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The purpose of research. Analysis of influence of stiffness parameters of mobile vibratory device with two 
unbalanced vibration exciters on eigenfrequencies of its mechanical system and substantiation of stiffness parameters 
in order to ensure its energy-efficient resonance operation mode. Methodology. The technique of the research is 
based on fundamental concepts of engineering mechanics and theory of mechanical vibrations. In order to deduce the 
differential equations of motion of the mechanical system of mobile vibratory robot the d’Alambert-Lagrange 
principle was used. The computation modelling of the system’s motion caused by periodic excitation forces was 
carried out using MathCAD software. Results. The design diagram (model) of the two-mass mobile vibratory system 
with two unbalanced vibration exciters was constructed. The mathematical model of its motion was developed and 
the parameters of the resonance mode of its operation were substantiated. In particular, the influence of stiffness 
parameters of mobile vibratory device with two unbalanced vibration exciters on eigenfrequencies of its mechanical 
system was analysed. The steady-state and transient conditions of operation of the system under the influence of 
periodic excitation force were investigated. Scientific novelty. The analytical dependencies for determination of 
stiffness parameters of the mechanical oscillating system of two-mass mobile vibratory device with two unbalanced 
vibration exciters were derived in order to ensure its operation in energy-efficient resonance mode. The value of the 
phase shift of the unbalanced exciters’ rotation was substantiated in order to maximize the device’s motion speed. 
Practical value. The results of the carried out investigations can be used while designing and developing control 
systems of mobile vibratory transporting and robotic devices in order to ensure the possibility of changing the speed 
of their motion without changing the frequency and direction of rotation of unbalanced vibration exciters. 
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Introduction. Mobile robots are widely used for performing different transporting and 

technological operations in environments which are dangerous for human beings. Most of such systems are 
equipped by tracked or wheeled drives, and some models – by walking mechanisms. However, such robots 
can not be effectively used while performing rescuing operations among the debris of buildings where it is 
necessary to move through narrow gaps or while cleaning and diagnosing internal surfaces of long tubes 
and pipelines. That’s why, nowadays, the new direction of mobile robotics is being developed [1–9]. This 
direction deals with vibratory robots which do not need specific drives (wheels, caterpillars, legs, screws 
etc.) and use the oscillatory motion of their working bodies interacting directly with environment for 
performing different transporting and technological operations. 

That’s why, the problems of investigating the dynamics of motion and substantiating the parameters 
of vibratory robots being considered as mobile mechanical systems, which can move in the prescribed 
environment due to the changes of their structures or periodic displacements of their internal masses, are 
urgent. In particular, in this paper, the possibilities of implementation of mobile vibratory devices based on 
two-mass oscillating systems with two unbalanced vibration exciters will be substantiated. 

 
Analysis of modern information sources on the subject of research. Nowadays, there exists a 

great variety of mobile vibratory devices [1–9]. The simplest robots consist of one body being able to 
move along a straight line [1–4]. The more complicated structures have much greater amount of bodies and 
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can move in different directions [5–9]. Planar motion can be ensured, for example, by changing the shape 
of the robot’s body (snake-like motion), as well as by moving the internal masses in a plane parallel to the 
plane of motion of the robot [1]. In this article, we shall pay attention to 1-D robots, which can perform 
only straight-line motion. 

One of the ways of providing the motion of 1-D robots consists in ensuring vibratory motion of 
internal masses in the direction of the motion of the robot [1, 4, 5]. This can be performed by rotation of 
unbalanced masses [2, 5, 6, 8], by piezoactuators [4, 7, 9], by electromagnets [1] etc. The first way of 
excitation of the oscillatory motion is the most interesting one from the point of view of the system’s 
dynamics. Especially, when the mechanical system consists of two and more movable bodies. The problem 
of modelling vibratory system’s dynamics becomes more complicated when the number of active actuators 
increases. This problem requires thorough analysis of the influences acting upon the working bodies 
including Coulomb’s friction and viscous damping [10]. Herewith, it is necessary to mention that most 
mobile vibratory devices should be considered as semidefinite (unrestricted) mechanical oscillatory 
systems. Thus, in order to ensure their efficient operation, it is necessary to substantiate the inertial and 
stiffness parameters in such a way that the mechanical system is to be oscillating in resonance (near-
resonance) mode. This assumption will be taken into account as a basic one while carrying out further 
investigations in this paper. 

 
The purpose of research. The purpose of this paper consists in analysis of influence of stiffness 

parameters of mobile vibratory device with two unbalanced vibration exciters on eigenfrequencies of its 
mechanical system and in substantiation of stiffness parameters in order to ensure its energy-efficient 
resonance operation mode. Also, the parameters of the phase shift of the unbalanced exciters’ rotation 
should be substantiated in order to maximize the device’s motion speed. 

 
The idea of operation of mobile vibratory device. In this paper, the possibilities of using two-

mass oscillatory system with two unbalanced vibration exciters as mobile transporting device with straight-
line motion of the working bodies will be substantiated. In further investigations, it is planned to consider 
the prospects of developing the controlled mobile vibratory systems based on the similar structure ensuring 
the possibility of motion in any direction of the supporting plane. 

One of the simplest designs of mobile vibratory system is presented in Fig. 1. The mechanical 
system of the device consists of two bodies 1 and 2 connected by a coil cylindrical spring and placed on a 
stationary supporting surface 4 ensuring the possibility of straight-line motion (sliding) of the bodies. On 
each body, there are the corresponding hinges 9 and 10 to which the driving cranks 7 and 8 are attached. 
On the free edges of the cranks, the ball masses 5 and 6 are placed. These masses are considered as 
unbalanced exciters rotating about the hinges 9 and 10, and exerting the corresponding inertial loadings on 
the working masses 1 and 2 causing their motion. 
 

 
Fig. 1. Design diagram of mobile vibratory system with two unbalanced vibration exciters 

Рис. 1. Розрахункова схема мобільної вібраційної системи з двома дебалансними віброзбудниками 
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The motion of the system is carried out due to the action (exertion) of periodic variable centrifugal 
forces caused by rotation of unbalanced masses 5 and 6 upon corresponding working bodies 1 and 2 
(Fig. 1). The kinematic characteristics of the system’s motion, in particular, the speed of horizontal motion 
of the system’s gravity centre, depend on the rotation frequencies of the unbalanced masses, their phase 
shift (initial angular position difference), as well as on inertial, stiffness and damping properties of the 
oscillating system and supporting surface. 

In this paper, the preconditions of further investigation of influence of the mentioned parameters of 
the mobile vibratory system on its motion speed will be initiated. In particular, in the following paragraphs, 
the kinematic scheme of the device’s mechanical oscillating system will be constructed, the mathematical 
model of the system’s motion will be formed, its amplitude-frequency characteristics will be analysed, and 
the relationships between inertial, stiffness and damping parameters will be substantiated in order to ensure 
the resonance operation mode of the vibratory device. 

 
Constructing the kinematic diagram and analysis of forces acting upon the elements of 

mechanical system. Let us consider the kinematic diagram of the mobile vibratory system presented in 
Fig. 2. The working masses 1m  and 2m  can move along horizontal axis Ox  and are considered as rigid 
bodies (solids). To define the motion of each mass, the corresponding generalized coordinates 1x  and 2x  
are used. While developing the mathematical model of the oscillating system and while carrying out 
further investigations let us neglect the geometrical sizes and shapes of the working bodies considering 
them as mass points (particles). Also let us assume that the bodies are connected by elastic-tough element 
characterised be stiffness c  and energy-dissipation coefficient (coefficient of tough resistance) µ . While 
defining potential forces let us assume that deformations of the elastic element are performed in 
accordance with the linear Hooke’s law. 
 

 
Fig. 2. Kinematic diagram of oscillating system of mobile vibratory device 

 with two unbalanced vibration exciters 

Рис. 2. Кінематична схема коливної системи мобільної  
вібраційної установки з двома дебалансними віброзбудниками 

 

 
Fig. 3. Diagram of forces acting upon each mass of the oscillating system 

Рис. 3. Схема сил, що діють на кожну з мас коливної системи 
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The working masses of the oscillating system are acted by centrifugal forces 1Q
r

 and 2Q
r

 caused by 
rotation of unbalanced masses (Fig. 3). These forces are periodic variable forces and change their direction with 
circular frequencies 1ω  and 2ω , correspondingly. Also, the masses are influenced by alternating tension-

compression loads 12P
r

, 21P
r

 and tough resistance forces 12R
r

, 21R
r

 due to their connection by the elastic 
element. In addition, as a result of interaction of each mass with the supporting surface they are acted by friction 
forces 1tF

r
 and 2tF

r
 whose directions depend on the directions of motion of corresponding bodies. 

As it has been mentioned previously, the alternating centrifugal forces 1Q
r

 and 2Q
r

 caused by 
rotation of unbalanced masses are considered as the driving (exciting, disturbing) forces. Due to defining 
the rational inertial and stiffness parameters of the oscillating system of mobile vibratory device and the 
excitation parameters (rotation frequencies and phase shift of unbalanced masses), it is possible to ensure 
the translational motion of mobile robot in any direction of the axis Ox . For this, it is necessary to derive 
the differential equations of motion of mechanical oscillating system of the robot with further plotting of 
amplitude-frequency characteristics and determination of optimal operation modes of vibratory device. 

 
Formation of mathematical model of the system’s motion. In order to derive the differential 

equations of motion of the vibratory device’s mechanical system let us use the d’Alambert-Lagrange 
principle. This principle can be stated as follows: if the system is moving, the active forces, reactions of 
constraints and inertial forces form an equilibrated (balanced) system of forces for each particle of the 
system. For the considered mechanical system with two working masses the d’Alambert-Lagrange 
principle can be presented in the following vector form: 

2 2 2

1 1 1
0k k k

k k k
F R Ф

= = =
+ + =∑ ∑ ∑

uur uur uuur
, (1) 

where 
2

1
k

k
F

=
∑

uur
 is the sum of resultants of all active forces applied to each point of the mechanical system; 

2

1
k

k
R

=
∑

uur
 is the sum of resultants of the constraints’ reactions exerted on each particle of the mechanical 

system; 
2

1
k

k
Ф

=
∑

uuur
 is the sum of inertial forces acting upon each particle of the mechanical system. 

As a result of projecting the equation (1) for each particle of the system on the axes of rectangular 
coordinate system, we obtain the following system of equations: 

1 1 1

2 2 2

1 1 1

2 2 2

0;
0;

0;

0.

x x x

x x x

y y y

y y y

F R Ф
F R Ф
F R Ф

F R Ф

+ + =
 + + =
 + + =
 + + =

 (2) 

Taking into account the material presented above, let us write the corresponding expressions for 
determining the active forces and constraints’ reactions acting upon the particles of the mechanical system. 
The inertial forces acting upon the working bodies of the mechanical oscillating system are equal to the 
product of their masses on the corresponding projections of accelerations. Taking into account the fact that 
the bodies cannot move in vertical direction, we obtain: 

( ) ( )1 1 3 1 2 2 4 2 1 2; ; 0; 0.x x y yФ m m x Ф m m x Ф Ф= − + ⋅ = − + ⋅ = =&& &&  (3) 
In this case, as a constraint we consider the rough surface which is characterized by the 

corresponding friction forces 1tF , 2tF  (Fig. 3) and normal reactions 1N , 2N . Hence, in order to determine 
the reactions of constraints in equations (2), let us use the following formulas: 
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( )
( )

1 1 1 1 1

2 2 2 2 2

1 1 2 2

sign ;

sign ;
; ,

x t

x t

y y

R F f N x

R F f N x
R N R N

= = − ⋅ ⋅

= = − ⋅ ⋅

= =

&

&  (4) 

where ( )sign ix&  is the function which defines the direction of motion of the corresponding body ( )1, 2i = : 

( )( )
( )

( )
( )

1, 0;

sign 1, 0;

0, 0.

i

i i

i

якщо x t

x t якщо x t

якщо x t

 >


= − <
 =

&

& &

&

 

Active forces acting upon the particles of the mechanical system can be divided into gravitational 
ones ( )1 2,gr grF F , exciting ones (inertial forces caused by unbalanced masses rotation) ( )1 2,Q Q , elastic 

and dissipative ones (applied as a result of tension/compression of the elastic element between the working 
bodies) ( )1 2,pr prF F : 

1 1 1 1x gr x pr xF F Q F= − + + ;      2 2 2 2x gr x pr xF F Q F= − + + ; 

1 1 1 1y gr y pr yF F Q F= − + + ;      2 2 2 2y gr y pr yF F Q F= − + + . 
(5) 

The gravitational forces act only in vertical direction: 

1 0gr xF = ;          2 0;gr xF =           ( )1 1 3gr yF m m g= + ⋅ ;          ( )2 2 4gr yF m m g= + ⋅ , (6) 
where g  is free fall acceleration. 

The excitation of oscillation of the mechanical system is performed due to the rotation of the 
unbalanced masses. Herewith, the direction of the excitation force action is being changed in time. For 
deriving the differential equations of motion of the mechanical oscillating system, in further investigations 
let us consider constant frequency of the unbalanced masses’ rotation. This assumption allows us to write 
the following expressions for inertial forces: 

( )2
1 3 1 1 1 1cosxQ m l tω ξ ω= ⋅ ⋅ ⋅ + ⋅ ;      ( )2

2 4 2 2 2 2cos ;xQ m l tω ξ ω= ⋅ ⋅ ⋅ + ⋅  

( )2
1 3 1 1 1 1sinyQ m l tω ξ ω= ⋅ ⋅ ⋅ + ⋅ ;      ( )2

2 4 2 2 2 2sinyQ m l tω ξ ω= ⋅ ⋅ ⋅ + ⋅ , 
(7) 

where il  is the length of the crank of the i-th unbalanced mass; iξ  is the initial phase of oscillations of the 
i-th unbalanced mass (the initial angle of inclination of the unbalanced mass’s crank with respect to the 
Ox  axis). 

Elastic and dissipative forces occurring as a result of tension/compression of the elastic element 
between the working bodies depend on the relative position of the bodies and the difference between their 
linear velocities. While deriving the analytical dependencies for determining elastic and dissipative forces, 
let us assume the following: the deformations of the elastic element are performed in accordance with the 
linear Hook’s law, and the coefficient of viscous friction (damping coefficient) is proportional to the 
velocity of the spring’s deforming. Thus, in order to determine the elastic and dissipative forces we obtain 
the following expression: 

( ) ( )( )1 1 2 1 2pr xF c x x x xµ= − ⋅ − + ⋅ −& & ;      ( ) ( )( )2 2 1 2 1 ;pr xF c x x x xµ= − ⋅ − + ⋅ −& &  

1 0pr yF = ;          2 0pr yF = , 
(8) 

where c  is the stiffness coefficient of the elastic element; µ  is the damping coefficient (coefficient of 
viscous friction) of the elastic element. 

Taking into account the equations (5)–(8), the general expression for determining the active forces 
acting upon each particle of the mechanical system is as follows: 

( ) ( ) ( )( )2
1 3 1 1 1 1 1 2 1 2cosxF m l t c x x x xω ξ ω µ= ⋅ ⋅ ⋅ + ⋅ − ⋅ − + ⋅ −& & ; (9) 
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( ) ( ) ( )( )2
2 4 2 2 2 2 2 1 2 1cosxF m l t c x x x xω ξ ω µ= ⋅ ⋅ ⋅ + ⋅ − ⋅ − + ⋅ −& & . 

Taking into account the equations (2), (3), (4), (9), according to the d’Alambert-Lagrange principle, 
the general form of differential equations of the mechanical oscillating system’s motion of the mobile 
vibratory device is as follows: 

( )
( ) ( ) ( )( )

( ) ( )( ) ( )

( )
( ) ( ) ( )( )

( ) ( )( ) ( )

2
3 1 1 1 1 1 2 1 2

1 3 1 2
1 1 3 3 1 1 1 1 1

2
4 2 2 2 2 2 1 2 1

2 4 2 2
2 2 4 4 2 2 2 2 1

cos
;

sin sign

cos
.

sin sign

m l t c x x x x
m m x

f m m g m l t x

m l t c x x x x
m m x

f m m g m l t x

 ⋅ ⋅ω ⋅ ξ + ω ⋅ − ⋅ − + µ ⋅ − −
 + ⋅ =
 − ⋅ + ⋅ − ⋅ ⋅ω ⋅ ξ + ω ⋅ ⋅ 
 ⋅ ⋅ω ⋅ ξ + ω ⋅ − ⋅ − + µ ⋅ − −
 + ⋅ =
 − ⋅ + ⋅ − ⋅ ⋅ω ⋅ ξ + ω ⋅ ⋅ 

& &
&&

&

& &
&&

&

 (10) 

Determination of natural frequencies of free oscillations of the system. In order to deduce 
analytical dependencies for determining eigenfrequencies of the vibratory device’s natural oscillations let 
us write the system (10) of differential equations of its motion in the normal form: all the terms of the 
equations consisting of derivatives are transposed to the left sides of the equations, and the terms without 
derivatives – to the right sides: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 3 1 1 2 1 2 1

2 4 2 2 1 2 1 2

;

,

m m x x x c x x P t

m m x x x c x x P t

µ

µ

+ ⋅ + ⋅ − + ⋅ − =

+ ⋅ + ⋅ − + ⋅ − =

&& & &

&& & &
 (11) 

where ( ) ( ) ( ) ( )( ) ( )2 2
1 3 1 1 1 1 1 1 3 3 1 1 1 1 1cos sin signP t m l t f m m g m l t xω ξ ω ω ξ ω= ⋅ ⋅ ⋅ + ⋅ − ⋅ + ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ & ; 

( ) ( ) ( ) ( )( ) ( )2 2
2 4 2 2 2 2 2 2 4 4 2 2 2 2 1cos sin signP t m l t f m m g m l t xω ξ ω ω ξ ω= ⋅ ⋅ ⋅ + ⋅ − ⋅ + ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ & . 

The obtained system (11) is a system of linear inhomogeneous differential equations of the second 
order with constant coefficients. In order to determine eigenfrequencies of the mechanical system it is 
necessary to define the general solutions of the corresponding system of homogeneous equations: 

( ) ( ) ( )
( ) ( ) ( )

1 3 1 1 2 1 2

2 4 2 2 1 2 1

0;

0,

m m x x x c x x

m m x x x c x x

µ

µ

+ ⋅ + ⋅ − + ⋅ − =

+ ⋅ + ⋅ − + ⋅ − =

&& & &

&& & &
 

or 

( ) ( )

( ) ( )

1 1 2 1 2
1 3 1 3

2 2 1 2 1
2 4 2 4

0;

0,

cx x x x x
m m m m

cx x x x x
m m m m

µ

µ

+ ⋅ − + ⋅ − =
+ +

+ ⋅ − + ⋅ − =
+ +

&& & &

&& & &

 

or 
2 2

1 1 1 1 2 1 1 1 2
2 2

2 2 2 2 1 2 2 2 1

2 2 0;

2 2 0,

x n x n x k x k x

x n x n x k x k x

+ ⋅ ⋅ − ⋅ ⋅ + ⋅ − ⋅ =

+ ⋅ ⋅ − ⋅ ⋅ + ⋅ − ⋅ =

&& & &

&& & &
 

(12) 

where 
( )1

1 32
n

m m
µ

=
⋅ +

; 
( )2

2 42
n

m m
µ

=
⋅ +

; 1
1 3

ck
m m

=
+

; 2
2 4

ck
m m

=
+

. 

In order to solve the obtained system of differential equations let us use the Euler’s method, which 
states that roots of the corresponding equations can be determined in the following form: 

1 1 2 2; ,t tx X e x X eλ λ= ⋅ = ⋅  (13) 
where 1X , 2X , λ  are unknown constants which can be determined in terms of given initial conditions. 

Let us take the corresponding derivatives of equations (13) with respect to time: 

1 1 2 2
2 2

1 1 2 2

; ;

; ,

t t

t t

x X e x X e

x X e x X e

λ λ

λ λ

λ λ

λ λ

= ⋅ ⋅ = ⋅ ⋅

= ⋅ ⋅ = ⋅ ⋅

& &

&& &&
 (14) 
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Substituting expressions (13) and (14) into the system of equations (12) and cancelling teλ , we 
obtain: 

2 2 2
1 1 1 1 2 1 1 1 2

2 2 2
2 2 2 2 1 2 2 2 1

2 2 0;

2 2 0.

X n X n X k X k X

X n X n X k X k X

λ λ λ

λ λ λ

⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ − ⋅ =

⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ − ⋅ =
 (15) 

Let us reduce the obtained system (15) of linear algebraic equations with constant coefficients to the 
normal form with respect to the constants 1X , 2X : 

( ) ( )
( ) ( )
2 2 2

1 1 1 1 1 2

2 2 2
2 2 1 2 2 2

2 2 0;

2 2 0.

n k X n k X

n k X n k X

λ λ λ

λ λ λ

+ ⋅ ⋅ + ⋅ − ⋅ ⋅ + ⋅ =

− ⋅ ⋅ + ⋅ + + ⋅ ⋅ + ⋅ =
 (16) 

The constants 1X , 2X  are not equal to zero only in the case when the determinant of the system 
(16) is equal to zero: 

( )
( )

2 2 2
1 1 1 1

2 2 2
2 2 2 2

2 2

2
.

2
0

n k n k

n k n k

λ λ λ

λ λ λ

+ ⋅ ⋅ + − ⋅ ⋅ +

− ⋅ ⋅ + ⋅ +
=

+ ⋅
 (17) 

The equation (17) is a characteristic equation for the system (12). It may be reduced to the quartic 
equation with respect to λ : 

( ) ( )4 3 2 2 2
1 2 1 22 2 0.n n k kλ λ λ+ ⋅ + ⋅ ⋅ + + ⋅ =  (18) 

The roots of the equation (18) are as follows: 

( ) ( ) ( )2 2 2
1,2 3,4 1 2 1 2 1 2 .0; n n k k n nλ λ= = ± + − + − +  (19) 

The equations (19) allows us to determine the eigenfrequencies of the mechanical system’s free 
oscillations. The following formulas presents the expressions for calculating undamped natural frequency 
(frequency of undamped free oscillations) 0ω  and damped natural frequency (frequency of damped free 
oscillations for the case of the underdamped system) dω : 

1 10 0;dω ω= =  

( )
( ) ( )2

2 2
1 3 2 42 2

0 1 2
1 3 2 4 1 3 2 4

;
c m m m mc ck k

m m m m m m m m
ω

    ⋅ + + +
= + = + =     + + + ⋅ +  

 

( ) ( )

( ) ( )

( )
( ) ( )

( )
( ) ( )

2
22 2

1 2 1 2

22 2

1 3 2 4 1 3 2 4

2
1 3 2 4 1 3 2 4

1 3 2 4 1 3 2 4

2 2

.
2

d k k n n

c c
m m m m m m m m

c m m m m m m m m
m m m m m m m m

ω

µ µ

µ

= + − + =

       = + − + =         + + ⋅ + ⋅ +     

 ⋅ + + + ⋅ + + +
= −   + ⋅ + ⋅ + ⋅ + 

 

(20) 

One of the natural frequencies of the system is zero ( )1 10 0dω ω= = , which means that the 

mechanical system is not vibrating. In other words, the mechanical system consisting of two rigid bodies 
moves as a whole (one body) without any relative motion between the two masses. Thus, the systems being 
investigated can be considered as a semidefinite (unrestricted) systems, because they have one of the 
natural frequencies equal to zero. Let us consider the case of force-damped vibrations of the presented 
semidefinite vibratory system and find the steady-state solutions of the equations (11). 
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Analysis of forced-damped oscillations of vibratory device. Considering the forced-damped 
vibrations of the considered device, the equations (11) of motion of its two-degree-of-freedom system 
under the action of external forces can be written as: 

1 3 1 1 2 1 2 1

2 4 2 2 1 2 1 2

0
0

m m x x x x x P
c

m m x x x x x P
µ

+ − −         
⋅ + ⋅ + ⋅ =         + − −         

&& & &

&& & &
. (21) 

Let us consider the external forces to be harmonic neglecting the dry-friction damping. This 
assumption can be substantiated be the following fact. If the dry-friction force is small compared to the 
amplitudes of the active forces 1xQ , 2xQ , the steady-state solution is expected to be nearly harmonic. 
Thus, we obtain: 

0 , 1, 2,i t
j jP P e jω= ⋅ =  (22) 

where ω  is the forcing frequency. 
We can write the steady-state solutions as: 

, 1, 2,i t
j jx X e jω= ⋅ =  (23) 

where 1X , 2X  are complex quantities that depend on ω  and on inertial, stiffness and damping parameters 
of the mechanical system. 

Substitution of (23) and (22) into (21) leads to: 

( )
( )

2
1 3 101

2 2022 4

m m i c i c PX
PXi c m m i c

ω ω µ ω µ

ω µ ω ω µ

 − ⋅ + + ⋅ ⋅ + ⋅ ⋅ +     ⋅ =        ⋅ ⋅ + − ⋅ + + ⋅ ⋅ + 
. (24) 

Let us define the mechanical impedance in the matrix form as: 

( ) ( ) ( )
( )

( ) ( )
( ) ( )

2
1 3

2
2 4

11 12

21 22
, , 1, 2.

rs
m m i c i c

Z i Z i
i c m m i c

Z i Z i
r s

Z i Z i

ω ω µ ω µ
ω ω

ω µ ω ω µ

ω ω
ω ω

 − ⋅ + + ⋅ ⋅ + ⋅ ⋅ +
  ⋅  = ⋅ =   ⋅ ⋅ + − ⋅ + + ⋅ ⋅ + 
 ⋅ ⋅ 

= = ⋅ ⋅ 

 (25) 

Let us reduce the equation (24) to the following form: 
( ) 0Z i X Pω ⋅  ⋅ = 

r r
, (26) 

where 1

2

X
X

X
 

=  
 

r
; 10

0
20

P
P

P
 

=  
 

r
. 

Let us solve the equation (26) and obtain X
r

: 

( ) 1
0X Z i Pω −=  ⋅  ⋅ 

r r
, (27) 

where the inverse of the impedance matrix is given by 

( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( )

1 22 12

21 1111 22 12 21

1 .
Z i Z i

Z i
Z i Z iZ i Z i Z i Z i

ω ω
ω

ω ωω ω ω ω
−  ⋅ − ⋅ 

 ⋅  = ⋅    − ⋅ ⋅⋅ ⋅ ⋅ − ⋅ ⋅ ⋅  
 (28) 

Equations (27) and (28) lead to the following solutions: 

( ) ( ) ( )
( ) ( ) ( ) ( )

22 10 12 20
1

11 22 12 21
;

Z i P Z i P
X i

Z i Z i Z i Z i
ω ω

ω
ω ω ω ω

⋅ ⋅ − ⋅ ⋅
⋅ =

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅
 

( ) ( ) ( )
( ) ( ) ( ) ( )

21 10 11 20
2

11 22 12 21
.

Z i P Z i P
X i

Z i Z i Z i Z i
ω ω

ω
ω ω ω ω

− ⋅ ⋅ + ⋅ ⋅
⋅ =

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅
 

(29) 

By substituting the values of components of the impedance matrix (25) into (29), we can get the 
analytical dependencies of the amplitudes of the oscillating masses on the working frequency (or in the 
other words, the steady-state solution of the system (21)): 
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( )
( )( ) ( )

( )( ) ( )( ) ( )

2
2 4 10 20

1 22 2
1 3 2 4

;
m m i c F i c F

X i
m m i c m m i c i c

ω ω µ ω µ
ω

ω ω µ ω ω µ ω µ

− ⋅ + + ⋅ ⋅ + ⋅ − ⋅ ⋅ + ⋅
⋅ =

− ⋅ + + ⋅ ⋅ + ⋅ − ⋅ + + ⋅ ⋅ + − ⋅ ⋅ +
 

( )
( ) ( )( )

( )( ) ( )( ) ( )

2
10 1 3 20

2 22 2
1 3 2 4

.
i c F m m i c F

X i
m m i c m m i c i c

ω µ ω ω µ
ω

ω ω µ ω ω µ ω µ

− ⋅ ⋅ + ⋅ + − ⋅ + + ⋅ ⋅ + ⋅
⋅ =

− ⋅ + + ⋅ ⋅ + ⋅ − ⋅ + + ⋅ ⋅ + − ⋅ ⋅ +
 

(30) 

By substituting the equation (30) into (23), we can find the complete solution ( )1x t , ( )2x t : 

( )
( )( ) ( )

( )( ) ( )( ) ( )

2
2 4 10 20

1 22 2
1 3 2 4

;i t
m m i c F i c F

x t e
m m i c m m i c i c

ω
ω ω µ ω µ

ω ω µ ω ω µ ω µ

− ⋅ + + ⋅ ⋅ + ⋅ − ⋅ ⋅ + ⋅
= ⋅

− ⋅ + + ⋅ ⋅ + ⋅ − ⋅ + + ⋅ ⋅ + − ⋅ ⋅ +
 

( )
( ) ( )( )

( )( ) ( )( ) ( )

2
10 1 3 20

2 22 2
1 3 2 4

.i t
i c F m m i c F

x t e
m m i c m m i c i c

ω
ω µ ω ω µ

ω ω µ ω ω µ ω µ

− ⋅ ⋅ + ⋅ + − ⋅ + + ⋅ ⋅ + ⋅
= ⋅

− ⋅ + + ⋅ ⋅ + ⋅ − ⋅ + + ⋅ ⋅ + − ⋅ ⋅ +
 

(31) 

 
Substantiation of stiffness parameters of vibratory device in order to ensure the energy-efficient 

resonance operation mode. In order to correctly match the inertial and stiffness parameters of the 
vibratory device and to ensure energy-efficient resonance operation mode let us investigate the dependence 
of the stiffness of the elastic element on the oscillating system’s eigenfrequency in the case when the mases 
of the working bodies and the lengths of the driving cranks are known: 1 2 0.25 kgm m= = , 

3 4 0.025 kgm m= = , 1 2 0,03 ml l= = . In order to simplify further calculations, let us neglect the 
coefficient of viscous damping in the elastic element 0µ ≈ . Adopting the stiffness of the elastic element 
varying from 0 N/m to 15000 N/m, with a help of formula (20), let us construct the graphical dependence 
(Fig. 4) of the system’s eigenfrequency on the stiffness of the connecting spring. 
 

 
Fig. 4. Dependence of the oscillating system’s eigenfrequency on the stiffness of the elastic element 

Рис. 4. Залежність власної частоти коливної системи від жорсткості пружного елемента 

By analysing the obtained plot (Fig. 4), we can mention the nonlinear proportional dependence of 
the oscillating system’s eigenfrequency on the stiffness of the elastic element. For instance, in further 
investigations, let us adopt the following frequency of the excitation force (frequency of the unbalanced 
masses’ rotation) 1 2 1500 rpm 25 rev/s 25 Hzn n= = = = . Thus, the forcing circular frequency is equal to 

1
1 2

3.14 1500 157 rad/s
30 30

nπ
ω ω

⋅ ⋅
= = = = . Taking into account the necessity of the system’s setting up on 

the resonance mode with the corresponding correction coefficient 0.96z = , let us determine the necessary 
eigenfrequency of the oscillating system: 
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1
0

157 163.6 rad/s
0.96z

ω
ω = = ≈ . (32) 

Thus, the determined eigenfrequency of the mechanical system of the vibratory device ensures the 
energy-efficient operation mode close to resonance one. In this case, according to the formula (20) and 
Fig. 4, it is necessary to calculate the necessary stiffness of the elastic element: 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

2 2
1 3 2 4 0 1 3 2 4

1 2 3 4 1 3 2 4
2 2

4

0.25 0.025 0.25 0.025 163.6 0 0.25 0.025 0.25 0.025
3680 N/m.

0.25 0.025 0.25 0.025 4 0.25 0.025 0.25 0.025

m m m m m m m m
с

m m m m m m m m
ω µ+ ⋅ + ⋅ ⋅ + + +

= + =
+ + + ⋅ + ⋅ +

+ ⋅ + ⋅ ⋅ + + +
= + =

+ + + ⋅ + ⋅ +

 (33) 

Taking into account the given inertial and force parameters, and using the determined stiffness of 
the connecting spring, with a help of the analytical dependencies (30), let us construct the amplitude-
frequency characteristics (Fig. 5) of the oscillating system of the vibratory device. 
 

 
Fig. 5. Amplitude-frequency characteristic of the oscillating system 

Рис. 5. Амплітудно-частотна характеристика коливної системи 
 

 
Fig. 6. Time-dependencies of changing the excitation forces and displacements of the oscillating 

 masses from the equilibrium position in steady-state mode of the device’s operation  

Рис. 6. Часові залежності зміни збурювальних зусиль та відхилень коливних мас  
від положення рівноваги в усталеному режимі роботи установки 

Let us construct the time dependence of the excitation force (Fig. 6) using the expressions (7). Also 
let us plot the corresponding time dependence of steady-state motion of the oscillating masses (Fig. 6) with 
a help of formulas (31). By analysing the obtained results, we can state that the excitation force ( )1P t  is 
characterized by the amplitude value of 18.5 N and changes in accordance with the cosine law with the 
frequency of 25 Hz. The excitation force ( )2P t  is characterized by the same amplitude and frequency, but 
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it changes in accordance with the sine law. In further investigations, it will be substantiated that the phase 
shift of 2π  between the excitation forces ( )1P t  and ( )2P t  allows ensuring the most effective motion of 
the mobile vibratory system (i.e. the maximal motion speed). The maximal (amplitude) values of the 
oscillating masses’ displacement from the equilibrium positions are following: 1 2 0,032 mX X= = . 
 

Numerical solving the differential equations of the system’s motion in MathCAD software. Let 
us simulate the motion of the mobile vibratory device which is described by the system (10) of two linear 
nonhomogeneous differential equations of the second order with constant coefficients. In order to find the 
solution of the mentioned system ley us use the RADAUS method of MathCAD software. 

The input parameters of the system being investigated are the following ones: 
– inertial parameters: 1 2 0,25m m= = kg, 3 4 0,025m m= = kg, 1 2 0,03l l= = m; 
– stiffness parameters: 3681с = N/m; 
– damping and friction parameters are to be neglected in order to simplify the process of the 

equations’ solving: 0µ = , 1 2 0f f= = . 

Table 1 
The investigated phases of the unbalanced masses rotation 

Таблиця 1 

Досліджувані фази обертань дебалансів 

a) 1 0ξ = , 2 0ξ =  b) 1 0ξ = , 2 4
πξ =  

  
c) 1 0ξ = , 2 2

πξ =  d) 1 0ξ = , 2
3

4
πξ =  

  

e) 1 0ξ = , 2ξ = π  f) 1 0ξ = , 2
5

4
πξ =  

  
g) 1 0ξ = , 2

3
2

πξ =  h) 1 0ξ = , 2
7

4
πξ =  
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– excitation parameters: 1 max 2 max 18,5 Hx xQ Q= = , ( )1 2 157 rad/s 25 Hzω = ω = ; 

– initial conditions: initial positions (displacements) of the oscillating masses ( )1 0 0x = , ( )2 0 0x = ; 

initial velocity of the oscillating masses ( )1 0 0x =& , ( )2 0 0x =& . 
Les us analyse the possibilities of changing the phase shift between the unbalanced masses rotation 

in order to maximize the speed of the vibratory device motion. Thus, let consider the following phases of 
the unbalanced masses rotation (Table 1). 

The results of modelling the system’s motion under different excitation parameters are presented in 
Fig. 7. By analysing the obtained dependencies, we can make the following conclusions: 

– in the cases a) and e), i.e. when 1 0ξ = , 2 0ξ =  and 1 0ξ = , 2ξ π= , the vibratory device is not 
moving translationally (only the masses are oscillating). The average speed of the system’s mass centre 
translational motion equals zero; 

– in all the other cases the device will move in different directions and with different speed. In 

particular, when 2 4
πξ = , 2 2

πξ = , 2
3

4
πξ = , i.e. when 20 ξ π< < , the device is moving to the right. 

When 2
5

4
πξ = , 2

3
2

πξ = , 2
7

4
πξ = , i.e. when 2 2π ξ π> > , the device is moving in the opposite 

direction. In the cases when 2 4
πξ = , 2

3
4

πξ = , 2
5

4
πξ = , 2

7
4

πξ = , the average speed of the system’s 

mass centre translational motion is 0.15 m/s. When 2 2
πξ = , 2

3
2

πξ = , the average speed of the mass 

centre is 0.22 m/s. 
By comparing the plots in Fig. 6 and in Fig. 7 (cases c and g), it should be mentioned that the 

maximal amplitude of displacement of the oscillating mass from the instantaneous equilibrium position 
corresponds to the theoretically calculated one ( )1 2 0,032 mX X= = . 
Fig. 8 presents the graphical dependence of changing the average speed of mobile vibratory device under 
different phases of the unbalanced masses’ rotation. By analyzing the obtained plot, we may conclude that 
the vibratory system is not moving translationally when the unbalanced masses move at the same phase or 
at the opposite phase. The maximal motion speed of 0.22 m/s takes place when the phase shifts are 1 0ξ = , 

2 2
πξ =  and 1 0ξ = , 2

3
2

πξ = . The only difference in the system’s motion under the considered phase 

shifts of the unbalanced masses rotation is the direction of the system’s motion (to the left or to the right). 
 

 

a 

Fig. 7. Time dependencies of displacements of oscillating masses (mass m1 – x1(t), mass m2 –  x2(t)) and mass 
centre of the mechanical system xm.c.(t) = (x1(t) + x2(t))/2 under different excitation parameters: plots a, b, c, d, e, f, 

g, h – correspond to the phases presented in Table 1 

Рис. 7. Часові залежності переміщень коливних мас (маси m1 – x1(t), маси m2 –  x2(t)) та центру мас 
механічної системи xm.c.(t) = (x1(t) + x2(t))/2) за різних параметрів збурення: графіки a, b, c, d, e, f, g, h – 

відповідають фазам, наведеним у Таблиці 1 
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b 

 

c 

 

d 

 

e 

 

f 

Fig. 7 (continuation). Time dependencies of displacements of oscillating masses (mass m1 – x1(t), mass m2 –  x2(t)) 
and mass centre of the mechanical system xm.c.(t) = (x1(t) + x2(t))/2 under different excitation parameters: plots a, b, 

c, d, e, f, g, h – correspond to the phases presented in Table 1 

Рис. 7 (продовження). Часові залежності переміщень коливних мас (маси m1 – x1(t), маси m2 –  x2(t)) та 
центру мас механічної системи xm.c.(t) = (x1(t) + x2(t))/2) за різних параметрів збурення: графіки a, b, c, d, e, f, 

g, h – відповідають фазам, наведеним у Таблиці 1 
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g 

 

h 

Fig. 7 (continuation). Time dependencies of displacements of oscillating masses (mass m1 – x1(t), mass m2 –  x2(t)) 
and mass centre of the mechanical system xm.c.(t) = (x1(t) + x2(t))/2 under different excitation parameters: plots a, 

b, c, d, e, f, g, h – correspond to the phases presented in Table 1 

Рис. 7 (продовження). Часові залежності переміщень коливних мас (маси m1 – x1(t), маси m2 –  x2(t)) та 
центру мас механічної системи xm.c.(t) = (x1(t) + x2(t))/2) за різних параметрів збурення: графіки a, b, c, d, e, 

f, g, h – відповідають фазам, наведеним у Таблиці 1 
 

 
Fig. 8. Dependence of the average motion speed of mobile vibratory system  

on the phase shift angles of the unbalanced masses’ rotation 

Рис. 8. Залежність середньої швидкості руху мобільної вібраційної системи  
від кутів зсуву фаз обертання дебалансів 

 
Conclusions. The structure of the two-mass mobile vibratory system with two unbalanced vibration 

exciters was analysed, and the corresponding design diagram was constructed. The differential equations of 
the system’s motion were derived. The analytical solving of the obtained linear differential equations with 
constant coefficients was carried out with a help of the Euler’s method. The analytical dependencies for 
calculating the eigenfrequencies of the system and the amplitudes of the oscillating masses displacements 
were deduced. The performed theoretical investigations allowed us to substantiate the stiffness parameters 
of the connecting spring in order to ensure the energy-efficient resonance operation mode. In particular, for 
the system with following parameters (Fig. 2) 1 2 0, 25 kgm m= = , 3 4 0,025 kgm m= = , 1 2 0,03 ml l= = , 

1 2 25 Hzω ω= = , there were determined the necessary values of the eigenfrequency 0 26.04 Hzω =  and 
the stiffness of the elastic element 3680 N/mс = . Based on the obtained results, the amplitude-frequency 
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characteristic was constructed and the time-dependencies of the excitation force and displacements of the 
oscillating masses were analysed. It was concluded that the amplitude value of the excitation force of 

max 18,5 NP =  causes the maximum displacement of the working body from its equilibrium position of 
0,032 mX = . 

By solving the derived differential equations of the vibratory system’s motion, the influence of the 
phase shift of the unbalanced masses rotation on the translational speed of the system’s mass centre. As a 
result, it was concluded that the maximal speed of 0.22 m/s takes place under the following excitation 
conditions: 1 0ξ = , 2 2

πξ =  and 1 0ξ = , 2
3

2
πξ = . The only difference in the system’s motion under the 

considered phase shifts of the unbalanced masses rotation is the direction of the system’s motion (to the 
left or to the right). 

In further investigations, it is necessary to analyse the influence of the viscous damping and 
Coulomb’s friction on the system’s motion. In addition, the numerical solution of the derived differential 
equations should be obtained and the motion parameters of the mobile vibratory device should be analysed. 
In order to substantiate the obtained theoretical results, the experimental investigations should be carried 
out. 
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Національний університет “Львівська політехніка” 

ОБҐРУНТУВАННЯ ПАРАМЕТРІВ ТА МОДЕЛЮВАННЯ РУХУ ДВОМАСОВОЇ МОБІЛЬНОЇ 
ВІБРАЦІЙНОЇ СИСТЕМИ ІЗ ДВОМА ДЕБАЛАНСНИМИ ВІБРОЗБУДНИКАМИ 

 Корендій В. М., 2018 

Мета дослідження. Аналіз впливу жорсткісних параметрів мобільної вібраційної установки з двома 
дебалансними віброзбудниками на власні частоти її механічної коливної системи та обґрунтування 
жорсткісних параметрів з метою забезпечення енергоефективного резонансного режиму роботи установки. 
Методи досліджень. Методика досліджень базується на фундаментальних принципах інженерної механіки та 
теорії механічних коливань. Для виведення диференціальних рівнянь руху механічної системи мобільного 
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вібраційного робота використано принцип Даламбера–Лагранжа. Чисельне моделювання руху системи, 
спричиненого періодично змінними збурювальними силами, здійснювалися за допомогою програмного 
продукту MathCAD. Результати досліджень. Запропоновано розрахункову схему (модель) двомасової 
мобільної вібраційної системи із двома дебалансними віброзбудниками. Розроблено математичну модель, яка 
описує рух системи, та обґрунтовано її параметри з метою забезпечення резонансного режиму роботи. 
Зокрема, проаналізовано вплив жорсткості сполучного пружного елемента між робочими тілами мобільної 
вібраційної установки із двома дебалансними віброзбудниками на власні частоти коливань її механічної 
системи, розглянуто усталений та перехідні режими роботи системи за дії періодично змінних збурювальних 
зусиль. Наукова новизна. Виведено аналітичні залежності для визначення жорсткісних параметрів 
механічної коливної системи двомасової мобільної вібраційної установки із двома дебалансними 
віброзбудниками, які забезпечують роботу установки в енергоефективному резонансному режимі. 
Обґрунтовано величину зсуву фаз обертання дебалансних віброзбудників з метою максимізації швидкості 
руху установки. Практичне значення роботи. Результати проведених досліджень можна використати в 
процесі проектування та налагодження систем керування мобільних вібротранспортних і робототехнічних 
установок з метою забезпечення можливості зміни швидкості їхнього руху без зміни частоти і напрямку 
обертання дебалансних віброзбудників. 

 

Ключові слова: мобільна вібротранспортна система, віброзбуджувач, резонансний режим роботи, 
інерційні параметри, жорсткісні параметри, параметри збудження, зсув фаз. 
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