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Aim. To investigate the thermodynamic characteristics of complexes of calf thymus double-stranded DNA with

methylene blue (MB), ethidium bromide (EtBr) and Hoechst 33258 (H33258). Methods. The binding of MB with

double-stranded DNA was observed by UV-melting method. Results. Several types of MB binding to DNA-

intercalating, semi-intercalating and electrostatic with DNA phosphate backbone, have been revealed at low

concentrations of Na
+

(2 mM). At high concentrations of cations and low ratios of r
b
= [ligand]/[DNA] (�0.05),

the molecules of ligand semi-intercalate into the space between adjacent bases. At higher concentrations of li-

gand the main mode becomes electrostatic binding of MB to DNA phosphate groups. Conclusions. The com-

parison of thermodynamic characteristics of DNA-MB complexes with those of EtBr and H33258 indicates that

there is more than one mode of binding ligands to DNA: besides nonspecific, external electrostatic binding with

phosphate groups, intercalation and semi-intercalation modes of interaction coexist.

Keywords: UV-spectrophotometry of DNA melting, methylene blue, intercalation, semi-intercalation.

Introduction. Investigation of peculiarities of the comp-

lex formation of natural and artificially synthesized li-

gands with DNA is of actual importance since it per-

mits to reveal the mechanisms of interaction and their

specificity in certain regions of nucleic acid [1–7]. No-

wadays the ligands noncovalently binding with DNA

are divided into two classes – intercalators and groove

binding compounds [8–16]. However, the results of theo-

retical and experimental investigations show that depen-

ding on the external medium conditions several ligands

may bind to double-stranded (ds-) or single-stranded

(ss-) DNA in more than one mode (multimodal ligands)

[17–25]. From this point of view methylene blue (MB,

Fig. 1), which is considered to be an alternative to the

classical intercalator ethidium bromide (EtBr), repre-

sents a certain interest. This ligand is a photosensitizer

and initiates the formation of singlet oxygen in solution

invoking different damages in DNA molecule [20].

A large number of works are devoted to interaction

of MB with DNA. It has been shown that depending on

the Na+ concentration, nucleotide sequences, ligand con-

centration, MB may bind with DNA by different mecha-

nisms but at this moment there is no unambiguously

identified dominant type of binding with the biopoly-

mer and this problem remains an interesting matter of

discussion [3, 20].
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Fig. 1. The structure of methylene blue
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In the present work the interaction between MB and

calf thymus DNA (ctDNA) has been investigated using

UV-melting method. The comparison of thermodyna-

mic parameters of DNA-MB complexes with those of

EtBr and Hoechst 33258 (H33258) revealed more than

one binding type with DNA [8, 10, 20–26].

Materials and methods. The extra pure ctDNA

(«Sigma», USA), MB («Aldrich», USA), NaCl, Na-

citrate (s. p.) were used in experiments. All prepara-

tions were used without additional purification.

The concentrations of DNA and MB were deter-

mined by absorption method taking into account the

following extinction coefficients: calf thymus – �260 =

= 6600 M–1cm–1 (the concentration of DNA in solution

was � 50–60 �M), MB-�664 = 76000 M–1cm–1. The solu-

tions of preparations were prepared in SSC (1 � SSC

contains 0.15 M NaCl and 0.015 M Na-citrate (three-

substituted)). Investigations were carried out at 2 and

20 mM Na+, pH � 7.0.

Equipment. The melting of DNA complexes with li-

gands as well as spectrophotometric measurements were

carried out on spectrophotometer PYE-Unicam-SP8-

100 (England). The heating of solutions of complexes

was performed with the Temperature Programme Cont-

roller SP-876 Series 2. The quarts cuvettes with herme-

tically closed teflon plug with 3 ml volume and 1 cm op-

tic pathway length were used for spectrophotometric

measurements. The melting was realized at 	 = 260 nm

wavelength. The data were displayed on PC monitor

via a program elaborated in Lab VIEW medium. The

curves of melting were obtained as described in [21].

Results and discussion. The simple method of in-

vestigation of the interaction of different compounds

with DNA is the melting in ultraviolet region of light.

Applying this method the investigations of MB inter-

action with DNA were carried out at 2 and 20 mM Na+

concentrations in 0 < rb � 0.33 (rb = [ligand]/[DNA]) in-

terval of change at 	 = 260 nm. The melting curves (not

represented here) were obtained and the values of mel-

ting temperature – Tm of complexes were determined.

The plot of experimentally estimated values of the chan-

ges of melting points
(1/Tm) (
(1/Tm) = 1/T0 – 1/Tm, whe-

re T0 and Tm are the melting temperatures of DNA and li-

gand-DNA complexes respectively) represented in Fig.

2 shows, that this parameter increases monotonously

with ligand concentration enhancement indicating the
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stabilizing effect of MB of ds-DNA structure at both

Na+ concentrations.

The dependence of other parameter – change of mel-

ting interval width – (
(�T/Tm

2) = �T/Tm

2 – �T0/T0

2, whe-

re �T0 is the values of melting temperature of DNA; �T

is that of MB complexes with DNA respectively) on li-

gand concentration is represented in Fig. 3. The depen-

dence of (
(�T/Tm

2) on rb represented in Fig. 3, a (cur-

ves 1 and 2) corresponds to DNA-MB complexes at 2

and 20 mM Na+. For comparison the analogous curves

for EtBr are also represented in Fig. 3, b, (curves 1 and 2

at 2 and 20 mM Na+ concentrations) [24]. Fig 3 shows

that for both EtBr and MB the (
(�T/Tm

2) (curves 1) in-

creases at relatively low values of rb and reaches its ma-

ximal values at rb � 0.1. At further increasing of ligand

concentration this parameter starts to decrease in both

cases, for EtBr a decrease being sharper [10, 21–27].

We have shown earlier that at low concentrations in

case of EtBr the ligand molecules are mainly intercala-

ted into ds-regions of DNA and with the melting they

are redistributed from denaturized (ss-regions) to still

non denaturized ds-regions as a consequence of enhan-

cement of the dependence of (
(�T/Tm

2) on rb. MB mo-

lecules behave in analogous way, since at low concent-

rations of salt the main mode becomes the intercalation

of these ligand molecules into ds-DNA [28].

At subsequent increasing of rb in case of EtBr the

main binding mode is semi-intercalation at which the

ligand molecules show practically a similar affinity to

both ds- and ss-regions. As a result, the redistribution

of bound ligand molecules stops and the dependence of

(
(�T/Tm

2) on rb passing through the maximum decrea-

ses. Based on the revealing of analogous behavior in

case of MB we assume that in these conditions this li-

gand binds to DNA by semi-intercalation mode as well.

This conclusion is in good agreement with the reported

data [3, 29, 30].

On the other hand, curve 2 (Fig. 3, a) shows that

(
(�T/Tm

2) of DNA-MB complexes at 20 mM Na+ in-

creases at low values of rb and reaches the saturation at

rb � 0.1. Such radical change in the dependence indica-

tes that this ligand binds to DNA in other modes. The

data in literature indicate that at low ionic strengths of

solution MB binds to GC-rich regions of DNA by inter-

calation as well. However, the basic interaction mode is

the AT-specific binding in one of DNA grooves which

practically does not depend on solution ionic strength

[20]. It should be mentioned that among ligands bin-

ding to DNA, the fluorescent dye for DNA and chromo-

somes – H33258 shows the pronounced AT-specificity.

Moreover this ligand, like netropsin and other lexitrop-

sines, is preferably localized in DNA minor groove, i.

e. it is a groove binding ligand [31]. Our studies on the

melting reveal that at 20 mM Na+ concentration the de-

pendence of (
(�T/Tm

2) on rb decreases getting negative

values (Fig. 4, b, curve 3) [8]. This is conditioned by the

fact that at binding to AT sequences the melting tempe-

rature of that sequences increases as a consequence of

which at relatively low concentrations of ligand (0 < rb �

� 0,1) as well as at the melting DNA-H33258 comple-

xes behave themselves like double-stranded homopoly-

nucleotide the melting interval width of which is usual-

ly much less than in case of DNA with quasi-random se-

quences [27]. This is connected with the fact that DNA

is sufficiently heterogeneous system alike aperiodic

one-dimensional crystal that melts in wide tempera-

ture interval (�T � 10–15 oC) [32, 33]. At saturation of

binding sites of H33258, a decrease in �T of complexes

stopped and the (
(�T/Tm

2) dependence curve gets out

of plateau at rb > 0.1, while the 
(1/Tm) dependence on

rb in these conditions continues to increase indicating

that at 20 mM Na+ concentration H33258 binds to DNA

in at least two modes – AT specific in minor groove at

low concentrations and electrostatically with phosphate

backbone groups at relatively high concentrations [8].

It is also obtained that at 2 mM Na+ concentration

H33258 binds to DNA non specifically, moreover at 0 <

< rb � 0.1 (
(�T/Tm

2) increases (getting positive values)

and at rb > 0.1 gets out of plateau (Fig. 4, b, curve 1) [8].

This is conditioned by the fact that at low ionic strengths

of solution the DNA double helix is more untwisted

and its diameter is longer than at relatively high ionic

strengths of solution [32, 33]. As a result, AT-specific

binding of H33258 in DNA minor groove becomes ther-

modynamically non profitable. In turn it results in radi-

cal change in the interaction mechanism of this ligand,

and the intercalation of hydrophobic bisbenzimidazo-

le groups of H33258 into the plane of base pairs beco-

mes preferable, since these groups are screened from

water [8]. Moreover, the piperazine and phenol groups

of H33258 are in polar surrounding that also promotes

the stabilization of complexes at low ionic strengths of
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solution. Therefore at non specific (intercalation) binding

mode of H33258 to DNA, �T of complexes increases, at

AT specific binding mode – decreases, moreover in both

cases the binding sites for these modes are complicated

and at their saturation ligand molecules start interacting

with DNA by the second, electrostatic, mode. From this

point of view the dependence of (
(�T/Tm

2) on rb in case

of MB interaction with DNA at 20 mM Na+ concen-

tration also may be the result of non specific binding of

this ligand to DNA. Meanwhile the incomplete interca-

lation (semi-intercalation) of ligand molecules into one

of DNA chains becomes the most preferable binding

mode. This is indicated by the fact that the change in


(�T/Tm

2) is significantly less than in case of MB interca-

lation into DNA. At relatively high salt concentrations,

the DNA structure is more compact but at full ligand in-

tercalation the DNA helix should locally untwist to form

an intercalation chamber [34]. The geometry of this cham-

ber in case of EtBr is sufficient to intercalate while in

case of MB it does not occur. At the same time the se-

mi-intercalation is thermodynamically permitted, since

in this case DNA structural reconstructions are not as

scaled as in the case of full intercalation [12, 34]. The

fact that curve 2 in Fig. 3, a, gets out of plateau at rb >

> 0.1, indicates the limitation of MB binding sites on

DNA in semi-intercalation mode and after their satura-

tion the ligand molecules start interacting with phospha-

te backbone groups of nucleic acid in electrostatic mode.

Therefore the obtained data allow to make the conclu-

sion that ligands preferably interact with DNA in inter-

calation mode, bind to DNA in minor groove or semi-in-

tercalation mode, moreover in certain cases this mode

may be preferable. At the same time ligands interacting

with DNA in non intercalation mode and showing spe-

cificity to certain types of bases also may intercalate

into double helix if the conditions for specific binding

are not suitable. It may be also concluded from the ob-

tained data that EtBr is a classic intercalator as well as

multimodal ligand and the mechanisms of its binding

to DNA do not depend on external medium factors

[21, 24, 35] while for both MB and H33258 a certain de-

pendence of interaction mechanisms of these ligands

with DNA on external medium factors is revealed (see

[3]). The above obtained results may be a good addition

to the literature data being practically applicable at the

screening of compounds directly binding to DNA and

influencing its structural and functional properties.

Conclusions. The interaction of MB with ds-DNA

has been characterized in the course of thermodynamic

studies. The obtained results show that the mechanisms

of MB binding to DNA are similar to those of EtBr: the

binding modes of these ligands depend on the molar

ratio rb and the concentration of cations in solution. It

was shown that besides nonspecific external electro-

static binding with DNA backbone phosphate groups

such interaction modes as intercalation or semi-inter-

calation binding also existed in the DNA-MB system.

At low Na+ concentrations (2 mM) the possible binding

of MB with ds-DNA is intercalation. At increasing ca-

tion concentration to 20 mM Na+ and small rb ratios (rb �

� 0.1) the ligand molecules semi-intercalate into the

nucleic acid base pairs.
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Ï. Î. Âàðäåâàíÿí, À. Ï. Àíòîíÿí, Ë. À. Àìáàðöóìÿí,

Ì. À. Øàãèíÿí, À. Ò. Êàðàïåòÿí

Òåðìîäèíàìè÷åñêèé àíàëèç êîìïëåêñîâ ÄÍÊ ñ ìåòèëåíîâûì

ñèíèì, áðîìèñòûì ýòèäèåì è Hoechst 33258

Ðåçþìå

Öåëü. Èçó÷èòü òåðìîäèíàìè÷åñêèå õàðàêòåðèñòèêè êîìïëåêñîâ

äâóõöåïî÷å÷íîé ÄÍÊ òèìóñà òåëåíêà ñ ìåòèëåíîâûì ñèíèì (ÌÑ),

áðîìèñòûì ýòèäèåì (ÁÝ) è Hoechst 33258 (H33258). Ìåòîäû.

Ñâÿçûâàíèå ÌÑ ñ äâóõöåïî÷å÷íîé ÄÍÊ èññëåäîâàëè ìåòîäîì ÓÔ-

ïëàâëåíèÿ. Ðåçóëüòàòû. Îáíàðóæåíî íåñêîëüêî òèïîâ ñâÿçûâà-

íèÿ ÌÑ ñ ÄÍÊ: èíòåðêàëÿöèîííûé, ïîëóèíòåðêàëÿöèîííûé è

ýëåêòðîñòàòè÷åñêèé ñ ôîñôàòíûì îñòîâîì ÄÍÊ ïðè íèçêèõ êîí-

öåíòðàöèÿõ Na
+

(2 ìÌ). Ïðè áîëüøèõ êîíöåíòðàöèÿõ êàòèîíîâ è

íèçêèõ ñîîòíîøåíèÿõ rb = [ëèãàíä]/[ÄÍÊ] (� 0,05) ìîëåêóëû ëè-

ãàíäà ïîëóèíòåðêàëèðóþò â ïðîñòðàíñòâî ìåæäó ñîñåäíèìè îñ-

íîâàíèÿìè. Ïðè áîëåå âûñîêèõ êîíöåíòðàöèÿõ ëèãàíäà îñíîâíûì

ñïîñîáîì ñòàíîâèòñÿ ýëåêòðîñòàòè÷åñêîå ñâÿçûâàíèå ÌÑ ñ ôîñ-

ôàòíûìè ãðóïïàìè ÄÍÊ. Âûâîäû. Ñðàâíåíèå òåðìîäèíàìè÷åñ-

êèõ ïàðàìåòðîâ êîìïëåêñîâ ÄÍÊ–ÌÑ ñ òàêîâûìè äëÿ ÁÝ è

H33258 óêàçûâàåò íà íàëè÷èå áîëåå ÷åì îäíîãî ñïîñîáà ñâÿçûâà-

íèÿ ëèãàíäîâ ñ ÄÍÊ. Óñòàíîâëåíî, ÷òî, êðîìå íåñïåöèôè÷åñêîãî,

âíåøíåãî ýëåêòðîñòàòè÷åñêîãî ñâÿçûâàíèÿ ñ ôîñôàòíûìè ãðóï-

ïàìè, ñóùåñòâóþò èíòåðêàëÿöèîííûé è ïîëóèíòåðêàëÿöèîííûé

òèïû âçàèìîäåéñòâèÿ.

Êëþ÷åâûå ñëîâà: ÓÔ-ñïåêòðîôîòîìåòðèÿ ïëàâëåíèÿ ÄÍÊ,

ìåòèëåíîâûé ñèíèé, èíòåðêàëÿöèÿ, ïîëóèíòåðêàëÿöèÿ.

Ï. Î. Âàðäåâàíÿí, À. Ï. Àíòîíÿí, Ë. À. Àìáàðöóìÿí,

Ì. À. Øàãèíÿí, À. Ò. Êàðàïåòÿí

Òåðìîäèíàì³÷íèé àíàë³ç êîìïëåêñ³â ÄÍÊ ç ìåòèëåíîâèì ñèí³ì,

áðîìèñòèì åòèä³ºì ³ Hoechst 33258

Ðåçþìå

Ìåòà. Äîñë³äèòè òåðìîäèíàì³÷í³ õàðàêòåðèñòèêè êîìïëåêñ³â

äâîëàíöþãîâî¿ ÄÍÊ òèìóñó òåëÿòè ç ìåòèëåíîâèì ñèí³ì (ÌÑ),

áðîìèñòèì åòèä³ºì (ÁÅ) ³ Hoechst 33258 (H33258). Ìåòîäè. Çâ’ÿ-

çóâàííÿ ÌÑ ç äâîëàíöþãîâîþ ÄÍÊ âèâ÷àëè ìåòîäîì ÓÔ-ïëàâëåí-

íÿ. Ðåçóëüòàòè. Âèçíà÷åíî äåê³ëüêà òèï³â çâ’ÿçóâàííÿ ÌÑ ç ÄÍÊ:

ièíòåðêàëÿöiéíèé, íàïiâiíòåðêàëÿöiéíèé ³ åëåêòðîñòàòè÷íèé ç

ôîñôàòíèì îñòîâîì ÄÍÊ çà íèçüêèõ êîíöåíòðàö³é Na
+

(2 ìÌ).

Çà âåëèêèõ êîíöåíòðàö³é êàò³îí³â ³ íèçüêèõ ñï³ââ³äíîøåííÿõ rb =

= [ë³ãàíä]/[ÄÍÊ] (� 0,05) ìîëåêóëè ë³ãàíäà íàï³âiíòåðêàëþþòü ó

ïðîñò³ð ì³æ ñóñ³äí³ìè îñíîâàìè. Çà âèùèõ êîíöåíòðàö³é ë³ãàíäà

ïåðåâàæàþ÷èì ñïîñîáîì º åëåêòðîñòàòè÷íå çâ’ÿçóâàííÿ ÌÑ ç

ôîñôàòíèìè ãðóïàìè ÄÍÊ. Âèñíîâêè. Ïîð³âíÿííÿ òåðìîäèíà-

ì³÷íèõ ïàðàìåòð³â êîìïëåêñ³â ÄÍÊ–ÌÑ ç òàêèìè äëÿ ÁÅ ³

H33258 âèÿâèëî á³ëüø í³æ îäèí ñïîñiá çâ’ÿçóâàííÿ ë³ãàíä³â ç ÄÍÊ.

Âñòàíîâëåíî, ùî, îêð³ì íåñïåöèô³÷íîãî, çîâí³øíüîãî åëåêòðîñ-

òàòè÷íîãî çâ’ÿçóâàííÿ ç ôîñôàòíèìè ãðóïàìè, ³ñíóþòü iíòåðêà-

ëÿöiéíèé ³ íàïiâièíòåðêàëÿöiéíèé òèïè âçàºìîä³¿.

Êëþ÷îâ³ ñëîâà: ÓÔ-ñïåêòðîôîòîìåòð³ÿ ïëàâëåííÿ ÄÍÊ, ìå-

òèëåíîâèé ñèí³é, ³íòåðêàëÿö³ÿ, íàï³â³íòåðêàëÿö³ÿ.
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