),((1,1,1,0),(0,0,1,0))\}, \widehat{\Gamma}_{0}^{3}=\widehat{\mathcal{C}_{3}}, \widehat{\Gamma}_{1}^{3}=\varnothing$. $\widehat{L}[1]=[(1,1,1,0)], \widehat{L}[2]=[(0,0,1,0)], \widehat{L}[3]=[(0,1,0,0)], \widehat{L}[4]=$ [$\left.\hat{p}_{4}\right]$.
$\mathrm{m}=4: \widehat{\mathcal{P}}_{4}^{\prime}=\varnothing, \widehat{\mathcal{P}}_{4}=\widehat{\mathcal{P}}, \widehat{\mathcal{C}}_{4}=\{(0,0,0,1)\}, \widehat{G}_{0}^{4}=\widehat{G}_{0}^{3} \cup \widehat{\mathcal{C}}_{3}, \widehat{G}_{1}^{4}=$ $\left\{\left(\widehat{p}_{4},(0,0,0,1)\right),((0,1,0,0),(0,0,0,1)),((0,0,1,0),(0,0,0,1))\right\}, \widehat{\Gamma}_{0}^{4}$ $=\widehat{\Gamma}_{0}^{3} \cup \widehat{\mathcal{C}}_{3}, \widehat{\Gamma}_{1}^{4}=\widehat{G}_{1}^{4} \cdot \widehat{L}[1]=[(1,1,1,0),(0,0,0,1)], \widehat{L}[2]=$ $[(0,0,1,0)], \widehat{L}[3]=[(0,1,0,0)], \widehat{L}[4]=\left[\widehat{p}_{4}\right]$.
$\mathrm{m}=5: \widehat{\mathcal{P}}_{5}^{\prime}=\varnothing, \widehat{\mathcal{P}}_{5}=\widehat{\mathcal{P}}, \widehat{\mathcal{C}}_{5}=\{(0,0, \widehat{1}, 1),(\widehat{1}, 0,0,0),(0, \widehat{1}, 0,1)\}, \widehat{G}_{0}^{5}=\widehat{G}_{0}^{4} \cup$ $\widehat{\mathcal{C}}_{4}, \widehat{G}_{1}^{5}=\{((0,0,0,1),(0,0, \widehat{1}, 1)),((0,0,0,1),(\widehat{1}, 0,0,0)),((0,0,0,1)$, $(0, \widehat{1}, 0,1))\}, \widehat{\Gamma}_{0}^{5}=\widehat{\Gamma}_{0}^{4} \cup \widehat{\mathcal{C}}_{4}, \widehat{\Gamma}_{1}^{5}=\widehat{\Gamma}_{1}^{4} \cup \widehat{G}_{1}^{5}, \widehat{L}[1]=[(1,1,1,0),(0,0,0,1)]$, $\widehat{L}[2]=[(0,0,1,0),(0,0, \widehat{1}, 1)], \widehat{L}[3]=[(0,1,0,0),(0, \widehat{1}, 0,1)], \widehat{L}[4]=$ $\left[\widehat{p}_{4},(\hat{1}, 0,0,0)\right]$.
Now we apply Algorithm 3.1 to ($I, \overline{\mathcal{P}}, \overline{\operatorname{Rad}}^{\operatorname{Rad}} \overline{\operatorname{Ramp}}, k$). Note that

$$
\overline{\mathcal{P}}=\left\{\bar{p}_{1}=(1,0,0,0), \bar{p}_{2}=(1,1,0,0), \bar{p}_{3}=(1,0,1,0), \bar{p}_{4}=(1,1,1,1)\right\},
$$

$\overline{\operatorname{Rad}}=\left\{\bar{r}_{1}=(0,0,0,0), \bar{r}_{2}=(1,0,0,0), \bar{r}_{3}=(1,0,0,0), \bar{r}_{4}=(1,1,1,0)\right\}$, and $\overline{\operatorname{Rad}}_{\text {comp }}=\left\{\bar{r}_{1}^{1}=\bar{r}_{1}, \bar{r}_{2}^{1}=\bar{r}_{2}, \bar{r}_{3}^{1}=\bar{r}_{3}, \bar{r}_{4}^{1}=\bar{r}_{4}\right\}$. We set $k=5$ and get

Indeed:
$\mathrm{m}=0: \overline{\mathcal{P}}_{0}=\bar{G}_{0}^{0}=\left\{\bar{p}_{1}=(1,0,0,0)\right\} ; \bar{\Gamma}_{0}^{0}=\bar{\Gamma}_{1}^{0}=\bar{G}_{1}^{0}=\varnothing ; \bar{L}[1]=$ $\left[\bar{p}_{1}\right], \bar{L}[2]=\left[\bar{p}_{2}\right], \bar{L}[3]=\left[\bar{p}_{3}\right], \bar{L}[4]=\left[\bar{p}_{4}\right]$.
$\mathrm{m}=1: \overline{\mathcal{C}}_{1}=\left\{\bar{p}_{2}=(1,1,0,0), \bar{p}_{3}=(1,0,1,0)\right\}, \overline{\mathcal{P}}_{1}=\bar{G}_{0}^{1}=\left\{\bar{p}_{1}, \bar{p}_{2}, \bar{p}_{3}\right\}$, $\bar{G}_{1}^{1}=\left\{\left(\bar{p}_{1}, \bar{p}_{2}\right),\left(\bar{p}_{1}, \bar{p}_{3}\right)\right\}, \bar{\Gamma}_{0}^{1}=\bar{\Gamma}_{1}^{1}=\varnothing \cdot \bar{L}[1]=\left[\bar{p}_{1}\right], \bar{L}[2]=\left[\bar{p}_{2}\right]$, $\bar{L}[3]=\left[\bar{p}_{3}\right], \bar{L}[4]=\left[\bar{p}_{4}\right]$.
$\mathrm{m}=2: \overline{\mathcal{P}}_{2}^{\prime}=\varnothing, \overline{\mathcal{P}}_{2}=\overline{\mathcal{P}}_{1}, \overline{\mathcal{C}}_{2}=\left\{\bar{p}_{2}+\bar{p}_{3}-\bar{p}_{1}=(1,1,1,0)\right\}, \bar{G}_{0}^{2}=\bar{G}_{0}^{1} \cup \overline{\mathcal{C}}_{2}$, $\bar{G}_{1}^{2}=\left\{\left(\bar{p}_{2},(1,1,1,0)\right),\left(\bar{p}_{3},(1,1,1,0)\right)\right\}, \quad \bar{\Gamma}_{0}^{2}=\bar{\Gamma}_{1}^{2}=\varnothing$. $\bar{L}[1]=[(1,1,1,0)], \bar{L}[2]=\left[\bar{p}_{2}\right], \bar{L}[3]=\left[\bar{p}_{3}\right], \bar{L}[4]=\left[\bar{p}_{4}\right]$.
$\mathrm{m}=3: \overline{\mathcal{P}}_{3}^{\prime}=\left\{\bar{p}_{4}=(1,1,1,1)\right\}, \overline{\mathcal{P}}_{3}=\left\{\bar{p}_{1}, \bar{p}_{2}, \bar{p}_{3}, \bar{p}_{4}\right\}, \overline{\mathcal{C}}_{3}=\left\{\bar{p}_{4},(0,1,0,0)\right.$, $(0,0,1,0)\}, \quad \bar{G}_{0}^{3}=\bar{G}_{0}^{2} \cup \overline{\mathcal{C}}_{3}, \quad \bar{G}_{1}^{3}=\left\{\left((1,1,1,0), \bar{p}_{4}\right)\right.$, $((1,1,1,0),(0,1,0,0)),((1,1,1,0),(0,0,1,0))\}, \bar{\Gamma}_{0}^{3}=\overline{\mathcal{C}}_{3}, \bar{\Gamma}_{1}^{3}=\varnothing$. $\bar{L}[1]=[(1,1,1,0)], \bar{L}[2]=[(0,0,1,0)], \bar{L}[3]=[(0,1,0,0)], \bar{L}[4]=$ $\left[\bar{p}_{4}\right]$.

$$
\begin{aligned}
\mathrm{m}=4: & \overline{\mathcal{P}}_{4}^{\prime}=\varnothing, \overline{\mathcal{P}}_{4}=\overline{\mathcal{P}}, \overline{\mathcal{C}}_{4}=\{(0,1,1,1)\}, \bar{G}_{0}^{4}=\bar{G}_{0}^{3} \cup \overline{\mathcal{C}}_{3}, \\
& \bar{G}_{1}^{4}=\left\{\left(\bar{p}_{4},(0,1,1,1)\right),((0,1,0,0),(0,1,1,1)),((0,0,1,0),(0,1,1,1))\right\}, \\
& \bar{\Gamma}_{0}^{4}=\bar{\Gamma}_{0}^{3} \cup \overline{\mathcal{C}}_{3}, \bar{\Gamma}_{1}^{4}=\bar{G}_{1}^{4} \cdot \bar{L}[1]=[(1,1,1,0),(0,1,1,1)], \bar{L}[2]= \\
\mathrm{m}=5: & {[(0,0,1,0)], \bar{L}[3]=[(0,1,0,0)], \bar{L}[4]=\left[\overline{\mathcal{P}}_{5}^{\prime}\right] . } \\
& \bar{G}_{0}^{5}=\varnothing, \overline{\mathcal{P}}_{5}=\overline{G_{0}}, \overline{\mathcal{P}}_{0}^{4} \cup \overline{\mathcal{C}}_{4}, \bar{G}_{1}^{5}=\{(0,1,0,1),(\widehat{1}, 0,0,0),(0,0,1,1)\}, \\
& \left.\left.((0,1,1,1),(0,0,1,1))\}, \bar{\Gamma}_{0}^{5}=1,1\right),(0,1,0,1)\right),((0,1,1,1),(\widehat{1}, 0,0,0)), \\
& \bar{L}[1]=[(1,1,1,0),(0,1,1,1)], \overline{\mathcal{L}}[2]=[(0,0,1,0),(0,1,0,1)], \\
& \bar{L}[3]=[(0,1,0,0),(0,0,1,1)], \bar{L}[4]=\left[\overline{\mathcal{P}}_{4}^{5},(\widehat{1}, 0,0,0)\right] .
\end{aligned}
$$

4. Correctness of Algorithm 3.1

Following [28, 29], we define a group isomorphism

$$
\begin{equation*}
\sigma_{I}^{0}: \mathbb{Z}^{I} \rightarrow \mathbb{Z}^{I} \tag{4.1}
\end{equation*}
$$

by the formula $\sigma_{I}^{0}(x)=x \cdot C_{I}^{0}$, where C_{I}^{0} is the reduced incidence matrix

$$
C_{I}^{0}=\left[\begin{array}{c|c}
C_{I^{-}} & 0 \tag{4.2}\\
\hline 0 & E
\end{array}\right],
$$

where E is the identity matrix. By [29, Proposition 3.13], σ_{I}^{0} gives \mathbb{Z} equivalence of \widehat{q}_{I} and \bar{q}_{I}, i.e. $\bar{q}_{I}\left(\sigma_{I}^{0}(x)\right)=\widehat{q}(x)$.

Lemma 4.3. For any poset I and for all $i \in I$, we have $\left(\sigma_{I}^{0}\right)^{-1}\left(\bar{p}_{i}\right)=\widehat{p}_{i}$ and $\left(\sigma_{I}^{0}\right)^{-1}\left(\bar{r}_{i}\right)=\widehat{r}_{i}$, where $\widehat{p}_{i}, \widehat{r}_{i}, \bar{p}_{i}$ and \bar{r}_{i} are projective and radical vectors defined in Section 2.1, and $\sigma_{I}^{0}: \mathbb{Z}^{I} \rightarrow \mathbb{Z}^{I}$ is the isomorphism (4.1).

Proof. The proof is straightforward.
Theorem 4.4. Assume that I is a connected positive poset. Let $\widehat{\Gamma}$ be the quiver constructed by Algorithm 3.1 with input ($I, \widehat{\mathcal{P}}, \widehat{\operatorname{Rad}}, \widehat{\operatorname{Rad}}_{\text {comp }}, k$) with k large enough (e.g. $k=\left|\widehat{\mathcal{R}}_{I}\right|$). The following conditions are satisfied.
(a) $\widehat{\mathcal{P}}=\bigcup_{k} \widehat{\mathcal{P}}_{k}$, in particular there exists m such that $\widehat{\mathcal{P}}_{m}=\widehat{\mathcal{P}}$.
(b) The sequence $\widehat{\Gamma}^{0} \subseteq \widehat{\Gamma}^{1} \subseteq \ldots$ stabilizes.
(c) $\widehat{\mathcal{R}}_{I}=\bigcup_{m} \widehat{\Gamma}_{0}^{m}$.
(d) $\widehat{L}[1], \ldots, \widehat{L}[n]$ are the $\widehat{\Phi}_{I}$-orbits in $\widehat{\mathcal{R}}_{I}$ of the Coxeter-Tits transformation $\widehat{\Phi}_{I}$.
(e) The $\widehat{\Phi}_{I}$-mesh translation quiver $\widehat{\Gamma}=\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ defines a $\widehat{\Phi}_{I}$-mesh root system structure $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ on the set $\widehat{\mathcal{R}}_{I}$ of Tits roots of I.

Proof. Assume that I is a connected positive poset. We apply Algorithm 3.1 to the system $\left(I, \overline{\mathcal{P}}, \overline{\operatorname{Rad}}, \overline{\operatorname{Rad}}_{\text {comp }}, k\right)$ defined in Remark 3.2. The formula (2.2) implies that the Euler matrix $\bar{C}_{I}=C_{I}^{-1}$ satisfies the non-cycle condition defined in [14], see Remark 2.3. Therefore, [14, Theorem 4.13] and [14, Section 5] yield:
($\overline{\mathrm{a}}) \overline{\mathcal{P}}=\bigcup_{k} \overline{\mathcal{P}}_{k}$, in particular there exists m such that $\overline{\mathcal{P}}_{m}=\overline{\mathcal{P}}$.
($\overline{\mathrm{b}})$ The sequence $\bar{\Gamma}^{0} \subseteq \bar{\Gamma}^{1} \subseteq \ldots$ stabilizes.
($\overline{\mathrm{c}}) \overline{\mathcal{R}}_{I}=\bigcup_{m} \overline{\Gamma_{0}^{m}}$.
($\overline{\mathrm{d}}) \bar{L}[1], \ldots, \bar{L}[n]$ are the $\bar{\Phi}_{I \text {-orbits in }} \overline{\mathcal{R}}_{I}$ of the Coxeter transformation $\bar{\Phi}_{I}$.
($\overline{\mathrm{e}})$ The $\bar{\Phi}_{I}$-mesh translation quiver $\bar{\Gamma}=\Gamma\left(\overline{\mathcal{R}}_{I}, \bar{\Phi}_{I}\right)$ defines a $\bar{\Phi}_{I}$-mesh root system structure $\Gamma\left(\overline{\mathcal{R}}_{I}, \bar{\Phi}_{I}\right)$ on the set $\overline{\mathcal{R}}_{I}$ of Euler roots of I. By Lemma 4.3, we have $\left(\sigma_{I}^{0}\right)^{-1}\left(\bar{p}_{i}\right)=\widehat{p}_{i}$ and $\left(\sigma_{I}^{0}\right)^{-1}\left(\bar{r}_{i}\right)=\widehat{r}_{i}$, see (4.1). It is easy to verify that the automorphism $\left(\sigma_{i}^{0}\right)^{-1}$ sends $\overline{\mathcal{P}}, \overline{\operatorname{Rad}}^{\operatorname{Rad}} \overline{\operatorname{Ramp}}^{\text {com }}$ to $\widehat{\mathcal{P}}, \widehat{\operatorname{Rad}}, \widehat{\operatorname{Rad}}_{\text {comp }}$, respectively. From [29, Proposition 3.13], it follows that $\widehat{\Phi}_{I}=\left(\sigma_{I}^{0}\right)^{-1} \circ \bar{\Phi}_{I} \circ \sigma_{I}^{0}$. Now, applying the linearity of σ_{I}^{0}, it is easy to deduce that the conditions ($\overline{\mathrm{a}})-(\overline{\mathrm{e}})$ imply the conditions (a)-(e), and the theorem follows.

Remark 4.5. It follows from the proof of Theorem 4.4 that the $\widehat{\Phi}_{I^{-}}$ mesh quiver $\Gamma\left(\mathcal{R}_{I}, \widehat{\Phi}_{I}\right)$ is the image of $\Gamma\left(\overline{\mathcal{R}}_{I}, \bar{\Phi}_{I}\right)$ via the automorphism $\left(\sigma_{I}^{0}\right)^{-1}: \mathbb{Z}^{I} \rightarrow \mathbb{Z}^{I}$ (4.1).

We refer also to $[11,12]$ for a discussion of Φ_{I}-mesh quivers of one-peak posets.

Corollary 4.6. Let I be a positive connected poset and let DI be the Coxeter-Dynkin type of the root system $\widehat{\mathcal{R}}_{I}$. The Coxeter polynomial $\operatorname{cox}_{I}(t)$ is equal to the Coxeter polynomial $\operatorname{cox}_{D I}(t)$ of the Dynkin diagram $D I$ and the Coxeter number \mathbf{c}_{I} is equal to the Coxeter number $c_{D I}$ of the Dynkin diagram DI; they are listed in [29, Example 3.12].

Proof. By [14, Theorem 1.10] there exists a \mathbb{Z}-invertible matrix $B \in \mathbb{M}_{I}(\mathbb{Z})$ such that $\operatorname{Cox}_{D I}=B \cdot \overline{\operatorname{Cox}}_{I} \cdot B^{-1}$, where $\operatorname{Cox}_{D I}$ is the Coxeter matrix associated with the simply laced Dynkin diagram $D I$. Moreover by [29, Proposition 3.13], we have $\widehat{\operatorname{Cox}}_{I}=C_{I}^{0} \cdot \overline{\operatorname{Cox}}_{I} \cdot\left(C_{I}^{0}\right)^{-1}$. Now it is easy to deduce that $\operatorname{cox}_{I}(t)=\operatorname{cox}_{D I}(t)$ and $\mathbf{c}_{I}=\mathbf{c}_{D I}$.

Example 4.7. Consider the poset I given by the Hasse quiver

$$
\begin{equation*}
1 \lessdot 2 \lessdot 3<4 \tag{4.8}
\end{equation*}
$$

By applying Algorithm 3.1 to ($I, \overline{\mathcal{P}}, \overline{\operatorname{Rad}}, \overline{\operatorname{Rad}}_{\text {comp }}, k=6$) we get the $\widehat{\Phi}_{I}$-mesh quiver $\Gamma\left(\overline{\mathcal{R}}_{I}, \bar{\Phi}_{I}\right)$:

where vectors in frames lying in the same orbit are identified.
Moreover, by applying Algorithm 3.1 to ($I, \widehat{\mathcal{P}}, \widehat{\operatorname{Rad}}, \widehat{\operatorname{Rad}}_{\text {comp }}, k=6$) we get the $\widehat{\Phi}_{I}$-mesh quiver $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$:

 mesh quiver $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ via the authomorphism $\sigma_{I}^{0}: \mathbb{Z}^{4} \rightarrow \mathbb{Z}^{4}$ (4.1).

Example 4.9. Consider the poset I given by the Hasse quiver

By applying Algorithm 3.1 we get the $\widehat{\Phi}_{I}$-mesh quiver $\Gamma\left(\overline{\mathcal{R}}_{I}, \bar{\Phi}_{I}\right)$:

and the $\widehat{\Phi}_{I}$-mesh quiver $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$:

 mesh quiver $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ via the authomorphism $\sigma_{I}^{0}: \mathbb{Z}^{5} \rightarrow \mathbb{Z}^{5}$ (4.1).
Example 4.11. Consider the poset I given by the Hasse quiver

By applying Algorithm 3.1 to ($I, \overline{\mathcal{P}}, \overline{\operatorname{Rad}}, \overline{\operatorname{Rad}}_{\text {comp }}, k=24$) we get the $\widehat{\Phi}_{I}$-mesh quiver $\Gamma\left(\overline{\mathcal{R}}_{I}, \bar{\Phi}_{I}\right)$:

where vectors in frames lying in the same orbit are identified.

Moreover, by applying Algorithm 3.1 to ($I, \widehat{\mathcal{P}}, \widehat{\operatorname{Rad}}, \widehat{\operatorname{Rad}}_{\text {comp }}, k=24$) we get the $\widehat{\Phi}_{I}$-mesh quiver $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$:

 mesh quiver $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ via the authomorphism $\sigma_{I}^{0}: \mathbb{Z}^{6} \rightarrow \mathbb{Z}^{6}$ (4.1).
Example 4.12. Consider the poset I given by the Hasse quiver

By applying Algorithm 3.1 to ($I, \overline{\mathcal{P}}, \overline{\operatorname{Rad}}, \overline{\operatorname{Rad}}_{\text {comp }}, k=24$) we get the $\widehat{\Phi}_{I}$-mesh quiver $\Gamma\left(\overline{\mathcal{R}}_{I}, \bar{\Phi}_{I}\right)$:

where vectors in frames lying in the same orbit are identified.
Moreover, by applying Algorithm 3.1 to ($I, \widehat{\mathcal{P}}, \widehat{\operatorname{Rad}}, \widehat{\operatorname{Rad}}_{\text {comp }}, k=24$) we get the $\widehat{\Phi}_{I}$-mesh quiver $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$:

 mesh quiver $\Gamma\left(\widehat{\mathcal{R}}_{I}, \widehat{\Phi}_{I}\right)$ via the authomorphism $\sigma_{I}^{0}: \mathbb{Z}^{6} \rightarrow \mathbb{Z}^{6}$ (4.1).

References

[1] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Volume 1. Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge-New York, 2006.
[2] M. Auslander, I. Reiten and S. Smalø, Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge Univ. Press, 1995.
[3] M. Barot, A characterization of positive unit forms, II, Bol. Soc. Mat. Mexicana (3) 7 (2001), 13-22.
[4] M. Barot, D. Kussin and H. Lenzing, The Lie algebra associated to a unit form, J. Algebra 296 (2007), 1-17.
[5] V. M. Bondarenko and M. V. Stepochkina, On posets of width two with positive Tits form, Algebra and Discrete Math. 2 (2005), 20-35.
[6] V. M. Bondarenko and M. V. Stepochkina, (Min, max)-equivalence of partially ordered sets and quadratic Tits form (in Russian, English Summary), Zb. Pr. Inst. Mat. NAN Ukr. 2, No. 3, 2005, 18-58 (Zbl. 1174.16310).
[7] K. Bongartz, A criterion for finite representation type, Math. Ann. 269 (1984), 1-12.
[8] S. Brenner, Unfoldings of algebras, Proc. London Math. Soc. (3) 62 (1991), 242-274.
[9] J. A. Drozd, Coxeter transformations and representations of partially ordered sets, Funct. Anal. Appl. 8(1974), 219-225.
[10] P. Gabriel and A. V. Roiter, Representations of Finite Dimensional Algebras, in: Algebra VIII, Encyclopaedia of Math. Sci., vol. 73, Springer-Verlag, 1992.
[11] M. Gąsiorek and D. Simson, One-peak posets with positive Tits quadratic form, their mesh quivers of roots, and programming in Maple and Python, Linear Algebra Appl. 436 (2012), 2240-2272.
[12] M. Ga̧siorek and D. Simson, A computation of positive one-peak posets that are Tits sincere, Colloq. Math. 127 (2012), 83-103.
[13] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, SpringerVerlag, New York-Heilderberg-Berlin, 1972.
[14] M. Kaniecki, J. Kosakowska, P. Malicki and G. Marczak, A horizontal mesh algorithm for a class of edge-bipartite graphs and their matrix morsifications, Fund. Inform. 136 (2015), 345-379.
[15] S. Kasjan and J. A. de la Peña, Constructing the preprojective components of an algebra, J. Algebra 179 (1996), 793-807.
[16] S. Kasjan and D. Simson, Mesh algorithms for Coxeter spectral classification of Cox-regular edge-bipartite graphs with loops, I. Mesh root systems, Fundam. Inform. 139 (2015), 153-184.
[17] J. Kosakowska, A classification of two-peak sincere posets of finite prinjective type and their sincere prinjective representations, Colloq. Math. 87 (2001), 27-77.
[18] J. Kosakowska, A specialization of prinjective Ringel-Hall algebra and the associated Lie algebra, Acta Mathematica Sinica, English Series, 24 (2008), 1687-1702.
[19] J. Kosakowska, Lie algebras associated with quadratic forms and their applications to Ringel-Hall algebras, Algebra and Discrete Math. 4 (2008), 49-79.
[20] J. Kosakowska, Inflation algorithms for positive and principal edge-bipartite graphs and unit quadratic forms, Fund. Inform. 119 (2012), 149-162.
[21] J. Kosakowska and D. Simson, On Tits form and prinjective representations of posets of finite prinjective type, Comm. Algebra, 26 (1998), 1613-1623.
[22] L. A. Nazarova and A.V. Roiter, Representations of partially ordered sets, in Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 28(1972), 5-31 (in Russian); English version: J. Soviet Math. 3 (no. 5) (1975), 585-606.
[23] J. A. de la Peña and D. Simson, Prinjective modules, reflection functors, quadratic forms and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733-753.
[24] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.
[25] M. Sato, Periodic Coxeter matrices and their associated quadratic forms, Linear Algebra Appl. 406 (2005), 99-108.
[26] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon \& Breach, London (1992).
[27] D. Simson, Posets of finite prinjective type and a class of orders, J. Pure Appl. Algebra 90 (1993), 71-103.
[28] D. Simson, Incidence coalgebras of intervally finite posets, their integral quadratic forms and comodule categories, Colloq. Math. 115 (2009), 259-295.
[29] D. Simson, Integral bilinear forms, Coxeter transformations and Coxeter polynomials of finite posets, Linear Algebra Appl. 433 (2010), 699-717.
[30] D. Simson, Mesh geometries of root orbits of integral quadratic forms, J. Pure Appl. Algebra 215 (2011), 13-34.
[31] D. Simson, Mesh algorithms for solving principal Diophantine equations, sand-glass tubes and tori of roots, Fund. Inform. 109 (2011), 425-462.
[32] D. Simson, A Coxeter-Gram classification of positive simply laced edge-bipartite graphs, SIAM J. Discrete Math. 27 (2013), 827-854.
[33] D. Simson, A framework for Coxeter spectral analysis of edge-bipartite graphs, their rational morsifications and mesh geometries of root orbits, Fund. Inform. 124 (2013), 309-338.
[34] D. Simson and K. Zając, A framework for Coxeter spectral classification of finite posets and their mesh geometries of roots, Intern. J. Math. Mathematical Sciences, Volume 2013, Article ID 743734, 22 pages, doi: 10.1155/2013/743734.

Contact information

M. Kaniecki,	Faculty of Mathematics and Computer Science,
J. Kosakowska,	Nicolaus Copernicus University, ul. Chopina
P. Malicki,	$12 / 18,87-100$ Toruń, Poland
G. Marczak	$E-M a i l(s):$ kanies@mat.umk.pl,
	justus@mat.umk.pl,
	pmalicki@mat.umk.pl,
	lielow@mat.umk.pl
	Web-page (s): www.mat.umk.pl/~justus,
	www.mat.umk.pl/~pmalicki,
	www.mat.umk.pl/~lielow

Received by the editors: 22.12.2015
and in final form 05.01.2016.

[^0]: 2010 MSC: 68R10, 05C50, 06A07, 15A63.
 Key words and phrases: poset, combinatorial algorithm, Dynkin diagram, mesh geometry of roots, quadratic form.

