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Molecular docking is a widely used method of computer-aided drug design capable of accurate prediction of

protein-ligand complex conformations. However, scoring functions used to estimate free energy of binding still

lack accuracy. Aim. Development of computationally simple and rapid algorithms for ranking ligands based on

docking results. Methods. Computational filters utilizing geometry of protein-ligand complex were designed. Ef-

ficiency of the filters was verified in a cross-docking study with QXP/Flo software using crystal structures of hu-

man serine proteases thrombin (F2) and factor Xa (F10) and two corresponding sets of known selective inhibi-

tors. Results. Evaluation of filtering results in terms of ROC curves with varying filter threshold value has shown

their efficiency. However, none of the filters outperformed QXP/Flo built-in scoring function Pi . Nevertheless,

usage of the filters with optimized set of thresholds in combination with P
i
achieved significant improvement in

performance of ligand selection when compared to usage of P
i
alone. Conclusions. The proposed geometric fil-

ters can be used as a complementary to traditional scoring functions in order to optimize ligand search perfor-

mance and decrease usage of computational and human resources.
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Introduction. Nowadays, computer-aided drug design

is a widely used technique. It is mostly based on mo-

lecular docking and scoring approach [1]. Docking is

the procedure of protein (target) and small molecule (li-

gand) complexes geometry optimization aimed at fin-

ding the global energy minimum of the system. Accor-

ding to thermodynamics, the most likely configuration

of the complex corresponds to the Gibbs free energy mi-

nimum. Energy is usually estimated using certain force

field model and its minimization is performed by va-

rious methods. Typically, a large collection of small

molecules is docked against the protein active site. For

each optimized complex, different characteristics (sco-

res) are calculated to estimate binding free energy. Li-

gands with the highest scores are filtered for further

testing in biophysical, biochemical and/or cell-based

screening assays.

Although there are many publicly available and

commercial tools for molecular docking and filters for

scoring, some problems still exist. While docking usual-

ly can provide adequate results for optimized geometry

prediction, scoring is a tricky thing and requires human

intrusion like visual inspection of three-dimensional

molecular complex structures by a drug discovery ex-

pert [2].

As the mechanisms of intermolecular interaction in

a protein–ligand complex exceed the classical mecha-

nics limits, accurate prediction of binding energy needs

quantum mechanical calculations, which boost require-

ments for memory size and floating point calculations

speed by orders of magnitude. Furthermore, flexibility

of both protein and ligand molecules causes an increase
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of freedom degrees of a typical system up to hundreds

or thousands for simulations with implicit solvent mo-

dels and even tens of thousands in case of explicit

solvent.

As a result of these complications, precise virtual

screening of large collections of small molecules be-

comes practically impossible, which forced us to use

simplified models with empirical scoring algorithms.

In this paper, we introduce geometric filters, which

are designed to select protein-ligand complexes from

the database of molecular docking results. The filters

use the molecular geometry of protein–ligand complex

as a main filtering characteristic as opposed to appro-

ximated potentials of inter-atomic interaction or other

loosely defined and computationally expensive func-

tions.

The main idea behind this approach is based on the

fact that molecular docking can predict the molecular

geometry stationary point rather accurately, which has

been proved by numerous X-ray structural analysis

experiments [3]. All mentioned above makes the propo-

sed filters robust and quick for interactive usage.

Materials and methods. In this study, four types

of geometry-based filters were introduced: nearest

atom filter (NA), center of mass filter (COM), out coef-

ficient filter (OUT) and hydrogen bond filter (HB). Des-

cription of the filters is provided below.

Nearest atom filter finds atom of the ligand that is

the nearest to the given atom of protein in the current

complex. Ligand passes the filter if this distance is less

than the specified value:

min ,
min

l
l pr r R

� �

� �

where l is ligand atom index, p is the given protein

atom index, rn

�

is position of the n-th atom, Rmin is the

specified minimal distance. This filter has complexity

of O(n) and can select ligands that are partially located

close to the given atom of the protein active site and

evidently screens it from solvent. Filtering results may

be modified by considering only ligand atoms of cer-

tain type.

Center of mass filter finds the distance from ligand

center of mass to the given protein atom. Ligand passes

the filter if this distance is less than the specified value:

r m

m
R
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l

l

l
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,

where mn is mass of the n-th atom. This filter can select

ligands that are located close to the specified atom of

the protein active site and evidently screen it.

Out coefficient filter calculates numerical characteri-

stic which approximates the probability of destroying

the given protein-ligand complex. The following model

is used. The complex will be destroyed if ligand binds to

some external molecule and bonds with protein are des-

troyed. The probability of this event, P, may be appro-

ximated as

P
N

N

e

l

� ,

where Ne is average number of ligand atoms that may

bind to the external molecule and Nl is total number of

ligand atoms. The less P, the more stable the complex .

Number Ne is estimated as

N pe k

e

k

N l

� � ,

where k is ligand atom index and pk

e is the probability

that k-th ligand atom will bind to the external molecule.

Probability pk

e depends on the number of protein atoms

that bind to the k-th ligand atom and shield it from

outside. Probability of shielding may be described by

the Markov field model with the Gibbs distribution:

p e
k

e nk� � ,

where nk is average number of protein atoms which

shield the k-th ligand atom. Number nk may be estima-

ted in the same way:

n b
k p

k

p

N p

� � ,

where bp

k is the probability that p-th protein atom binds

to the k-th ligand atom. Probability bp

k in turn also may

be described by Markov field model:

b e
k

p

r r

R

l p

kp�
�

�
� �

,
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where Rkp is characteristic length of chemical bond bet-

ween k-th ligand atom and p-th protein atom. The final

expression for P is thus
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This filter requires O(n2) operations. To simplify

the case, Rkp is defined to be the same for all atom pairs

and equal to 1.1 C. In this case, the exact value influ-

ences only the value of filtering function but not its be-

havior.

Hydrogen bonds filter calculates estimated number

of hydrogen bonds between ligand and protein atoms.

Each hydrogen bond is characterized by strength

coefficient that may be estimated as

p Ae e e
H

r r

R

r r

R

A H

H

A H

H�
�

�

�

�

�

� � � �

1 2

cos ,�

where r
A1

�

is position of the 1-st acceptor, r
A 2

�

is posi-

tion of the second acceptor, r
H

�

is position of hydrogen

atom, RH is characteristic length of hydrogen bond and

� is the bond angle.

To optimize the filters parameters and verify their

effectiveness, we conducted a cross-docking study. Hu-

man serine proteases thrombin (gene F2) and factor Xa

(gene F10) were selected as targets. X-ray crystal struc-

tures of the protein catalytic sites were retrieved from

RCSB Protein Data Bank [4], entries 1oyt and 1f0s res-

pectively. Two sets of selective small molecule inhibi-

tors containing 244 compounds for thrombin and 331

compounds for factor Xa were retrieved from MDDR

database [5]. After generation of stereoisomers and ioni-

zation using LigPrep software [6], compounds were do-

cked into the three-dimensional protein active site struc-

ture using QXP/Flo software [7] with 100 steps of

SDOCK+ routine. 10 lowest energy complex structures

were selected for each compound structure, which re-

sulted in a total of 10,580 and 7,410 complexes for

thrombin and factor Xa inhibitor sets respectively. Fil-

ters were applied to the complexes, and their perfor-

mance was evaluated in terms of receiver operating cha-

racteristics (ROC).

Description of all filters is provided in Table 1. Ar-

bitrary atoms of thrombin active site which were selec-

ted for the nearest atom filters and center of mass filter

are shown in Fig 1.

Results and discussion. To evaluate efficiency of

the filters, we conducted a virtual screening study whe-

re two sets of small-molecule inhibitors of two serine

proteases were docked against two sets of their selecti-

ve inhibitors. This resulted in a set of protein–ligand

complexes with both «native» and «wrong» inhibitors.

For each filter, a receiver operating characteristic (ROC)

was built. For each of the two proteins, the compounds

which have at least one protein-ligand complex passed

through a filter were considered positives. Out of positi-

ves, essentially, the compounds from one protein’s inhi-

bitor set were considered true positives (TP), while com-

pounds from another protein’s inhibitor set were consi-

dered false positives (FP). Additionally, a ROC was built

for the docking software QXP/Flo+ built-in scoring

function Pi (Fig. 2). For the two protein crystal struc-

tures, we compare only filters which are independent of

arbitrary protein atom selection: OUT, HB and Pi.

It is clear from the ROCs, that the filters can be used

efficiently for selection of inhibitors, except the hydro-

gen bond filter in case of factor Xa. However, the QXP/

Flo built-in scoring function outperforms any of the pro-

posed filters.

Next, we focused on selection of thrombin inhi-

bitors with introduction of atom-specific filters NA and
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Filter ID Filter name Protein atom

Pi
QXP/Flo built-in scoring function Pi –

OUT Out coefficient –

HB Hydrogen bonds –

NA182 Nearest atom Leu99 CG

NA314 Nearest atom Asp189 OD1

NA63 Nearest atom Tyr60 CD1

COM Center of mass Gly216 HN

Table 1

Summary of all filters applied in the study. Residue numbering

according to the crystal structure, PDB ID 1oyt



COM. ROCs for all filters for this case are provided in

Fig. 3.

As mentioned in Materials and methods, the num-

ber of compounds in the two sets is different. Further-

more, as 10 complexes were generated for every stereo-

isomer and every possible ionization state, different

compounds also have different number of complexes in

the docking output. As a result, the number of thrombin

inhibitor complexes (true positives) is about 25 %

higher than that of factor Xa inhibitors (false positives).

To investigate an impact of this inequality, in addition

to obvious compound-based random guess ROC (TPR

= FPR), a complex-based random guess ROC curve

was built (Fig. 3). At this point, all complexes had equ-
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Fig. 1. Three-dimensional structure of human

thrombin catalytic site in complex with small-

molecule inhibitor retrieved from PDB entry

1oyt. Atoms selected for filtering are shown:

1 – atom 314, Asp189 OD; 2 – center of mass

atom, Gly216 NH; 3 – atom 182, Leu99 CG;

4 – atom 314, Tyr60 CD1
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Fig. 2. Receiver operating characteristics for thrombin and factor Xa,

for the filters which are independent of protein atom selection: 1 – FXa

PI; 2 – Thrombin PI; 3 – Thrombin HB; 4 – Thrombin OUT; 5 – FXa

OUT; 6 – Random guess; 7 – FXa HB
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Fig. 3. Receiver operating characteristics for different filters and their

combination. ROC curve for random selection of protein-ligand comp-

lexes is included; C – Combination; 1 – PI; 2 – HB; 3 – COM; 4 –

NA314; 5 – OUT; 6 – NA182; 7 – Random guess (complex based); 8 –

NA63; 9 – Random guess (compound based)
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al probability to pass a «random guess filter», and this

probability was considered the filter parameter, vary-

ing along the ROC curve.

As one can see from the Fig. 3, all ROC curves are

located above the compound-based random guess line,

which proves the filters efficiency. Furthermore, all of

them are located above complex-based random guess

curve, except those for the nearest atom filters NA182

and NA63, which are only effective in certain ranges.

However, none of the filters outperformed the built-in

scoring function Pi. DesPi te that, use of Pi alone would

not be a proper choice. Really, let us consider that in a

tyPi cal docking setup, we screen a set of about 50,000

compounds to obtain a docking library of no more than

5,000 compounds, which are going to be tested experi-

mentally. As we do not expect more than a few percent

of true binders in the initial set, size of the docking lib-

rary can be estimated as size of initial set multiplied by

false positive ratio (FPR), which in this case should be

10 % at maximum. As one can see from the ROCs, even

the best-performing at this FPR filters, Pi and HB, give

only about 40 % of true positives, which is generally not

acceptable as it means loss of more than half of po-

tentially active compounds at the very first stage of drug

development. To address this issue, we carried out mul-

tiple filtering, in which all protein-ligand complexes

were sequentially conducted through all 7 filters, inclu-

ding the built-in scoring, thus applying logical conjunc-

tion to the filter conditions. In this computation, both TPR

and FPR are the functions of 7 variables, which are filter

cut-off values. The values of TPR and FPR were samp-

led in a broad range of filter parameters to optimize fil-

tering performance. The resulting ROC data points are

plotted in Fig. 3, and filter cut-off values for them are

provided in Table 2.

Conclusions. The proposed geometric filters for

protein–ligand complexes have shown their efficiency

for selection of specific inhibitors in a cross-docking

study for serine proteases thrombin and factor Xa. How-

ever, their efficiency in terms of receiver operating

cha- racteristics is lower than that of QXP/Flo+ native

sco- ring function. Nevertheless, the filters can

significantly improve virtual screening performance

when used in combination with the scoring function.

When compa- red to usage of the scoring function

alone, target-spe- cific tuning of filtering parameters

achieved an incre- ase of TPR from 40 % to 80 % at 10

% FPR, and from 30 % to 65 % at 5 % FPR.
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computations were performed using Ukrainian Natio-

nal Grid Infrastructure and computing cluster of Taras

Shevchenko National University of Kyiv [8, 9].

Î. Î. Ñóäàêîâ, Î. Ì. Áàë³íñüêèé, Ì. Î. Ïëàòîíîâ,

Ä. Á. Êîâàëüñüêèé

Ãåîìåòðè÷í³ ô³ëüòðè äëÿ êîìïëåêñ³â á³ëîê–ë³ãàíä íà îñíîâ³

ôåíîìåíîëîã³÷íèõ ìîëåêóëÿðíèõ ìîäåëåé

Ðåçþìå

Ìîëåêóëÿðíèé äîê³íã º øèðîêî çàñòîñîâóâàíèì îá÷èñëþâàëüíèì

ìåòîäîì ïîøóêó ë³ãàíä³â á³îìîëåêóë, çäàòíèì äî äîñòàòíüî òî÷-

íîãî ïåðåäáà÷åííÿ êîíôîðìàö³é êîìïëåêñ³â á³ëîê–ë³ãàíä. Ó òîé

æå ÷àñ ñêîðèíãîâèì ôóíêö³ÿì, ùî âèêîðèñòîâóþòü äëÿ îö³íêè

ñèëè çâ’ÿçóâàííÿ, áðàêóº òî÷íîñò³. Ìåòà. Ðîçðîáêà îá÷èñëþ-

âàëüíî ïðîñòèõ òà øâèäêèõ àëãîðèòì³â äëÿ âèáîðó ïîòåíö³éíèõ

ë³ãàíä³â ç êîìïëåêñ³â, îòðèìàíèõ ó ðåçóëüòàò³ äîê³íãó. Ìåòîäè.

Ñòâîðåíî îá÷èñëþâàëüí³ ô³ëüòðè, çàñíîâàí³ íà ãåîìåòðè÷íèõ

ñï³ââ³äíîøåííÿõ ó êîìïëåêñ³ á³ëîê–ë³ãàíä, åôåêòèâí³ñòü ÿêèõ ïå-

ðåâ³ðåíî êðîñ-äîê³íãîâèì äîñë³äæåííÿì ³ç çàñòîñóâàííÿì êðèñ-

òàë³÷íèõ ñòðóêòóð ëþäñüêèõ ñåðèíîâèõ ïðîòåàç òðîìá³íà (F2) ³

ôàêòîðà 10à (F10), à òàêîæ äâîõ â³äïîâ³äíèõ íàáîð³â â³äîìèõ ñå-

ëåêòèâíèõ ³íã³á³òîð³â çà äîïîìîãîþ ïðîãðàìíîãî çàáåçïå÷åííÿ

QXP/Flo. Ðåçóëüòàòè. Îö³íåíî ðåçóëüòàòè çàñòîñóâàííÿ ô³ëüò-

ð³â ó òåðì³íàõ ROC-êðèâèõ ³ç çì³ííèìè ïîðîãîâèìè çíà÷åííÿìè

òà ïîêàçàíî ¿õíþ åôåêòèâí³ñòü. Ïðîòå æîäåí ç ô³ëüòð³â íå ïå-

TPR FPR Pi OUT HB NA182 NA314 NA63 COM

0.926 0.242 3.1 0.77 1.0 4.6 9.1 4.8 5.8

0.869 0.160 3.4 0.75 1.0 4.7 9.8 4.7 5.8

0.803 0.094 3.5 0.73 0.9 4.7 8.9 4.6 6.3

0.721 0.057 3.7 0.75 0.9 4.7 8.4 4.5 6.5

0.631 0.048 3.7 0.75 0.9 4.7 8.1 4.3 6.4

Table 2

Best-scoring filter cut-off value combinations. Values for nearest atom and center of mass filters are in angstroms (C)



ðåâåðøèâ çà åôåêòèâí³ñòþ âáóäîâàíó ñêîðèíãîâó ôóíêö³þ Pi ïðî-

ãðàìè QXP/ Flo. Òèì íå ìåíø, âèêîðèñòàííÿ ô³ëüòð³â ç îïòèì³-

çîâàíèìè ïîðîãîâèìè çíà÷åííÿìè ó êîìá³íàö³¿ ç Pi äîçâîëèëî çíà÷-

íî çá³ëüøèòè åôåêòèâí³ñòü ïîð³âíÿíî ³ç çàñòîñóâàííÿì ëèøå Pi.

Âèñíîâêè. Ðîçðîáëåí³ ãåîìåòðè÷í³ ô³ëüòðè ìîæóòü ñëóãóâàòè

äîïîâíåííÿì äî òðàäèö³éíèõ ñêîðèíãîâèõ ôóíêö³é äëÿ îïòèì³çà-

ö³¿ ïîøóêó ë³ãàíä³â ³ çìåíøåííÿ çàëó÷åííÿ îá÷èñëþâàëüíèõ òà ëþä-

ñüêèõ ðåñóðñ³â.

Êëþ÷îâ³ ñëîâà: êîìï’þòåðíà ðîçðîáêà ë³ê³â, ìîëåêóëÿðíå ìî-

äåëþâàííÿ, äîê³íã, ñêîðèíãîâà ôóíêö³ÿ, ãåîìåòðè÷í³ ô³ëüòðè.

À. À. Ñóäàêîâ, À. Ì. Áàëèíñêèé, Ì. Î. Ïëàòîíîâ, Ä. Á. Êîâàëüñêèé

Ãåîìåòðè÷åñêèå ôèëüòðû äëÿ êîìïëåêñîâ áåëîê–ëèãàíä íà

îñíîâå ôåíîìåíîëîãè÷åñêèõ ìîëåêóëÿðíûõ ìîäåëåé

Ðåçþìå

Ìîëåêóëÿðíûé äîêèíã – øèðîêî èñïîëüçóåìûé âû÷èñëèòåëüíûé

ìåòîä ïîèñêà ëèãàíäîâ áèîìîëåêóë, ñïîñîáíûé äîâîëüíî òî÷íî

ïðåäñêàçûâàòü êîíôîðìàöèþ êîìïëåêñà áåëîê–ëèãàíä. Â òî æå

âðåìÿ ñêîðèíãîâûå ôóíêöèè, èñïîëüçóåìûå äëÿ îöåíêè ñèëû ñâÿ-

çûâàíèÿ, íåäîñòàòî÷íî òî÷íû. Öåëü. Ðàçðàáîòêà âû÷èñëèòåëü-

íî ïðîñòûõ è áûñòðûõ àëãîðèòìîâ äëÿ âûáîðà ïîòåíöèàëüíûõ

ëèãàíäîâ èç êîìïëåêñîâ, ïîëó÷åííûõ â ðåçóëüòàòå äîêèíãà. Ìå-

òîäû. Ñîçäàíû âû÷èñëèòåëüíûå ôèëüòðû íà îñíîâå ãåîìåòðè-

÷åñêèõ ñîîòíîøåíèé â êîìïëåêñå áåëîê–ëèãàíä, ýôôåêòèâíîñòü

êîòîðûõ ïðîâåðåíà êðîññ-äîêèíãîâûì èññëåäîâàíèåì ñ ïðèìåíå-

íèåì êðèñòàëëè÷åñêèõ ñòðóêòóð ÷åëîâå÷åñêèõ ñåðèíîâûõ ïðîòå-

àç òðîìáèíà (F2) è ôàêòîðà 10à (F10), à òàêæå äâóõ ñîîòâåò-

ñòâóþùèõ íàáîðîâ èçâåñòíûõ ñåëåêòèâíûõ èíãèáèòîðîâ ñ ïîìî-

ùüþ ïðîãðàììíîãî îáåñïå÷åíèÿ QXP/Flo. Ðåçóëüòàòû. Îöåíåíû

ðåçóëüòàòû ïðèìåíåíèÿ ôèëüòðîâ â òåðìèíàõ ROC-êðèâûõ ñ ïå-

ðåìåííûìè ïîðîãîâûìè çíà÷åíèÿìè è ïîêàçàíà èõ ýôôåêòèâ-

íîñòü. Îäíàêî íè îäèí èç ôèëüòðîâ íå ïðåâçîøåë ïî ýôôåêòèâ-

íîñòè âñòðîåííóþ ñêîðèíãîâóþ ôóíêöèþ Pi ïðîãðàììû QXP/Flo.

Òåì íå ìåíåå, èñïîëüçîâàíèå ôèëüòðîâ ñ îïòèìèçèðîâàííûìè ïî-

ðîãîâûìè çíà÷åíèÿìè â êîìáèíàöèè ñ Pi ïîçâîëèëî ñóùåñòâåííî

óâåëè÷èòü ýôôåêòèâíîñòü â ñðàâíåíèè ñ ïðèìåíåíèåì òîëüêî Pi.

Âûâîäû. Ðàçðàáîòàííûå ãåîìåòðè÷åñêèå ôèëüòðû ìîãóò ñëó-

æèòü äîïîëíåíèåì ê òðàäèöèîííûì ñêîðèíãîâûì ôóíêöèÿì äëÿ

îïòèìèçàöèè ïîèñêà ëèãàíäîâ è óìåíüøåíèÿ ïðèâëå÷åíèÿ âû÷èñ-

ëèòåëüíûõ è ÷åëîâå÷åñêèõ ðåñóðñîâ.

Êëþ÷åâûå ñëîâà: êîìïüþòåðíàÿ ðàçðàáîòêà ëåêàðñòâ, ìîëå-

êóëÿðíîå ìîäåëèðîâàíèå, äîêèíã, ñêîðèíãîâàÿ ôóíêöèÿ, ãåîìåòðè-

÷åñêèå ôèëüòðû.
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