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The purpose of research. Analysis of influence of stiffness parameters of mobile vibratory device with two
unbalanced vibration exciters on eigenfrequencies of its mechanical system and substantiation of stiffness parameters
in order to ensure its energy-efficient resonance operation mode. Methodology. The technique of the research is
based on fundamental concepts of engineering mechanics and theory of mechanical vibrations. In order to deduce the
differential equations of motion of the mechanica system of mobile vibratory robot the d Alambert-Lagrange
principle was used. The computation modelling of the system’s motion caused by periodic excitation forces was
carried out using MathCAD software. Results. The design diagram (model) of the two-mass mobile vibratory system
with two unbalanced vibration exciters was constructed. The mathematical model of its motion was developed and
the parameters of the resonance mode of its operation were substantiated. In particular, the influence of stiffness
parameters of mobile vibratory device with two unbalanced vibration exciters on elgenfrequencies of its mechanical
system was analysed. The steady-state and transient conditions of operation of the system under the influence of
periodic excitation force were investigated. Scientific novelty. The analytical dependencies for determination of
gtiffness parameters of the mechanical oscillating system of two-mass mobile vibratory device with two unbal anced
vibration exciters were derived in order to ensure its operation in energy-efficient resonance mode. The value of the
phase shift of the unbalanced exciters' rotation was substantiated in order to maximize the device's motion speed.
Practical value. The results of the carried out investigations can be used while designing and developing control
systems of mobile vibratory transporting and robotic devices in order to ensure the possibility of changing the speed
of their motion without changing the frequency and direction of rotation of unbalanced vibration exciters.

Keywords: mobile vibratory system, vibration exciter, resonance operation mode, inertial parameters, stiffness
parameters, excitation parameters, phase shift.

Introduction. Mobile robots are widedy used for performing different transporting and
technological operations in environments which are dangerous for human beings. Most of such systems are
equipped by tracked or wheeled drives, and some models — by walking mechanisms. However, such robots
can not be effectively used while performing rescuing operations among the debris of buildings where it is
necessary to move through narrow gaps or while cleaning and diagnosing internal surfaces of long tubes
and pipelines. That's why, nowadays, the new direction of mobile robotics is being developed [1-9]. This
direction deals with vibratory robots which do not need specific drives (wheels, caterpillars, legs, screws
etc.) and use the oscillatory motion of their working bodies interacting directly with environment for
performing different transporting and technological operations.

That's why, the problems of investigating the dynamics of motion and substantiating the parameters
of vibratory robots being considered as mobile mechanical systems, which can move in the prescribed
environment due to the changes of their structures or periodic displacements of their internal masses, are
urgent. In particular, in this paper, the possibilities of implementation of mobile vibratory devices based on
two-mass oscillating systems with two unbalanced vibration exciters will be substantiated.

Analysis of modern information sources on the subject of research. Nowadays, there exists a
great variety of mobile vibratory devices [1-9]. The simplest robots consist of one body being able to
move along a straight line [1-4]. The more complicated structures have much greater amount of bodies and
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can move in different directions [5-9]. Planar motion can be ensured, for example, by changing the shape
of the rabot’s body (snake-like motion), as well as by moving the internal masses in a plane parallel to the
plane of mation of the robot [1]. In this article, we shall pay attention to 1-D robots, which can perform
only straight-line motion.

One of the ways of providing the motion of 1-D robots consists in ensuring vibratory motion of
internal masses in the direction of the motion of the robot [1, 4, 5]. This can be performed by rotation of
unbalanced masses [2, 5, 6, 8], by piezoactuators [4, 7, 9], by electromagnets [1] etc. The first way of
excitation of the oscillatory motion is the most interesting one from the point of view of the system’'s
dynamics. Especially, when the mechanical system consists of two and more movable bodies. The problem
of modelling vibratory system’s dynamics becomes more complicated when the number of active actuators
increases. This problem requires thorough analysis of the influences acting upon the working bodies
including Coulomb’s friction and viscous damping [10]. Herewith, it is necessary to mention that most
mobile vibratory devices should be considered as semidefinite (unrestricted) mechanical oscillatory
systems. Thus, in order to ensure their efficient operation, it is necessary to substantiate the inertial and
stiffness parameters in such a way that the mechanical system is to be oscillating in resonance (near-
resonance) mode. This assumption will be taken into account as a basic one while carrying out further
investigations in this paper.

The purpose of research. The purpose of this paper consists in analysis of influence of stiffness
parameters of mobile vibratory device with two unbalanced vibration exciters on eigenfrequencies of its
mechanical system and in substantiation of stiffness parameters in order to ensure its energy-efficient
resonance operation mode. Also, the parameters of the phase shift of the unbalanced exciters' rotation
should be substantiated in order to maximize the device’ s motion speed.

The idea of operation of mobile vibratory device. In this paper, the possibilities of using two-
mass oscillatory system with two unbalanced vibration exciters as mobile transporting device with straight-
line motion of the working bodies will be substantiated. In further investigations, it is planned to consider
the prospects of developing the controlled mobile vibratory systems based on the similar structure ensuring
the possibility of motion in any direction of the supporting plane.

One of the simplest designs of mobile vibratory system is presented in Fig. 1. The mechanical
system of the device consists of two bodies 1 and 2 connected by a coil cylindrical spring and placed on a
stationary supporting surface 4 ensuring the possibility of straight-line motion (sliding) of the bodies. On
each body, there are the corresponding hinges 9 and 10 to which the driving cranks 7 and 8 are attached.
On the free edges of the cranks, the ball masses 5 and 6 are placed. These masses are considered as
unbalanced exciters rotating about the hinges 9 and 10, and exerting the corresponding inertial loadings on
the working masses 1 and 2 causing their motion.

Fig. 1. Design diagram of mobile vibratory systemwith two unbalanced vibration exciters
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The motion of the system is carried out due to the action (exertion) of periodic variable centrifugal
forces caused by rotation of unbalanced masses 5 and 6 upon corresponding working bodies 1 and 2
(Fig. 1). The kinematic characteristics of the system’s mation, in particular, the speed of horizontal motion
of the system’s gravity centre, depend on the rotation frequencies of the unbalanced masses, their phase
shift (initial angular position difference), as well as on inertial, stiffness and damping properties of the
oscillating system and supporting surface.

In this paper, the preconditions of further investigation of influence of the mentioned parameters of
the mobile vibratory system on its motion speed will be initiated. In particular, in the following paragraphs,
the kinematic scheme of the device's mechanical oscillating system will be constructed, the mathematical
model of the system’s motion will be formed, its amplitude-frequency characteristics will be analysed, and
the relationships between inertial, stiffness and damping parameters will be substantiated in order to ensure
the resonance operation mode of the vibratory device.

Constructing the kinematic diagram and analysis of forces acting upon the elements of
mechanical system. Let us consider the kinematic diagram of the mobile vibratory system presented in
Fig. 2. The working masses my and m, can move along horizontal axis Ox and are considered as rigid
bodies (solids). To define the motion of each mass, the corresponding generalized coordinates x and X,

are used. While developing the mathematical model of the oscillating system and while carrying out
further investigations let us neglect the geometrical sizes and shapes of the working bodies considering
them as mass points (particles). Also let us assume that the bodies are connected by eastic-tough e ement
characterised be stiffness ¢ and energy-dissipation coefficient (coefficient of tough resistance) m. While

defining potential forces let us assume that deformations of the elastic element are performed in
accordance with the linear Hooke's law.

3 T =

o A U7 xz,.r\)?mg,
/ X) m m, 0/602\
O —
/x

Fig. 2. Kinematic diagram of oscillating system of mobile vibratory device
with two unbalanced vibration exciters
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Fig. 3. Diagram of forces acting upon each mass of the oscillating system
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The working masses of the oscillating system are acted by centrifugal forces Clgl and c'gz caused by
rotation of unbalanced masses (Fig. 3). These faorces are periodic variable forces and change their direction with
circular frequencies wy and ws,, correspondingly. Also, the masses are influenced by aternating tension-

compression loads I'312, I'321 and tough resistance forces Ille, I'QZl due to their connection by the eastic
element. In addition, as aresult of interaction of each mass with the supporting surface they are acted by friction
forces Ry and F, whose directions depend on the directions of motion of corresponding bodies.

As it has been mentioned previoudly, the alternating centrifugal forces Clgl and c'gz caused by

rotation of unbalanced masses are considered as the driving (exciting, disturbing) forces. Due to defining
the rational inertial and stiffness parameters of the oscillating system of mobile vibratory device and the
excitation parameters (rotation frequencies and phase shift of unbalanced masses), it is possible to ensure
the translational motion of mobile robot in any direction of the axis Ox . For this, it is necessary to derive
the differential equations of motion of mechanical oscillating system of the robot with further plotting of
amplitude-frequency characteristics and determination of optimal operation modes of vibratory device.

Formation of mathematical model of the system’s motion. In order to derive the differential
equations of motion of the vibratory device's mechanical system let us use the d Alambert-Lagrange
principle. This principle can be stated as follows: if the system is moving, the active forces, reactions of
constraints and inertial forces form an equilibrated (balanced) system of forces for each particle of the
system. For the considered mechanical system with two working masses the d’ Alambert-Lagrange
principle can be presented in the following vector form:

2w  2uwr 2 uur
akfc+ta R+ad=0, @
k=1 k=1 k=1

2 ur
where § F¢ isthe sum of resultants of all active forces applied to each point of the mechanical system;

k=1

2 wr
a Ry isthe sum of resultants of the constraints' reactions exerted on each particle of the mechanical
k=1

2 uuwr
system; § @, isthesum of inertial forces acting upon each particle of the mechanical system.

k=1
As a result of projecting the equation (1) for each particle of the system on the axes of rectangular
coordinate system, we obtain the following system of equations:
i Fyy + Ry + @y =0
i Fox + Roy + @y =0;
e R +o =0 @)
i Fy ¥ Ry + &y =0
}Fzy + Rzy +(D2y =0.

Taking into account the material presented above, let us write the corresponding expressions for
determining the active forces and constraints' reactions acting upon the particles of the mechanical system.
The inertial forces acting upon the working bodies of the mechanical oscillating system are equal to the
product of their masses on the corresponding projections of accelerations. Taking into account the fact that
the bodies cannot movein vertical direction, we obtain:

Py =- (M +mg) ;o =- (My+my)dy; @y =0, Dy =0. (3)

In this case, as a constraint we consider the rough surface which is characterized by the

corresponding friction forces Ry, R, (Fig. 3) and normal reactions Ny, N,. Hence, in order to determine
the reactions of constraints in equations (2), let us use the following formulas:
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Rix = Fq == f1 XNy >sign (% );
Roy = Fio =~ fp XNy >sign (% ); (4)
Ry =Ng; Roy =N,
where sign (ﬁq ) is the function which defines the direction of motion of the corresponding body (i :J,_Z) :
11, sxwo % (t)>0;
Sign(ﬁq (t)) =:’- 1, saxwo ¥% (t) <0
¥O, saxujo % (t) =0.

Active forces acting upon the particles of the mechanical system can be divided into gravitational
ones (Fgrl, Fgr2) , exciting ones (inertial forces caused by unbalanced masses rotation) (Ql, Qz) , eastic
and dissipative ones (applied as a result of tension/compression of the elastic element between the working
bodies) (For1, Fprz):

Fix =- Fgri + Qi + Fpraxs Fox =- Fgra + Qox + Fproxs
Fiy =-Fgr1 + Quy + Fprays  Foy =-Fgro +Qoy + Fpyroy.

The gravitational forces act only in vertical direction:

Fgrix =0; Fgrox =0; Foray = (ml+m3)><g Fgroy = (mz+m4)><9 (6)
where g isfreefall acceleration.

The excitation of oscillation of the mechanical system is performed due to the rotation of the
unbalanced masses. Herewith, the direction of the excitation force action is being changed in time. For
deriving the differential equations of motion of the mechanical oscillating system, in further investigations
let us consider constant frequency of the unbalanced masses' rotation. This assumption allows us to write
thefollowing expressions for inertial forces:

()

Qi =My ¥g Wi >cos(xq +wy X);  Qpy =My Xy 33 xc0s(X, +Wy X);

2 . - 2 o
Q_Ly:nb >41>VV1 >S|n(X1 +W1>¢), sz—m4 >42 W5 >S|n(X2 +ws >¢),
where |; isthe length of the crank of thei-th unbalanced mass; x; istheinitial phase of oscillations of the

i-th unbalanced mass (the initial angle of inclination of the unbalanced mass's crank with respect to the
Ox axis).

Elastic and dissipative forces occurring as a result of tension/compression of the elastic element
between the working bodies depend on the relative position of the bodies and the difference between their
linear velocities. While deriving the analytical dependencies for determining elastic and dissipative forces,
let us assume the following: the deformations of the elastic element are performed in accordance with the
linear Hook's law, and the coefficient of viscous friction (damping coefficient) is proportional to the
velocity of the spring’s deforming. Thus, in order to determine the elastic and dissipative forces we obtain
the following expression:

Forix = - (cX(x - xo) +mxfg - ky)); Forax =- (cX{x - %) +mX% - & ));
Forty =0; Foray =0,
where ¢ is the stiffness coefficient of the elastic element; m is the damping coefficient (coefficient of

viscous friction) of the elastic element.
Taking into account the equations (5)—8), the general expression for determining the active forces
acting upon each particle of the mechanical systemis as follows:

Fix = Mg %3 W xcos(xg +wy %) - (cx(3 - xp)+mx{(dq - %)); 9)

(")

(8)
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Fax =My g x5 xc0s(xp +Wo %) - (CX{(Xp - 3 )+ mx{dy - %)).
Taking into account the equations (2), (3), (4), (9), according to the d’ Alambert-Lagrange principle,
the general form of differential equations of the mechanical oscillating system’s motion of the mobile
vibratory deviceis as follows:

err13>4 A7 XCOS(X, +W, 1) - (e - X,)+m{k - &,))-
& fo((m+m)>g- mydwdsin(x, +w, o)) sign (&)

€m, A, M3 xcos(X, +W, ) - (X, - X ) +mH(k, - &))- U
(m, +m,) &% =¢
8' f >((mz+m )>g- m, 4, s sin(x, +w, >¢))>S|gn(&l)

Determination of natural frequencies of free oscillations of the system. In order to deduce
analytical dependencies for determining eigenfrequencies of the vibratory device' s natural oscillations let
us write the system (10) of differential equations of its motion in the normal form: all the terms of the
equations consisting of derivatives are transposed to the left sides of the equations, and the terms without
derivatives — to theright sides:

(my +mg) g+ mx(dy - ) +cX(x - %) =R (t);
(mp +my) dh +mx(k - dq)+cx{% - X )=P(t),
where By (t) =mg %y e xcos(xg +wy X) - f; ><((ml+rn3,)><g- Mg X W2 8N (g +wy >¢))>sign(&1);

(m+m)# =8 E

(10)

(11)

P, (t) =my ¥, A3 xcos(xp +Wy %) - f, ><((mz +my ) xg- my X, W3 xsin(xo +Wws >¢)) xsign (k) .

The obtained system (11) is a system of linear inhomogeneous differential equations of the second
order with constant coefficients. In order to determine eigenfrequencies of the mechanical system it is
necessary to define the general solutions of the corresponding system of homogeneous equations:

(my +mg) =y +mx(k - %) +cXx - %) =0;
(mp +my) s + mx(dy - g ) +cX{%; - %) =0,

or
&ll-+nh+nh><&1-&2) n‘h_+nh><xl-x2)=o (12)
m c _
w2+rnz+rn4><&2- &1)+rnz+rn4><x2' Xl)—O,
or

821+2><nl><f(1- 2>¢|1X&2+k12 XX - k12 XX2=O'
8&2 +2xf12 X&2 - 2><r12 X&1+k2 XXo - k2 XX =
___m .
2{m +mg)’ 2X(mz+m4 +ms mz+m4
In order to solve the obtained system of differential equations let us use the Euler’s method, which
states that roots of the corresponding equations can be determined in the following form:

where iy =

np =

¥ =Xy b % =X, el b (13)
where X1, X5, | areunknown constants which can be determined in terms of given initial conditions.
Let us take the corresponding derivatives of equations (13) with respect to time:
=X 4 el k=X, H

— 2. Jt. — 2. )t (14)
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Substituting expressions (13) and (14) into the system of equations (12) and cancelling et we
obtain:

X1 ¥ 2+2><rh><X1><1 - 22Xy XX, ¥ +k12 xXq - k12 xXo =0;
X2 b 2 +2an XX2 q - 2><r12 XX1>4 +k22 XX2 - k22 ><X1 =0.
Let us reduce the abtained system (15) of linear algebraic equations with constant coefficients to the
normal form with respect to the constants X;, Xs:

(12 +25m 4 +12 )X, - (20 4 +kE )X, =0

i (2><n2>4 +k22)><X1+(I 2 4 250, o +k22)><X2=0.

(15)

(16)

The constants X;, X, are not equal to zero only in the case when the determinant of the system

(16) is equal to zero:
242 A +K2 -(2><nl>d +k12)
=o0. (17)
(2 +KZ) 1242ompd +1E

The equation (17) is a characteristic equation for the system (12). It may be reduced to the quartic
equation with respect to | :

4+(2>¢1l+2m2)>43+(k12+k22)>42=O. (18)
Theroots of the equation (18) are as follows:
11220 aa=x ()~ (k2 +KE) - (n+re). (19)

The equations (19) allows us to determine the eigenfrequencies of the mechanical system'’s free
oscillations. The following formulas presents the expressions for calculating undamped natural frequency
(frequency of undamped free oscillations) wy and damped natural frequency (frequency of damped free

oscillations for the case of the underdamped system) wy :
WO1 =wg, = 0;

W 12 = 9: c{my +mg +mp +my)
o, = 418 \/§ +my §mz+ p J("vms)*(mﬂrm)

Wd, =\/(k12 +k22)' (r‘lJ’nz)2 =

gV @4%+%)24W+MH3:

;w%m+%+%+mnfmﬂm+%+w+m)
(my+mg) {my +my) ~ E2(m +mg){m, +my) 5

One of the natural frequencies of the system is zero (Wo1 =W, :O), which means that the

(20)

9%

mechanical system is not vibrating. In other words, the mechanical system consisting of two rigid bodies
moves as a whole (one body) without any relative motion between the two masses. Thus, the systems being
investigated can be considered as a semidefinite (unrestricted) systems, because they have one of the
natural frequencies equal to zero. Let us consider the case of force-damped vibrations of the presented
semidefinite vibratory system and find the steady-state solutions of the equations (11).
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Analysis of forced-damped oscillations of vibratory device. Considering the forced-damped
vibrations of the considered device, the equations (11) of motion of its two-degree-of-freedom system
under the action of external forces can be written as:

gg;nl+rrb 0 o)?xlo+m>t1-&20+c ae<1-x29=gé319_
& 0 mimygéhy Ebo-kg &-Xg EPg

Let us consider the external forces to be harmonic neglecting the dry-friction damping. This
assumption can be substantiated be the following fact. If the dry-friction force is small compared to the
amplitudes of the active forces Qp,, Q,y, the steady-state solution is expected to be nearly harmonic.
Thus, we obtain:

(21)

P =Pgx™, j=12 (22)
where w isthe forcing frequency.
We can write the steady-state solutions as:
xp =X, j=12, (23)
where X;, X, arecomplex quantities that depend on w and on inertial, stiffness and damping parameters

of the mechanical system.
Substitution of (23) and (22) into (21) leads to:
R w2 (my +mg) +iwm+c wome 0 a5, 6_afio 6

¢

_ ) =c . (249
g i W xm+ ¢ -w? {mp +my ) +iwom+ ¢ X2 Pz

Let us define the mechanical impedance in the matrix form as:

@ w2 x(my +mg) +i W xm+c i W xm+c

o
BZ (i w)g=Zs (1 w) =¢ . N
< i W xm+c -w? X(my, +my) +iwxm+ ¢ 25

_ &y (Iw)  Zgp (iow)6 _
=¢ . . = r,s=12.
eZZI(I >\N) ZZZ (l WV)Q
Let us reduce the equation (24) to the following form:
1 1
6z (i w)gX =Ry, (26)
r r
where X _29(10 R = gEPlOO
X220 éPog

Let us solve the equation (26) and obtain )I( :
>E=gz(i >w)g'1><|£0, (27)
wherethe inverse of theimpedance matrix is given by
e 1 &Zy, (iw) - Zy, (iw)o
& (w)g~ = ~ Zyy (i W) %2 (1 W) - Zyp (i W) X2 (i) & §e Zyy (i) Zyq (i) ; (28)
Equations (27) and (28) lead to the following solutions:
Zp (i) xR - Zyp (i ) xPog
Zy (i W) XZ gy (i W) - Zgp (i ) XZoy (i o)’
- Zyy (i) xR + Zy (i w) Py
Zy1 (i W) xZp (i W) - Zg5 (i W) xZq (i)

Xy (i>w) =
(29)
Xo (i) =

By substituting the values of components of the impedance matrix (25) into (29), we can get the
analytical dependencies of the amplitudes of the oscillating masses on the working frequency (or in the
other words, the steady-state solution of the system (21)):
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(-w2 My +my) +i >w><m+c) P - (i xm+c) Xy

X1(| WV)z 5 ) > ] i 21
(-w (my +mg) +i >w><m+c)><(-w My +my) +i >w><m+c)- (i v xm+c)
(30)
- (i v xm+ ¢) Xy +(-w2 (my +mg) + i w xm+ c) xFog
Xo (12w) = .
2 (1) (-w2 (my +mg) +i >w><m+c)><(-w2 My +my) +i >w><m+c)- (i >w><m+c)2
By substituting the equation (30) into (23), we can find the complete solution X (t), X, (t):
2 : :
o (t)= (-w My +my ) +iw xm+ c) P - (i xm+c) xFyg .
1 2 - 2 : : 2 ’
(-w my +mg) +i >w><m+c)><(-w M +my) +i >w><m+c)- (i v xm+c)
(31)

() -(ixN><m+c)><F10+(-w2><(ml+ms)+i>w><m+c)><F20 "
? (-w2><(rnl+ms)+i>w><m+c)><(-w2><(mz+m4)+i>wxm+c)-(i>w><m+c)2

Substantiation of stiffness parameters of vibratory devicein order to ensure the ener gy-efficient
resonance operation mode. In order to correctly match the inertial and stiffness parameters of the
vibratory device and to ensure energy-efficient resonance operation mode let us investigate the dependence
of the stiffness of the elastic element on the oscillating system’ s eigenfrequency in the case when the mases
of the working bodies and the lengths of the driving cranks are known: my =m, =0.25Kkg,

my=my =0.025 kg, 1, =1,=0,03m. In order to simplify further calculations, let us neglect the
coefficient of viscous damping in the elastic element m» 0. Adopting the stiffness of the elastic € ement

varying from 0 N/m to 15000 N/m, with a help of formula (20), let us construct the graphical dependence
(Fig. 4) of the system’s eigenfrequency on the stiffness of the connecting spring.

350 36

300 48

250 40
2, Ho,

, 200 32
rad’s _ H:
e | 50 2

100 // 16

50 g
% 3000 6000 Ty 9000 12000 15000
> ¢, N‘'m <

Fig. 4. Dependence of the oscillating system' s eigenfrequency on the stiffness of the elastic element
Puc. 4. 3anexcuicmo 61acnoi wacmomu KOJUBHOT CUCTNEMU 8IO HCOPCMKOCME NPYICHOSO eeMEHMA

By analysing the obtained plot (Fig. 4), we can mention the nonlinear proportional dependence of
the oscillating system’s eigenfrequency on the stiffness of the eastic element. For instance, in further
investigations, let us adopt the following frequency of the excitation force (frequency of the unbalanced

masses’ rotation) iy =n, =1500 rpm = 25 rev/s=25 Hz. Thus, the forcing circular frequency is equal to
W, =W, = p >y _ 3.14x1500
30

the resonance mode with the corresponding correction coefficient z=0.96, let us determine the necessary
eigenfrequency of the oscillating system:

=157 rad/s. Taking into account the necessity of the system’s setting up on
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5 »163.6 rad/s. (32

Thus, the determined eigenfrequency of the mechanical system of the vibratory device ensures the
energy-efficient operation mode close to resonance one. In this case, according to the formula (20) and
Fig. 4, it is necessary to calculate the necessary stiffness of the eastic element:

2
o (myrmy)(my +my) gt (my +my +mp +my)
m+mpmgemy  Amy )Xy +my)
_ (0.25+0.025) 0.25+ 0.025) x163.6° .\ 0% 40.25+0.025+ 0.25+0.025) _ 3680 N/m
~ 0.25+0.025+0.25+0.025 4x0.25+0.025) {0.25+0.025) '

Taking into account the given inertial and force parameters, and using the determined stiffness of
the connecting spring, with a help of the analytical dependencies (30), let us construct the amplitude-
frequency characteristics (Fig. 5) of the oscillating system of the vibratory device.

(33)
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Fig. 5. Amplitude-frequency characterigtic of the oscillating system
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Fig. 6. Time-dependencies of changing the excitation forces and displacements of the oscillating
masses from the equilibrium position in steady-state mode of the device’ s operation
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Let us construct the time dependence of the excitation force (Fig. 6) using the expressions (7). Also
let us plot the corresponding time dependence of steady-state motion of the oscillating masses (Fig. 6) with
a help of formulas (31). By analysing the obtained results, we can state that the excitation force B (t) is
characterized by the amplitude value of 18.5 N and changes in accordance with the cosine law with the
frequency of 25 Hz. The excitation force P, (t) is characterized by the same amplitude and frequency, but
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it changes in accordance with the sine law. In further investigations, it will be substantiated that the phase
shift of p/2 between the excitation forces R (t) and P, (t) allows ensuring the most effective motion of

the mobile vibratory system (i.e. the maximal motion speed). The maximal (amplitude) values of the
oscillating masses’ displacement from the equilibrium positions are following: X; = X, =0,032 m.

Numerical solving the differential equations of the system’s motion in MathCAD software. Let
us simulate the motion of the mobile vibratory device which is described by the system (10) of two linear
nonhomogeneous differential equations of the second order with constant coefficients. In order to find the
solution of the mentioned system ley us use the RADAUS method of MathCAD software.

Theinput parameters of the system being investigated are the following ones:

—inertial parameters: m =m, =0,25 kg, m,=m, =0,025 kg, |, =1, =0,03 m,

— stiffness parameters: ¢ =3681 N/m;

— damping and friction parameters are to be neglected in order to simplify the process of the
equations’ solving: m=0, f =f,=0.
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— excitation parameters: Q, = Qo =18,5 H, W, =W, =157 rad/s (25 Hz);
— initial conditions: initial positions (displacements) of the oscillating masses x (0) =0, x,(0)=0;
initial velocity of the oscillating masses %,(0) =0, %,(0) =0.

Les us analyse the possibilities of changing the phase shift between the unbalanced masses rotation
in order to maximize the speed of the vibratory device motion. Thus, let consider the following phases of
the unbalanced masses rotation (Table 1).

The results of modelling the system’s motion under different excitation parameters are presented in
Fig. 7. By analysing the obtained dependencies, we can make the following conclusions:

—inthe cases @) and €), i.e. when x; =0, X, =0 and X; =0, X, =p , the vibratory device is not
moving trandationally (only the masses are oscillating). The average speed of the system’'s mass centre

tranglational motion equals zero;
—in all the other cases the device will move in different directions and with different speed. In

particular, when X, =%, Xo =%, Xo =3PA, i.e. when 0<x, <p , the device is moving to the right.
When x, :5F%1, X5 :39/2, X5 :7%, i.e. when p >x, >2p, the device is moving in the opposite
direction. In the cases when x» :%, X5 =3F%r, X5 :5F%1, X5 :7%, the average speed of the system’s

mass centre translational motion is 0.15 m/s. When x, :%, Xo :39/2, the average speed of the mass

centreis 0.22 nvs.
By comparing the plots in Fig. 6 and in Fig. 7 (cases ¢ and g), it should be mentioned that the
maximal amplitude of displacement of the oscillating mass from the instantaneous equilibrium position

corresponds to the theoretically calculated one (X; = X, =0,032 m).

Fig. 8 presents the graphical dependence of changing the average speed of mobile vibratory device under
different phases of the unbalanced masses' rotation. By analyzing the obtained plot, we may conclude that
the vibratory system is not moving translationally when the unbalanced masses move at the same phase or
at the opposite phase. The maximal motion speed of 0.22 m/s takes place when the phase shiftsare x; =0,

Xo :% and X1 =0, Xy :39/2. The only difference in the system’s motion under the considered phase

shifts of the unbalanced masses rotation is the direction of the system’s motion (to the left or to the right).
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g, h — correspond to the phases presented in Table 1
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Conclusions. The structure of the two-mass mobile vibratory system with two unbalanced vibration
exciters was analysed, and the corresponding design diagram was constructed. The differential equations of
the system’s motion were derived. The analytical solving of the obtained linear differential equations with
constant coefficients was carried out with a help of the Euler’s method. The analytical dependencies for
calculating the eigenfrequencies of the system and the amplitudes of the oscillating masses displacements
were deduced. The performed theoretical investigations allowed us to substantiate the stiffness parameters
of the connecting spring in order to ensure the energy-efficient resonance operation mode. In particular, for
the system with following parameters (Fig. 2) my =m, =0,25 kg, my =my =0,025 kg, |; =1, =0,03 m,
w; =w, =25 Hz, there were determined the necessary values of the eigenfrequency wp =26.04 Hz and
the stiffness of the elastic eement ¢ =3680 N/m. Based on the abtained results, the amplitude-frequency
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characteristic was constructed and the time-dependencies of the excitation force and displacements of the
oscillating masses were analysed. It was concluded that the amplitude value of the excitation force of
Prax =18,5 N causes the maximum displacement of the working body from its equilibrium position of
X =0,032 m.

By solving the derived differential equations of the vibratory system’s motion, the influence of the

phase shift of the unbalanced masses rotation on the tranglational speed of the system’s mass centre. As a
result, it was concluded that the maximal speed of 0.22 nvVs takes place under the following excitation

conditions: X; =0, X, = % and x; =0, Xp = 39/2. The only difference in the system’s motion under the

considered phase shifts of the unbalanced masses rotation is the direction of the system’s motion (to the
[eft or to theright).

In further investigations, it is necessary to analyse the influence of the viscous damping and
Coulomb'’s friction on the system’s motion. In addition, the numerical solution of the derived differential
equations should be obtained and the mation parameters of the mobile vibratory device should be analysed.
In order to substantiate the obtained theoretical results, the experimental investigations should be carried
out.
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B. M. Kopengaiii
Hanionansnuii yHiBepcuret “JIbBiBCbKa MoMiTEXHIKA”

OBIPYHTYBAHHS TAPAMETPIB TA MOJIEJIIOBAHHSI PYXY IBOMACOBOI MOBLJILHOI
BIBPAIIIITHOI CAICTEMM I3 IBOMA JIEFAJJAHCHUMH BIEPO3BY/IHUKAMHU

O Kopenoiii B. M., 2018

Meta nocJixzkeHHs. AHaJIi3 BIUIMBY JKOPCTKICHHX IapaMeTpiB MOOiIbHOI BiOpamiiiHOi yCTaHOBKH 3 JIBOMa
nebalaHCHUMHU  BIOpO30YyIHMKaMU Ha BJIAacHI YacTOTH I MEXaHIYHOi KOJHMBHOI CHCTEMH Ta OOIPYHTYBAaHHS
YKOPCTKICHUX IapaMeTpiB 3 METOI0 3a0e3nedyeHHs] eHeproe()eKTUBHOTO PE30HAHCHOTO PEXHUMY POOOTH YCTaHOBKH.
MeToau nociimkensb. Meroauka g0ciikeHb 0a3yeTbesl Ha (yHIaMEHTAIbHUX IPUHIUIAX 1H)KEHEPHOT MEXaHIKH Ta
Teopii MexaHIYHUX KOJIWBaHb. [y BUBeleHHs MUQEpEHIiabHUX PIBHSAHb PyXYy MeEXaHIuYHOI CUCTEMH MOOLIBHOTO
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BiOpariiiHoro pobora Bukopucrano npunnun JlamamoOepa—/larpamka. UucenbHe MOJIENIOBAHHS PYXY CHCTEMH,
CIPUYMHEHOTO MEepioJMYHO 3MIHHMMHU 30ypIOBaJbHUMH CHIIAMH, 3[IHCHIOBAJIHCS 3a IOIMOMOIOI IPOTrPaMHOTO
npoaykry MathCAD. PesyabraTi mociiqkeHb. 3ampormoHOBAHO PO3PAXYHKOBY cxeMmy (Momenb) JBOMAacoBOi
MOOITBHOT BiOpAIliiiHOT CHCTEMH 13 ABOMA JIe0alaHCHUMH BiOp0o30yaHUKaMu. Po3po0iieHo MaTeMaTHYHY MOICTb, SKa
OITUCYE PYX CHUCTEMH, Ta OOIPYHTOBAHO ii IapaMeTpu 3 METOI 3a0e3NeueHHsT PE30HAHCHOI'O PEKUMY POOOTH.
30KkpemMa, MpoaHai30BaHO BIUIMB JKOPCTKOCTI CIIOJYYHOTO MPY)KHOTO €IEMEHTa MK POOOYMMH TiTaMH MOOITBHOT
BiOpaIliifHOi yCTaHOBKH 13 ABOMa JeOalaHCHUMHU BiOpo30yJAHWKaMHM Ha BJIACHI YacTOTH KOJHMBAaHb ii MeXaHIuHOI
CHCTEMH, PO3IVIIHYTO YCTAIICHHUH Ta MEpeXiJHi peKUMU POOOTH CHCTEMH 3a il NepioAUYHO 3MIHHUX 30YPIOBAIBHUX
3ycunb. HaykoBa HOBU3HA. BuBeneHO aHaMITHYHI 3aJIeKHOCTI Ui BHM3HAYEHHS JKOPCTKICHHX IapaMeTpiB
MEXaHIYHOI KOJIMBHOI CHCTEMH JIBOMAacoBOi MOOUIBHOI BiOpaljifHOI YCTaHOBKM i3 JBOMa JeOalaHCHUMHU
BiOp030yIHUKaMH, SIKI 3a0e3ledyloTh pOOOTY YCTAHOBKHM B EHEProe(eKTUBHOMY pPE3OHAHCHOMY DPEXHMI.
OOTrpyHTOBAaHO BEIWYHMHY 3CYBY (ha3 oOepTaHHs JcOalaHCHHX BiOPO3OYIHHKIB 3 METOK MaKCHUMi3allii IIBUAKOCTI
pyxy ycraHoBku. IIpakTuyne 3Ha4deHHSI podoTH. Pe3yipraTé NMpOBENEHUX MOCHTIKEHb MO)KHA BHUKOPUCTATH B
TpoLIeCi MPOEKTYBaHHS Ta HaJarofPKEHHS! CUCTEM KepyBaHHsS MOOUIBHUX BiOpPOTPAHCIOPTHUX 1 pOOOTOTEXHIYHMX
YCTAaHOBOK 3 METOI 3a0e3NeueHHsT MOXKJIMBOCTI 3MIHM IIBHJIKOCTI TXHBOTO pyXy 0€3 3MiHM YacTOTH 1 HAINpSMKY
obepTaHHs Je0anaHCHUX BiOPO30yIHUKIB.

Knwowuosi cnoea: moOinbHa BIOPOTpaHCIIOPTHA cUcCTeMa, BiOpO30yIKyBad, PE3OHAHCHUH PEXHUM pPOOOTH,
IHEepIiHHI TapaMeTpH, )KOPCTKICHI TapaMeTpH, apaMeTpu 30yKeHHs, 3CyB (a3.
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