Generators and ranks in finite partial transformation semigroups

Goje Uba Garba and Abdussamad Tanko Imam

Communicated by V. Mazorchuk

Abstract. We extend the concept of path-cycles, defined in [2], to the semigroup \mathcal{P}_{n}, of all partial maps on $X_{n}=\{1,2, \ldots, n\}$, and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of \mathcal{P}_{n} by means of pathcycles. The device is used to obtain information about generating sets for the semigroup $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$, of all singular partial maps of X_{n}. Moreover, by analogy with [3], we give a definition for the (m, r)-rank of $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ and show that it is $\frac{n(n+1)}{2}$.

1. Introduction

Since the work of Howie [7], establishing that every singular map in the full transformation semigroup \mathcal{T}_{n} on the finite set $X_{n}=\{1,2, \ldots, n\}$ is expressible as a product (that is composition) of idempotent singular maps, there have been many articles concerned with this idea in \mathcal{T}_{n} (see for example, $[1-3,8-10,12,13,15])$.

Evseev and Podran [5] established that even in the larger semroup \mathcal{P}_{n}, consisting of all partial maps on X_{n}, all elements (other than permutations) are expressible as products of idempotents. Garba [6] extended all the results of $[9-11,15]$ to \mathcal{P}_{n} using a result of Vagner [16] quoted in [4, p.254].

[^0]In analysing elements of \mathcal{T}_{n}, there are many variations in notations. Lipscomb [14] developed what might be called a linear notation for elements of \mathcal{P}_{n}. Recently, Ayik et al. [2] described an alternative approach, to the Lipscomb's linear notation for elements of \mathcal{T}_{n}, which generalised the concept of cycle notation for permutations in the symmetric group \mathcal{S}_{n}. In this paper we show that this idea can be further generalise to the larger semigroup \mathcal{P}_{n} via Vagner's result. The technique is used to obtain information about generators for $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$.

It is known (see [6, Theorem 4.1]) that the rank of $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$, defined by

$$
\operatorname{rank}\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)=\min \left\{|A|:\langle A\rangle=\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right\}
$$

is equal to $n(n+1) / 2$. The idempotent rank of $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ is the cardinality of a smallest generating set for $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ consisting solely of idempotents, and this too equals $n(n+1) / 2$. For any fixed m and r such that $2 \leqslant r \leqslant m \leqslant n$, we give a definition for (m, r)-rank of $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$, analogous to the definition given in [3] for $\mathcal{T}_{n} \backslash \mathcal{S}_{n}$, and show that it is once again equal to $\frac{n(n+1)}{2}$.

This article is a direct translation of the results in [2,3] for \mathcal{T}_{n} to similar results concerning \mathcal{P}_{n}. Thus, many of our proofs are direct modifications of the corresponding proofs in $[2,3]$.

2. Preliminaries

Let $X_{n}=\{1, \ldots, n\}$ and let \mathcal{P}_{n} be the partial transformation semigroup on X_{n}. For a subset $\left\{x_{1}, \ldots, x_{m}\right\}$ of X_{n} let $\alpha \in \mathcal{P}_{n}$ be such that $x_{i} \alpha=x_{i+1}(1 \leqslant i \leqslant m-1)$ and $x \alpha=x\left(x \in X_{n} \backslash\left\{x_{1}, \ldots, x_{m}\right\}\right)$. If:
i) $x_{m} \alpha=x_{r}$ for some $1 \leqslant r \leqslant m, \alpha$ is called an (m, r)-path-cycle and is denoted by $\alpha=\left[x_{1}, \ldots, x_{m} \mid x_{r}\right]$;
ii) $x_{m} \notin \operatorname{dom}(\alpha), \alpha$ is called an ($m, 0$)-path-cycle, or an m-chain and is denoted by $\alpha=\left[x_{1}, \ldots, x_{m}\right]$.
An element of \mathcal{P}_{n} is called a path-cycle of size m if it is either an (m, r)-path-cycle or an m-chain. An (m, r)-path-cycle is called: an r-cycle if $r=1$; a proper path-cycle if $r \neq 1$; and an m-path if $m=r$.

We let $X_{n}^{0}=X_{n} \cup\{0\}$ and denote the semigroup of all full transformations of X_{n}^{0} by $\mathcal{T}_{X_{n}^{0}}$. For each $\alpha \in \mathcal{P}_{n}$ the map α^{*}, defined by

$$
\alpha^{*}= \begin{cases}x \alpha & \text { if } x \in \operatorname{dom}(\alpha) \\ 0 & \text { if } x \notin \operatorname{dom}(\alpha)\end{cases}
$$

belongs to $\mathcal{T}_{X_{n}^{0}}$. Let \mathcal{P}_{n}^{*} be the set of all elements in $\mathcal{T}_{X_{n}^{0}}$ that fixed 0 and let \mathcal{S}_{n}^{*} be the set of all permutations in \mathcal{P}_{n}^{*}. It is clear that \mathcal{P}_{n}^{*} is a subsemigroup of $\mathcal{T}_{X_{n}^{0}}$ and from [6, Lemma 2.4] it is regular.

For convenience we record the following result due to Vagner [16] (also to be found in [4, p.254]).

Theorem 1. For each $\alpha \in \mathcal{P}_{n}$ and each $\beta \in \mathcal{P}_{n}^{*}$, the mappings $\alpha \mapsto \alpha^{*}$ and $\left.\beta \mapsto \beta\right|_{X_{n}}$ (the restriction of β to X_{n}) are mutually inverse isomorphisms of \mathcal{P}_{n} onto \mathcal{P}_{n}^{*} and vice-verse.

Here we make the following important remark which will be effectively used throughout the next sections.

Remark 1. i) For $1 \leqslant r<m \leqslant n$, an (m, r)-path-cycle $\left[x_{1}, \ldots, x_{m} \mid x_{r}\right.$] in \mathcal{P}_{n}^{*} corresponds in these isomorphisms to an (m, r)-path-cycle $\left[x_{1}, \ldots, x_{m} \mid x_{r}\right]$ in \mathcal{P}_{n}, while an m-path $\left[x_{1}, \ldots, x_{m} \mid x_{m}\right]$ in \mathcal{P}_{n}^{*} corresponds either to an m-path $\left[x_{1}, \ldots, x_{m} \mid x_{m}\right]$ in \mathcal{P}_{n} if $x_{m} \neq 0$, or to an $(m-1)$-chain $\left[x_{1}, \ldots, x_{m-1}\right]$ in \mathcal{P}_{n} if $x_{m}=0$.
ii) A set of elements in \mathcal{P}_{n} generates \mathcal{P}_{n} if and only if its image under the isomorphisms generates \mathcal{P}_{n}^{*} and vice-verse.

3. Generating sets

In this section we identify many generating sets of path-cycles for the semigroup $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$. First, we start by generating \mathcal{P}_{n} using path-cycles.

Theorem 2. Each element of \mathcal{P}_{n} is expressible as a product of path-cycles in \mathcal{P}_{n}.

Proof. Let $\alpha \in \mathcal{P}_{n}$. The associated map $\alpha^{*} \in \mathcal{P}_{n}^{*}$ is expressible as a product $\alpha^{*}=\alpha_{1} \cdots \alpha_{P}$ of path-cycles in $\mathcal{T}_{X_{n}^{0}}$ using the algorithm described in [2]. Since $0 \alpha^{*}=0$, the algorithm ensures that $0 \alpha_{i}=0$ for all i. Hence, $\alpha_{i}=\delta_{i}^{*}$ for some path-cycle δ_{i} in \mathcal{P}_{n}. Therefore, by the isomorphism $\alpha=\delta_{1} \cdots \delta_{p}$.

As in [2], the integer p is called the path-cycle rank of α and is denoted by $\operatorname{pcr}(\alpha)$. By [2, Theorem 2], we have that $\operatorname{pcr}\left(\alpha^{*}\right)=\operatorname{def}\left(\alpha^{*}\right)+\operatorname{cycl}\left(\alpha^{*}\right)$, where $\operatorname{def}\left(\alpha^{*}\right)=\left|X_{n}^{0} \backslash i m\left(\alpha^{*}\right)\right|$, the defect of α^{*} and $\operatorname{cycl}\left(\alpha^{*}\right)$ is the number of cycles in the decomposition. It has also been observed in [6, Lemma $2.2 \& 2.3]$ that $\operatorname{cycl}\left(\alpha^{*}\right)=\operatorname{cycl}(\alpha)$ and $\operatorname{def}\left(\alpha^{*}\right)=\operatorname{def}(\alpha)$ for all $\alpha \in \mathcal{P}_{n}$. Thus, we have the following observation.

Lemma 1. Let $\alpha \in \mathcal{P}_{n}$. Then $\operatorname{pcr}(\alpha)=\operatorname{def}(\alpha)+\operatorname{cycl}(\alpha)$.
Next, we have
Theorem 3. For each $\alpha \in \mathcal{P}_{n} \backslash \mathcal{S}_{n}$, there exists proper path-cycles $\gamma_{1}, \ldots, \gamma_{k}$ in $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ such that $\alpha=\gamma_{1} \cdots \gamma_{k}$.

Proof. Let $\alpha \in \mathcal{P}_{n} \backslash \mathcal{S}_{n}$. By [2, Theorem 4], the associated map $\alpha^{*} \in \mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$ is expressible as a product $\alpha^{*}=\beta_{1} \cdots \beta_{k}$ of proper path-cycles in $\mathcal{T}_{X_{n}^{0}}$ and since $0 \alpha^{*}=0$, the method of factorisation ensures that each of the proper path-cycles β_{i} is in $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$. Hence, by the isomorphism, $\alpha=\gamma_{1} \cdots \gamma_{k}$, where for each $i, \gamma_{i}^{*}=\beta_{i}$ and each γ_{i} is a path-cycle in $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$. It is also clear that each γ_{i} is a proper path-cycle.

Theorem 4. The set of all 2-paths and 1-chains in $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ together generates $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$.

Proof. By [2, Theorem 5], each element of $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$ is a product of 2-paths in $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$. Thus, the result follows from the Isomorphisms between $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ and $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$, and Remark 1.

Theorem 5. For each $m \in\{2, \ldots, n\}$, the semigroup $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ can be generated by path-cycles of size m or $m-1$.

Proof. Since, for each $m \in\{2, \ldots, n\}$, the semigroup $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$ is generated by its path-cycles of size m. It remains to show that each path-cycle of size m in $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$ corresponds to path-cycles of size m or $m-1$ under the isomorphism. But this is the content of Remark 1.

Theorem 6. Let $m \in\{2, \ldots, n\}$. Then the set of all m-paths and all m-chains in $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ generates $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$.

Proof. For any $x_{1}, x_{2} \in X_{n}$, we observe that

$$
\begin{aligned}
{\left[x_{1}, x_{2} \mid x_{2}\right] } & =\left[x_{m}, x_{m-1}, \ldots, x_{3}, x_{1}, x_{2} \mid x_{2}\right]\left[x_{1}, x_{3}, x_{4}, \ldots, x_{m}, x_{2} \mid x_{2}\right] \\
{\left[x_{1}\right] } & =\left[x_{m}, x_{m-1}, \ldots, x_{1}\right]\left[x_{1}, x_{2}, \ldots, x_{m}\right] .
\end{aligned}
$$

Thus the result follows from Theorem 4.

Theorem 7. Let $m \in\{2, \ldots, n\}$ and $r \in\{2, \ldots, m\}$. Then the set of all (m, r)-path-cycles and all m-chains in $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ generates $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$.

Proof. By Theorem 4 it suffices to show that each 2-path $[x, y \mid y]$ and each 1-chain $[x]$ in $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ can be expressed as a product of (m, r)-path-cycles and m-chains $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ respectively. But, as in [3, Theorem 5], we have

$$
[x, y \mid y]=\left[x_{1}, x_{2}, \ldots, x_{m} \mid x_{r}\right]\left[x_{r-1}, x_{r-2}, \ldots, x_{1}, x_{m}, x_{m-1}, \ldots, x_{r} \mid x_{m}\right]
$$

where $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \subseteq X_{n}, x_{r-1}=x$ and $x_{m}=y$. Also, as in Theorem 6,

$$
[x]=\left[x_{m}, x_{m-1}, \ldots, x_{1}\right]\left[x_{1}, x_{2}, \ldots, x_{m}\right]
$$

where $x_{1}=x$.

Remark 2. Each 1-chain $[x]$ in $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ can be expressed as a product of $2 k$-paths, for each $k \in\{2, \ldots, n\}$, simply by choosing $k-1$ distinct points $x_{2}, x_{3}, \ldots, x_{k} \in X_{n} \backslash\{x\}$ and observing that

$$
[x]=\left[x_{k}, x_{k-1}, \ldots, x\right]\left[x, x_{2}, \ldots, x_{k}\right]
$$

Thus, for any fixed $k, m \in\{2, \ldots, n\}$ and $r \in\{2, \ldots, m\}$, the set of all (m, r)-path-cycles and all k-chains in $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ generates $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$.

4. Rank properties

For any fixed m and r such that $2 \leqslant r \leqslant m \leqslant n$, we define the (m, r) rank of $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$, denoted by $\operatorname{rank}_{m, r}\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)$, to be the cardinality of a smallest generating set for $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$ consisting solely of (m, r)-path-cycles and $(m-1)$-chains. In the light of Remarks 1 and 2 , the corresponding (m, r)-rank of $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$, denoted by $\operatorname{rank}_{m, r}\left(\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}\right)$, is define to be the cardinality of a smallest generating set for $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$ consisting solely of (m, r)-path-cycles and m-paths. In this section, we show that $\operatorname{rank}_{m, r}\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)$ is equal to $n(n+1) / 2$. Since $\operatorname{rank}_{m, r}\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)$ is at least as large as $\operatorname{rank}\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)$, it is sufficient to prove that $\operatorname{rank}_{m, r}\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right) \leqslant n(n+1) / 2$.

A digraph Γ with n vertices is called complete if, for all $i \neq j$ in the set of vertices, either $i \rightarrow j$ or $j \rightarrow i$ is an edge. It is called strongly connected if, for any two vertices i and j, there is a path from i to j. A vertex i in a digraph is called a sink if, for all vertices $j, j \rightarrow i$ is an edge and $i \rightarrow j$ is not an edge.

In the semigroup \mathcal{P}_{n}^{*}, idempotents of defect 1 are 2-paths of type $[i, j \mid j]$ where $i, j \in X_{n}^{0}$ and $0 \neq i \neq j$. There are n^{2} such 2 -paths in \mathcal{P}_{n}^{*}. To each set I^{*} of 2-paths in \mathcal{P}_{n}^{*} we associate a digraph $\triangle\left(I^{*}\right)$ with $n+1$
vertices, in which $i \rightarrow j$ is a directed edge if and only if $[i, j \mid j] \in I^{*}$. First, we prove the following.

Theorem 8. A set I^{*}, of 2-paths in $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}(n \geqslant 3)$, is a generating set for $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$ if and only if 0 is a sink in $\triangle\left(I^{*}\right)$ and the digraph $\triangle\left(I^{*}\right)-0$ is strongly connected and complete.

Proof. Suppose that I^{*} is a set of 2-paths in $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$ that generates $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$. First, we observe that, for all $i=1, \ldots, n$, the 2 -paths $[0, i \mid i]$ cannot be in I^{*} since $[0, i \mid i] \notin \mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$. Thus, for all $i=1, \ldots, n, 0 \rightarrow i$ is not an edge in $\triangle\left(I^{*}\right)$. Therefore, $\operatorname{deg}_{\text {out }}(0)=0$. Also, by Remark 1 , the image set I of I^{*} (under the isomorphisms in Theorem 1) is a generating set for $\mathcal{P}_{n} \backslash \mathcal{S}_{n}$, consisting of 2 -paths and 1 -chains. Since each 2 -path and each 1 -chain is an idempotents of defect 1 , by $[10$, Lemma 1$]$, we must have $[i] \in I$, for all $i=1, \ldots, n$. Thus, again by Remark $1,[i, 0 \mid 0] \in I^{*}$ for all $i=1, \ldots, n$ and so, $i \rightarrow 0$ is an edge in $\triangle\left(I^{*}\right)$ for all $i=1, \ldots, n$. Therefore 0 is a sink in $\triangle\left(I^{*}\right)$.

Now, we show that $\triangle\left(I^{*}\right)-0$ is strongly connected and complete. It is not difficult to observe that the image set $I \backslash\{[i]: i=1, \ldots, n\}$ of $I^{*} \backslash\{[i, 0 \mid 0]: i=1, \ldots, n\}$ (under the isomorphisms in Theorem 1) is a generating set for the semigroup $\mathcal{T}_{n} \backslash \mathcal{S}_{n}$, of all singular full transformations of X_{n}. Thus, by Howie (1078, Theorem 1), $\triangle(I \backslash\{[i]: i=1, \ldots, n\})=$ $\triangle\left(I^{*} \backslash\{[i, 0 \mid 0]: i=1, \ldots, n\}\right)=\triangle\left(I^{*}\right)-0$ must be strongly connected and complete.

Conversely, suppose that 0 is a sink in $\triangle\left(I^{*}\right)$ and that the digraph $\triangle\left(I^{*}\right)-0$ is strongly connected and complete. Observe that each map $\alpha^{*} \in \mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$ can be expressed as

$$
\alpha=\left[i_{1}, 0 \mid 0\right]\left[i_{2}, 0 \mid 0\right] \cdots\left[i_{m}, 0 \mid 0\right] \alpha_{1}
$$

where $i_{1}, i_{2}, \ldots, i_{m} \in X_{n}$ are non-zero pre-images of 0 under α^{*}, and α_{1} is a map in \mathcal{P}_{n}^{*} defined by

$$
x \alpha_{1}= \begin{cases}x & \text { if } x \in\left\{0, i_{1}, \ldots, i_{m}\right\}, \\ x \alpha & \text { if } x \notin\left\{0, i_{1}, \ldots, i_{m}\right\} .\end{cases}
$$

Now, since $i \alpha_{1}=0$ if and only if $i=0$, it is clear that for any $\beta_{1}, \beta_{2}, \ldots, \beta_{k} \in I^{*}$,

$$
\begin{equation*}
\alpha_{1}=\beta_{1} \beta_{2} \cdots \beta_{k} \quad \text { if and only if }\left.\quad \alpha_{1}\right|_{X_{n}}=\left.\left.\left.\beta_{1}\right|_{X_{n}} \beta_{2}\right|_{X_{n}} \cdots \beta_{k}\right|_{X_{n}} \tag{1}
\end{equation*}
$$

But, since $\triangle\left(I^{*}\right)-0$ is strongly connected and complete, it follows from [8, Lemma 1] that $I \backslash\{[i]: i=1,2, \ldots, n\}$ is a generating set for $\mathcal{T}_{n} \backslash \mathcal{S}_{n}$. Thus, by (2) and the isomorphisms, α_{1} is a product of element in I^{*} and so α is generated by I^{*}.

Next, we make use of the following result from [6, Theorem 4.1].
Theorem 9. For $n \geqslant 3, \operatorname{rank}_{2,2}\left(\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}\right)=n(n+1) / 2$.
It follows from Theorems 8 and 9 that a digraph associated with a minimal generating set of 2-paths in $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$ is complete and contains $n(n+1) / 2$ edges. Consequently, the underlying (undirected) graph of such a generating set is, upto isomorphism, the complete graph K_{n}^{*} with vertices $0,1, \ldots, n$.

The following definition is from [3].
Definition 1. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. If $|E(G)|$ is even, let A and B be disjoint subsets of $E(G)$ such that $|A|=|B|=|E(G)| / 2$; the triple (A, B, φ) is called a pairing of G if $\varphi: A \rightarrow B$ is a bijection such that, for each $e \in A, e$ and $\varphi(e)$ have no vertices in common. If $|E(G)|$ is odd, a pairing of G is defined to be a pairing of $G-e$, for some $e \in E(G)$.

From [3, Lemma 3] we deduce the following.
Lemma 2. For all $n \geqslant 3$, there exists a pairing of K_{n}^{*}.
Proof. For each $n \geqslant 3$, form a pairing (A, B, φ) of the complete graph K_{n+1} on the vertex set $\{1,2, \ldots, n+1\}$ using the construction described in [3, Lemma 3]. In each of the disjoint subsets A, B of $E\left(K_{n+1}\right)$ replace each edge (i, j) by $(i, j)^{*}=(i-1, j-1)$ to obtain subsets A^{*}, B^{*} of $E\left(K_{n}^{*}\right)$. Then $\left(A^{*}, B^{*}, \varphi^{*}\right)$, where $\varphi^{*}(i-1, j-1)=(\varphi(i, j))^{*}$, is a pairing of K_{n}^{*}.

Before we prove our next theorem stating that $\operatorname{rank}_{m, r}\left(\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}\right)=$ $\frac{n(n+1)}{2}$, it is convenient to deal with two particular cases.

Lemma 3. For each $n \geqslant 3$ and each $2 \leqslant m \leqslant n$,

$$
\operatorname{rank}_{m, 2}\left(\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}\right)=\frac{n(n+1)}{2}
$$

Proof. From Theorem 9, we know that the result holds when $m=2$. Let I^{*} be a generating set for $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$ consisting of 2-paths with $\left|I^{*}\right|=n(n+1) / 2$. Them, from Theorem $8,[i, 0 \mid 0] \in I^{*}$, for all $i=1,2, \ldots, n$. If n is even, then we form $n / 2$ distinct pairs of $\{[i, 0 \mid 0]: i=1,2, \ldots, n\}$ and corresponding to each pair $[i, 0 \mid 0] \leftrightarrow[j, 0 \mid 0]$ (with $i \neq j$) define m-paths

$$
\begin{gather*}
\alpha=\left[j, x_{2}, x_{3}, \ldots, x_{m-2}, i, 0 \mid 0\right] \tag{2}\\
\beta=\left[i, x_{m-2}, x_{m-3}, \ldots, x_{2}, j, 0 \mid 0\right] \tag{3}
\end{gather*}
$$

where the $m-3$ elements $x_{2}, x_{3}, \ldots, x_{m-2}$ are distinct elements in $X_{n} \backslash$ $\{i, j\}$. Then $\alpha \beta=[i, 0 \mid 0]$ and $\beta \alpha=[j, 0 \mid 0]$. For each $[i, j \mid j] \in I^{*} \backslash\{[i, 0 \mid 0]$: $i=1,2, \ldots, n\}$ we associate an ($m, 2$)-path-cycle

$$
\begin{equation*}
\alpha_{i j}=\left[i, x_{2}, x_{3}, \ldots, x_{m-1}, j \mid x_{2}\right] . \tag{4}
\end{equation*}
$$

Then $\alpha_{i j}^{m-1}=[i, j \mid j]$. Thus, in equalities (2), (3) and (4), we have found $n(n+1) / 2(m, 2)$-path-cycles and m-paths that generate elements in I^{*}.

Now, if n is odd, then we form $(n-1) / 2$ distinct pairs of $\{[i, 0 \mid 0]: i=$ $1,2, \ldots, n-1\}$ and corresponding to each pair define m-paths α and β as in equalities (2) and (3) respectively. For the 2-path $[n, 0 \mid 0]$, we choose a 2-path $[k, l \mid l] \in I^{*} \backslash\{[i, 0 \mid 0]: i=1,2, \ldots, n\}$ and define m-paths

$$
\begin{align*}
\gamma & =\left[k, x_{2}, x_{3}, \ldots, x_{m-2}, n, 0 \mid 0\right] \tag{5}\\
\delta & =\left[n, x_{m-2}, x_{m-3}, \ldots, x_{2}, k, l \mid l\right] \tag{6}
\end{align*}
$$

Then, $\gamma \delta=[n, 0 \mid 0]$ and $\delta \gamma=[k, l \mid l]$. Lastly, for each $[i, j \mid j] \in I^{*} \backslash$ $\{[k, l \mid l],[i, 0 \mid 0]: i=1,2, \ldots, n\}$ we associate an $(m, 2)$-path-cycle $\alpha_{i j}$ given in equality (4). Thus, again, in equalities (2-6), we found $n(n+1) / 2$ $(m, 2)$-path-cycles and m-paths that generate elements in I^{*}.

Lemma 4. $\operatorname{rank}_{3,3}\left(\mathcal{P}_{3}^{*} \backslash \mathcal{S}_{3}^{*}\right)=6$.
Proof. From Theorems 8 and 9, we know that

$$
I^{*}=\{[1,0 \mid 0],[2,0 \mid 0],[3,0 \mid 0],[1,3 \mid 3],[2,1 \mid 1],[3,2 \mid 2]\}
$$

is a minimal generating set for $\mathcal{P}_{3}^{*} \backslash \mathcal{S}_{3}^{*}$. Define (3,3)-path-cycles as $\alpha_{1}=$ $[2,1,0 \mid 0], \alpha_{2}=[3,2,0 \mid 0], \alpha_{3}=[1,3,0 \mid 0], \beta_{1}=[1,2,3 \mid 3], \beta_{2}=[2,3,1 \mid 1]$ and $\beta_{3}=[3,1,2 \mid 2]$. Then the set $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}\right\}$ is a minimal generating set for $\mathcal{P}_{3}^{*} \backslash \mathcal{S}_{3}^{*}$, since $\alpha_{1} \beta_{1}=[1,0 \mid 0], \alpha_{2} \beta_{2}=[2,0 \mid 0], \alpha_{3} \beta_{3}=[3,0 \mid 0]$, $\beta_{2} \beta_{3} \beta_{1}=[1,3 \mid 3], \beta_{3} \beta_{1} \beta_{2}=[2,1 \mid 1]$ and $\beta_{1} \beta_{2} \beta_{3}=[3,2 \mid 2]$.

Theorem 10. For each $n \geqslant 3$ and each $2 \leqslant r \leqslant m \leqslant n$,

$$
\operatorname{rank}_{m, r}\left(\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}\right)=\frac{n(n+1)}{2}
$$

Proof. By virtue of Lemmas 3 and 4, we only need to consider the case when $n \geqslant 4$ and $r \geqslant 3$. Thus, suppose that $n \geqslant 4$ and $3 \leqslant r \leqslant m \leqslant n$. Let

$$
P\{[1, n \mid n],[1, n-1 \mid n-1],[m-r+2, n \mid n]\}
$$

and

$$
Q=\{[n, 1 \mid 1],[n-1,1 \mid 1],[n, m-r+2 \mid m-r+2]\} .
$$

Then define

$$
I^{*}=\{[i, 0 \mid 0]: 1 \leqslant i \leqslant n\} \cup(\{[i, j \mid j]: 1 \leqslant i<j \leqslant n\} \backslash P) \cup Q .
$$

Since $|P|=|Q|=3$, it is clear that

$$
\left|I^{*}\right|=n+|\{[i, j \mid j]: 1 \leqslant i<j \leqslant n\}|=n+\binom{n}{2}=\frac{n(n+1)}{2}
$$

and that 0 is a sink in the associated digraph $\triangle\left(I^{*}\right)$. Also, observe that, when $m-r+2 \neq n-1$, the digraph $\triangle\left(I^{*}\right)-0$ has a Hamiltonian cycle

$$
1 \rightarrow 2 \rightarrow \cdots \rightarrow n-1 \rightarrow n \rightarrow 1
$$

and, when $m-r+2=n-1$, the digraph $\triangle\left(I^{*}\right)-0$ has a Hamiltonian cycle

$$
n \rightarrow n-1 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \rightarrow n-3 \rightarrow n-2 \rightarrow n .
$$

Thus in both cases the digraph $\triangle\left(I^{*}\right)-0$ is strongly connected. It is easy to see that the digraph is complete, and so, by Theorem $8, \triangle\left(I^{*}\right)$ is a generating set for $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$.

Suppose that $\left|I^{*}\right|$ is even. By Lemma 2, we can pair elements of I^{*} in such a way that

$$
\begin{equation*}
[i, j \mid j] \leftrightarrow[k, l \mid l] \Longrightarrow\{i, j\} \cap\{k, l\}=\varnothing \tag{7}
\end{equation*}
$$

There are two cases: (i) $r=m$; (ii) $3 \leqslant r \leqslant m-1$. In case (i), for each pair of type (7), let

$$
\begin{equation*}
\alpha=\left[i, x_{2}, x_{3}, \ldots, x_{m-2}, k, l \mid l\right] \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\left[k, x_{m-2}, x_{m-3}, \ldots, x_{2}, i, j \mid j\right], \tag{9}
\end{equation*}
$$

where the $m-3$ elements $x_{2}, x_{3}, \ldots, x_{m-2}$ are fixed distinct elements of $\in X_{n} \backslash\{i, j, k, l\}$. Then

$$
\alpha \beta=[k, l \mid l] \quad \text { and } \quad \beta \alpha=[i, j \mid j],
$$

and so, in equalities (8) and (9), we have found $\frac{n(n+1)}{2} m$-paths that generate $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$.

In case (ii), where $3 \leqslant r \leqslant m-1$, if both $j \neq 0$ and $l \neq 0$ hold, we define, for each pair of type (7),

$$
\gamma= \begin{cases}{\left[i, k, j, x_{4}, \ldots, x_{m-1}, l \mid j\right]} & \text { if } r=3 \tag{10}\\ {\left[i, x_{2}, \ldots, x_{m-3}, k, j, l \mid j\right]} & \text { if } r=m-1 \\ {\left[i, x_{2}, \ldots, x_{r-2}, k, j, x_{r+1}, \ldots, x_{m-1}, l \mid j\right]} & \text { if } 3<r<m-1\end{cases}
$$

and

$$
\delta= \begin{cases}{\left[k, i, l, x_{m-1}, \ldots, x_{4}, j \mid l\right]} & \text { if } r=3 \tag{11}\\ {\left[k, x_{m-3}, \ldots, x_{2}, i, l, j \mid l\right]} & \text { if } r=m-1 \\ {\left[k, x_{r-2}, \ldots, x_{2}, i, l, x_{m-1}, \ldots, x_{r+1}, j \mid l\right]} & \text { if } 3<r<m-1\end{cases}
$$

where the $m-4$ elements $x_{2}, \ldots, x_{r-2}, x_{r+1}, \ldots, x_{m-1}$ are fixed distinct elements of $X_{n} \backslash\{i, j, k, l\}$. Then, in all the situations,

$$
\gamma \delta=[k, l \mid l] \quad \text { and } \quad \delta \gamma=[i, j \mid j]
$$

And so, we have found $\frac{n(n+1)}{2}(m, r)$-path-cycles and/or m-paths that generate $\mathcal{P}_{n}^{*} \backslash \mathcal{S}_{n}^{*}$.

So far we have dealt with the case where $\left|I^{*}\right|$ is even. Suppose now that $\left|I^{*}\right|$ is odd. By Lemma 2, we have a pairing of the elements of $J=I^{*} \backslash\{[n, 1 \mid 1]\}$. By the above argument we can ensure that, for all $3 \leqslant r \leqslant m$, all elements of J are products of (m, r)-path-cycles and m-paths of the forms (8) and (9), or (10) and (11). In particular with those generators, we obtain $\xi=[n, m-r+2 \mid m-r+2]$. We now define

$$
\eta= \begin{cases}{[2,3, \ldots, m-1,1, n \mid n]} & \text { if } r=m \\ {[m-r+2, m-r+3, \ldots, m-1,1,2, \ldots, m-r+1, n \mid 2]} & \text { if } r<m\end{cases}
$$

Then

$$
(\eta \xi)^{m-1}=[n, 2,3, \ldots, m-1,1 \mid 2]^{m-1}=[n, 1 \mid 1] .
$$

The (m, r)-path-cycle η (if $r<m$) or m-path η (if $r=m$) does not appear in the list of elements (8), (9), (10) and (11); for otherwise we would have found a generating set with fewer than $\frac{n(n+1)}{2}$ elements. Hence, adding η to the generating elements already described gives a generating set consisting of $\frac{n(n+1)}{2}(m, r)$-path-cycles and m-paths.

Now, using Theorem 10 and Remark 1, we have proved the next theorem.

Theorem 11. For each $n \geqslant 3$ and each $2 \leqslant r \leqslant m \leqslant n$,

$$
\operatorname{rank}_{m, r}\left(\mathcal{P}_{n} \backslash \mathcal{S}_{n}\right)=\frac{n(n+1)}{2}
$$

References

[1] Andre, J. M. (2004). Semigroups that contain all singular transformations. Semigroup Forum 68:304-307.
[2] Ayik, G., Ayik, H., Howie, H. M. (2005). On factorisations and generators in transformations semigroups. Semigroup Forum 70(2):225-237.
[3] Ayik, G., Ayik, H., Ünlü, Y., Howie, H. M. (2008). Rank properties of the semigroup of singular transformations on a finite set. Communications in Algebra 36:25812587.
[4] Clifford, A. H., Preston, G. B. (1967). The Algebraic Theory of Semigroups, Mathematical Surveys of the American Mathematical Society, Vol. 2, Providence, R. L.
[5] Evseev, A. E., Podran, N. E. (1970). Semigroup of transformations of a finite set generated by idempotents with given projection characteristics. Izv. Vyssh. Zaved Mat. 12(103):30-36; translated in Amer. Math. Soc. Transl. (1988) 139(2):67-76.
[6] Garba, G. U. (1990). Idempotents in partial transformation semigroup. Proc. Roy. Soc. Edinburgh 116A:359-366.
[7] Howie, J. M. (1966). The subsemigroup generated by the idempotents of a full transformation semigroup. J. London Math. Soc. 41:707-716.
[8] Howie, J. M. (1978). Idempotent generators in finite full transformation semigroups. Proc. Roy. Soc. Edinburgh 81A:317-323.
[9] Howie, J. M. (1980). Products of idempotents in a finite full transformation semigroup. Proc. Roy. Soc. Edinburgh 86A:243-254.
[10] Howie, J. M., McFadden, R. B. (1990). Idempotent rank in finite full transformation semigroups. Proc. Roy. Soc. Edinburgh 116A:161-167.
[11] Howie, J. M., Lusk, E. L., McFadden, R. B. (1990). Combinatorial results relating to products of idempotents in finite full transformation semigroups. Proc. Roy. Soc. Edinburgh 115A:289-299.
[12] Howie, J. M., Robertson, R. B., Schein, B. M. (1988). A combinatorial property of finite full transformation semigroups. Proc. Roy. Soc. Edinburgh 109A:319-328.
[13] Kearnes, K. A., Szendrei, A., Wood, J. (2001). Generating singular transformations. Semigroup Forum 63:441-448.
[14] Lipscomb, S. (1996). Symmetric Inverse Semigroups, Mathematical Surveys of the American Mathematical Society, Vol. 46, Providence, R. L.
[15] Saito, T. (1989). Products of idempotents in finite full transformation semigroups. Semigroup forum 39:295-309.
[16] Vagner, V. V. (1956). Representations of ordered semigroups. Mat. Sb. (N.S.) 38:203-240; translated in Amer. Math. Soc. Transl. (1964) 36(2):295-336.

Contact information

G. U. Garba,
A. T. Imam

Received by the editors: 20.12.2015
and in final form 03.04.2016.

[^0]: 2010 MSC: 20M20.
 Key words and phrases: path-cycle, (m, r)-path-cycle, m-path, generating set, (m, r)-rank.

