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Transforming growth factor �1 (TGF�1) is a growth regulator that has antiproliferative effects on a range of

epithelial cells at the early stages and promoting tumorigenesis at the later stages of cancer progression. The

molecular mechanisms of a duel role of TGF�1 in tumor growth regulation remain poorly understood. Aim. To

analyze the TGF�1-dependent cell cycle regulation of tumorigenic breast epithelial cells. Methods. Our present

study was designed to examine the regulatory effect of TGF�1 on the expression of a panel of 96 genes which are

known to be critically involved in cell cycle regulation. GEArray Q series Human Cell Cycle Gene Array was ap-

plied to profile the gene expression changes in MCF7 human breast adenocarcinoma cell line treated with

TGF�1. Results. The gene expression array data enabled us to reveal the molecular regulators that might connect

TGF�1 signaling to the promoting of the tumor growth, e. g. retinoblastoma protein (pRB1), check-point kinase 2

(Chk2), breast cancer 1, early onset (BRCA1), DNA damage checkpoint protein RAD9, cyclin-dependent kinase

2 (CDK2), cyclin D1 (CCND1). Conclusions. The uncovering of the key signaling modules involved in TGF�1-

dependent signaling might provide an insight into the mechanisms of TGF�1-dependent tumor growth and can

be beneficial for the development of novel therapeutic approaches.

Keywords: transforming growth factor�1, human breast adenocarcinoma, MCF7 cell line, cell cycle regulation,

microarray.

Introduction. Transforming growth factor �1 (TGF�1)

is a dimeric polypeptide growth factor with multiple

physiological functions that has been first described

as a stimulator of cellular tumorigenic transformation

[1]. TGF�1 initiates intracellular signaling through the

binding to the specific receptors type I (T�RI) and type

II (T�RII) on the cellular surface. TGF�1 receptors con-

tain serine/threonine kinase domains and form a hetero-

tetramer composed of two T�RI:T�RII heterodimers

complex upon TGF�1 binding [2]. The formation of the

ligand-receptor complex triggers a number of TGF�1-

dependent signaling pathways [3, 4]. The TGF�1-de-

pendent signal transmission through the Smad trans-

criptional factors is considered to be the most important

for TGF�1 cell response. However, over the last decade

the TGF�1 – mediated activation of Smad-independent

signal pathways has been also described. Among them,

the Ras and mitogen-activated protein kinase (MAPK)

pathways, p38, extracellular signal regulated kinases

(ERK), cJun N-terminal kinase (JNK) have been shown

to be activated in response to TGF�1 [5]. Emergence of

genomic and proteomic approaches advanced our

understanding of the plasticity of TGF cellular response

and provides a comprehensive overview of the role of
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TGF�1 regulatory effect on the maintenance of cell and

tissue homeostasis and functions. A number of novel

TGF�1 targets, which affect cell proliferation, death, DNA

damage repair, differentiation, cytoskeleton rearrange-

ment, and cellular metabolism have been identified in

our previous reports [6–10].

A variety of studies have shown a dual role of TGF�1

in the normal tissue maintenance and cancer [11]. TGF�1

is a negative growth regulator that has antiproliferative

effects on a range of epithelial cells at the early stages

and promoting tumorigenesis at the later stages of cancer

progression. Discovery of the selected signaling mole-

cules has provided an insight into some molecular me-

chanisms behind this dual role of TGF�1. However, a

number of evidence suggests that an ability of cancer cells

to overcome the growth inhibitory effects of TGF�1 is a

result of the functional changing a host of the intracellu-

lar signaling components.

Therefore, a large-scale genomic and proteomic ana-

lysis has to be employed to explain a switch in the

TGF�-dependent cell response during tumor develop-

ment. Our comparative analysis for some of the identi-

fied gene targets (c-abl, CDKN2D, RAD9) has shown

their distinct expression in the nontumorigenic epitheli-

al cells MCF10A and human breast adenocarcinoma

cells MCF7.

Expanding our knowledge of the differential emp-

loyment of TGF�1 signaling network by premalignant

and tumor cells might contribute to our understanding of

breast cancer development and can be potentially emp-

loyed for therapeutic benefit. Our present study was de-

signed to examine the TGF�1 regulatory effect on the

expression of 96 genes known to be critically involved

in the cell cycle regulation.

Materials and methods. Cells and reagents. MCF7

cells were obtained from American Type Culture Col-

lection (Manassas, USA), and cultured in DMEM supple-

mented with 10 % of foetal bovine serum («Sigma-Al-

drich», USA). TGF�1 was added to the cells to final con-

centration of 5 ng/ml. At 18 h after treatment, cells were

lysed and protein extracts were analyzed by immuno-

blotting.

Sample preparation. Cells were lysed in 1 % Triton

X-100, 40 mM Tris-HCl, pH 8.0, 65 mM dithiothreitol

(DTT), 1 mM phenylmethylsulfonyl fluoride, 10 mM ap-

rotinin, and complete protease inhibitor cocktail («Ro-

che Diagnostics», Germany). Cell lysates were clarified

by centrifugation.

Immunobloting and immunoprecipitation. For immu-

noblotting, cell lysates were resolved on SDS/10 % po-

lyacrylamide gels and transferred onto Hybond P mem-

branes («Amersham Biosciences», USA). Membranes

were blocked with 5 % (v/v) BSA for one hour and then

incubated with the primary antibody against DP-1 (K-

20), sc-610; Cyclin D3 (C-16), sc-182; RAD9 (M-389),

sc-8324; Chk2 (A-12), sc-5278; p19 (M-167), sc-1063;

c-Abl (24-11), sc-23; Smad-2 (YZ-13), sc-101153; p-

Smad-2 (Ser467), sc-101801; Actin (C-11), sc-1615-R

(«Santa Cruz Biotechnology Inc.», USA), with dilution

as recommended by manufacturer followed by an incu-

bation with HRP-conjugated secondary antibodies («GE

Heathcare», USA). The proteins were visualized using

Western Blotting Luminol Reagents («Santa Cruz Bio-

technology Inc., USA»). For immunoprecipitation, cell

lysates were incubated with antibodies against target

proteins and protein A-Sepharose beads («Sigma-Al-

drich», USA) for 6 h at 40
oC with gentle agitation. Im-

munocomplexes bound to protein A-Sepharose beads

were collected by centrifugation and washed 3 times in

lysis buffer before being resolved by sodium dodecyl sul-

phate-polyacrylamide gel electrophoresis (SDS-PAGE).

Semiquantitative RT-PCR. Custom primer sets we-

re designed using GeneFisher software. The following

forward and reverse primer sets were synthesized: hu-

man c-abl (accession number M14752) –

forward, 5'-AGGATCAACACTGCTTCTG-3',

reverse 5'-GATCTGAGTGGCCATGTAC-3';

human cyclin D3 (CCND3) (accession number

M92287) –

forward, 5'-ACATATGAGGGGGAATAGTC-3',

reverse 5'-TAGGAAAGACCTGTGTCAAC-3';

human cyclin-dependent kinase inhibitor 2D (CDK

N2D) (accession number CR542158) –

forward 5'-CCGGTACCAGTCCAGTC-3',

reverse 5'-AGCTCCAAGGGTGTGAG-3';

human cullin 4A (cul4A) (accession number BC

008308) –

forward 5'-AGAAGGGAAGAAGGAATTCC-3',

reverse 5'-TGGTACTGATTCGGATTGTC-3';

human meiotic recombination (Saccharomyces ce-

revisiae) 11 homolog B (MRE11B) (accession number

AF022778) –
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forward 5'-CAGTGGTTACTTCTCTTTCC-3'

reverse 5'-CTCTGCGGTTTGAAAGTAC-3';

human RAD9 (Schizosaccharomyces pombe) homo-

log (RAD9) (accession number U53174) –

forward 5'-GGCTTTTTTAGACGGAGTC-3'

reverse 5'-CTCTTAAAGGGCCAAAGAAC-3';

human protein kinase Chk2 (RAD53) (accession

number NM_007194) –

forward 5'-GCATATCCAGCTCCTCTAC-3',

reverse 5'-GACTGATCATCTACAGTCAG-3';

human E2F-related transcription factor 1 (TFDP-1)

(accession number L23959) –

forward 5'-GGTCTAATTGAAGCCAACG-3',

reverse 5'-GCCATTAGCACGTTTAAGG-3';

human E2F-related transcription factor 2 (TFDP-2)

(accession number NM_006286) –

forward 5'-CTGGAGATAGAGAAGCAGAG-3',

reverse 5'-GCATAACCCTTGGTTTACAC-3'.

Reverse transcription was performed with using of

Super ScriptTM reverse transcriptase («Novagen», USA),

as recommended by manufacturer. Relative gene expres-

sion was determined utilizing glyceraldehydes-3-phos-

phate dehydrogenase, GAPDH (accession number

AF261085) as loading control. The following primer

set for GAPDH was used:

forward 5'-CATAGACCAGAACCTTAGTC-3',

reverse 5'-GACCTTCATGGAGAAATGC-3'.

Low-density microarray experiment was perfor-

med with RNA extracted from MCF7 cells, which were

treated or non-treated with TGF�1. RNA was extracted

using a RNAsy mini kit («QIAGEN», USA), and RNA

without any signs of degradation was used for analysis.

Preparation of the probes (GEArray Probe synthesis kit,

SuperArray Bioscience, USA), and hybridization with

the membranes of Human Cell Cycle Gene array (HS-

001-4 GE array Q series; SuperArray Bioscience) were

performed, as recommended by the manufacturer. After

hybridization, the membranes were exposed in a FujiX

2000 PhosphorImager, and the acquired images were

analysed using ScanAlyze software (http://rana.lbl.

gov/EisenSoftware.htm).

Two-fold changes were considered as a threshold

for significant TGF�1-dependent changes in gene ex-

pression level.

Pathway analysis. Functional and signalling path-

way analysis was done using Ingenuity Pathway Analy-

sis, a commercial database for identifying networks

and signalling pathways of interest in global genomic

data. Dataset containing identified genes and corres-

ponding expression values was uploaded into the Inge-

nuity Pathway Analysis application and TGF�1 depen-

dent network regulating cell growth and proliferation

was generated. Fischer’s exact test was used to calcula-

te a p-value determining the network connectivity.

Luciferase reporter assay. Reporter assays with

CAGA(12)-luc reporter was performed as described

previously [12]. 293T cells were used, because they are

responsive to TGF� treatment and allow for efficient

exogenous protein expression.

Results and discussion. TGF�1 dependent expres-

sion of genes regulating cell proliferation in MCF7

cells. In the current study we explored changes in ex-

pression of genes involved in cell cycle regulation in

MCF7 cells in response to TGF�1 stimulation. To assess

long-term changes in TGF�1-dependent expression,

MCF7 cells were analyzed after incubation with TGF

�1 for 18 h and compared with nontreated cells. Phos-

phorylation of Smad2 on C-terminal serine residue upon

TGF�1 treatment was used as an indicator for TGF�1

signalling activation (Fig. 1, A). Human Cell Cycle Ge-

ne Array Q series has been applied to evaluate trans-

cription level of 96 genes which are known to be regula-

tors of cell cycle and response to DNA damage. We found

that expression of 41 genes was altered at least twofold

(p < 0.05) after the treatment of the cells with TGF�1

(Table 1). Among identified genes 17 were already

known TGF�1 target genes, i. e., transcription factors

DP-1, DP-2, cyclins D1, D2, F, G1 and G2, cyclin de-

pendent kinases cdk2, cdk4, cdk6, cdk7, cyclin-depen-

dent kinase inhibitors CDKN1C, CDKN2A, CDKN2B,

CDKN2C, CDKN2D, metallopeptidase inhibitor TIMP3

[9, 10]. However, most of the differentially regulated

genes have not been previously implicated in TGF�1

signaling. Semi-quantitative RT-PCR and Western blot-

ting analysis has been performed to validate the TGF�1

dependent changes in the expression of some of the iden-

tified genes (Fig. 1, B, C). The obtained results were con-

sistent with those from gene expression array suppor-

ting the validity of the microarray data. We revealed a

distinct TGF�1-dependent regulation of some of the iden-

tified genes (c-abl, CDKN2D, RAD9) in MCF10A non-

tumorigenic epithelial cells as compared to the MCF7
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human breast adenocarcinoma cells that can be explai-

ned, at least in part, by switching the responsiveness of

the mammary epithelial cells to TGF�1 during tumor

progression (Fig. 1, D).

Ingenuity Pathway analysis. To shed light on the sig-

naling pathways contributing to the regulation of cell

cycle by TGF�1, all 41 genes differentially expressed in

the TGF�1 and untreated cells were subjected to path-

way analysis by using Ingenuity Pathway Analysis. The

Ingenuity Pathways Knowledge Base, a comprehensi-

ve knowledge base for identifying signalling networks

for genes of human, rat and mouse was used to build sig-

nalling networks and make functional analysis of an en-

tire dataset. Among the 96 genes that have been anno-

tated as cell cycle regulators, expression of 41 genes was

changed significantly upon TGF�1 treatment in MCF7

human breast adenocarcinoma cell line (Table 1). All 41

overlaid genes (100 %) were found in the pathway map.

By focusing on these 41 genes, we constructed a TGF�1-

dependent cell cycle regulating network that included

all known interaction between dataset genes. The signa-

ling networks, which include TGF�1-responsive genes

are listed in Table 2. Upstream regulator analysis revea-

led Smad2, Smad3 and TGF�1 as regulators of trans-

cription in this gene network (Fig. 2, A). According to

generated signaling network, we have identified a few

signaling modules which might be considered as key

transmitters of TGF�-signaling, which control cell cyc-

le, e. g. estrogen receptor (ER), retinoblastoma protein

(pRB1), checkpoint kinase 2 (Chk2), nuclear factor kap-

pa-light-chain-enhancer of activated B cells (NF�B),

breast cancer 1, early onset (BRCA1), platelet-derived

growth factor (PDGF), cyclin-dependent kinase 2

(CDK2), cyclin D1 (CCND1). An overlapping of the

canonical pathways involving identified genes revea-

led, among others, a preferential activation of the aryl

hydrocarbon receptor (AhR) pathway, the growth ar-

rest and DNA damage (GADD45) pathway and p53

signaling rout (Fig. 2, B).

Chk2 cooperates with Smad3 in transcriptional re-

gulation. To explore the possible mechanism for the in-

volvement of some of identified genes in TGF�1-ini-

tiated signal transduction, we performed a luciferase re-

porter assay with TGF�1-responsive CAGA(12)-luc re-

porter. This reporter contains multiple CAGA boxes

which are specific binding site for Smad3 and Smad4 –

TGF�1 activated transcriptional factors. We used 293T

cells because they are TGF�1 responsive and allow high

level of ectopic expression of target proteins. We obser-

ved that protein product of RAD53 gene – Chk2 kinase,

which expression is found to be downregulated upon

TGF�1 treatment, cooperated with Smad3 in activation

of CAGA(12)-luc reporter (Fig. 3, A). To explore whe-

ther Chk2 and Smad proteins could form a complex, we
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Fig. 1. Validation of microarray data: A – phosphorylation of Smad-2 on C-terminal serine residue 467 upon TGF�1 treatment was used as an in-

dicator of the TGF�1 signaling activation in human breast adenocarcinoma MCF7 cell line. Semi-quantitative RT-PCR and Western blotting ana-

lysis for some of the identified genes has been performed to validate the TGF�1-dependent changes in gene expression (B, C). Semi-quantitative

RT-PCR analysis revealed a distinct TGF�1 regulation for some of the identified genes (i. e. c-Abl, CDKN2D, RAD9) in MCF10A

non-tumorigenic epithelial cells and MCF7 human breast adenocarcinoma cell line (D)
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Accession

number
Symbol Description

Gene expression (arbitrary units)

Control + TGF�1
Fold

change

X16416 ABL1 V-abl abelson murine leukemia viral oncogene homolog 1 137 65 2.122

NM_001160 APAF1 Apoptotic protease activating factor 100 25 4.054

NM_000051 ATM Ataxia telangiectasia mutated (includes complementation groups A, C and D) 101 46 2.200

L22474 BAX BCL2-associated X protein 443 195 2.273

U68041 BRCA1 Breast cancer 1, early onse 1 67 66.670

NM_003914 CCNA1 Cyclin A1 10 1 10.052

X51688 CCNA2 Cyclin A 23 322 14.227

M74091 CCNC G1/S-specific cyclin C 275 110 2.505

X68452 CCND2 Cyclin D2 63 128 2.051

M90814 CCND3 Cyclin type D3 60 154 2.580

NM_004702 CCNE2 Cyclin E2 62 26 2.387

U17105 CCNF Cyclin F 121 36 3.349

X77794 CCNG1 Cyclin G1 435 127 3.431

NM_001255 CDC20 p55cdc 80 375 4.704

NM_001256 CDC27 Cell division cycle 27 252 69 3.682

L22005 CDC34 Ubiquitin-conjugating enzyme,cell division cycle 34 302 93 3.264

AF015592 CDC7L1 CDC7 (cell division cycle 7, S. cerevisiae, homolog)-like 1 63 147 2.334

X61622 CDK2 Cyclin-dependent kinase 2 85 195 2.288

M14505 CDK4 Cyclin-dependent kinase 4 184 436 2.368

X66365 CDK6 Cyclin-dependent kinase 6 102 8 13.155

NM_001799 CDK7
Cyclin-dependent kinase 7 (homolog of Xenopus MO15 cdk-activating

kinase)
362 152 2.379

U22398 CDKN1C Cyclin-dependent kinase inhibitor 1C (p57, Kip2) 50 101 2.033

U26727 CDKN2A Cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) 36 111 3.095

L36844 CDKN2B Cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) 65 168 2.590

U17074 CDKN2C Cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4) 147 11 13.691

U40343 CDKN2D Cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK4) 213 57 3.770

AF077188 CUL4A Cullin 4A 329 91 3.621

AB014595 CUL4B Cullin 4B 425 135 3.147

AF059292 E2F6 E2F transcription factor 6 346 58 5.945

U74613 FOXM1 Human putative M phase phosphoprotein 2 (MPP2) mRNA 208 81 2.571

D38073 MCM3 Minichromosome maintenance deficient (S. cerevisiae) 3 162 461 2.841

Table 1

Genes involved in TGF�1-dependent cell cycle regulation



performed a co-immunoprecipitation assay of Smad3 co-

transfected with Chk2. We revealed that Smad3 inter-

acts with Chk2, and these Smad3/Chk2 complexes have

been formed even in the absence of treatment with TGF

�1 ligand (Fig. 3, B). Therefore, we found that Smad3

and the protein product of RAD53 gene Chk2 kinase

exerted a cooperative effect in activation of the TGF�1/

Smad3-responsive transcription. This transcription re-

gulation may be an example of a feedback mechanism,

which includes TGF�1-dependent inhibition of RAD53

gene expression and simultaneous restrain of Smad3-

dependent transcriptional regulation. In contrast, we

found that other checkpoint Rad proteins Rad9, which

has been also identified in the gene expression array
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Accession

number
Symbol Description

Gene expression (arbitrary units)

Control + TGF�1
Fold

change

AF022778 MRE11B Meiotic recombination (S. cerevisiae) 11 homolog B 191 532 2.783

AF058696 NBS1 Nijmegen breakage syndrome 1 (nibrin) 254 50 5.084

NM_007194 RAD53 Protein kinase Chk2 113 1 113.178

U53174 RAD9 RAD9 (S. pombe) homolog 260 1 260.101

M15400 RB1 Retinoblastoma 1 (including osteosarcoma) 328 30 10.902

NM_002895 RBL1 Retinoblastoma-like 1 (p107) 214 55 3.924

U33761 SKP2 Human cyclin A/CDK2-associated p45 (Skp2) 201 629 3.132

L23959 TFDP1 Homo sapiens E2F-related transcription factor (DP-1) 286 14 20.828

NM_006286 TFDP2 Transcription factor Dp-2 (E2F dimerization partner 2) 299 32 9.324

Conclusion of Table 1

Molecules in network Score
Focus

molecules
Top diseases and functions

APC (complex), CAK, CCNA1, CCNA2, CCND3, CCNE2, Cdc2, CDC7,

CDC20, Cdk, CDK4, CDK6, CDK2-CyclinE, CDK4/6, CDK4/6-Cyclin

D1, CDKN1C, CDKN2B, CDKN2C, CDKN2D, Cyclin A, Cyclin

A/Cdk2, Cyclin D,CyclinD1/cdk4, Cyclin E, E2f, E2F6, ERK1/2,

FOXM1, INK4, Rb, RBL1, RNA polymerase III, SKP2, TFDP1, TFDP2

43 18

Cell Cycle, Cellular Growth and Proli-

feration, DNA Replication, Recombi-

nation, and Repair

14-3-3, Akt, alcohol group acceptor phosphotransferase, APAF1, ATM,

ATM/ATR, Basc, BAX, BRCA1, caspase, CCNC, CCND2, CCNG1,

CDK2, CDK7, CDK2-Cyclin D1,CDK4-Cyclin D2, CDKN2A, CHEK2,

Ctbp, Cyclin B, cyclin h/cdk7, HoloRNA polymerase II, Hsp70, MCM3,

Mre11, MRE11A, MRN, NBN, RAD9A, Raf, RB1, RNA polymerase II,

TFIIH, TIP60

37 16

Cell Cycle, DNA Replication, Recom-

bination, and Repair, Connective

Tissue Development and Function

ABL1, ADRB, Ap1, calpain, CCND1, CCNF, CDC27, Collage n type I,

Creb, estrogen receptor, Fc-gamma receptor, Focal adhesion kinase,

Hdac, Hedgehog, Histone h4, Hsp27, Hsp90, Immunoglobulin, Integrin,

Laminin, LDL, Mapk, Mek, NF�B(complex), P38 MAPK, p70 S6k, Pdgf

(complex), PDGF BB, PP2A, Smad, STAT5a/b, Tgf beta, thymidine

kinase, TIMP3, TSH

9 5
Cancer, Organismal Injury and Abnor-

malities, Reproductive System Disease

26s Proteasome, AMPK, ARHGAP1, AURKC, BCR (complex),

Calmodulin, CD3, CDC34, Cg,CUL4A, CUL4B, cytochromeC, ERK,

FSH, Gamma tubulin, Gsk3, HISTONE, Histone H1,Histone h3, IgG,

Igm, Insulin, Interferon alpha, Jnk, PI3K (complex), Pka, Pkc(s), POLH,

PPP1R3A, Rac, Ras, Sapk, Ube3, Ubiquitin, Vegf

5 3

DNA Replication, Recombination,

and Repair, Cell Morphology, Organ

Morphology

Table 2

Molecular networks which include TGF�-responsive genes



experiment, did not show any effect on Smad3 depen-

dent transcription and is not involved in the interaction

with Smad3 protein (Fig. 4, A, B).

In our previous study we have showed that TGF�1

is counteracting the BRCA1-dependent DNA repair

process [13] and is implicated in the maintenance of ge-

nome stability via regulation of RAD51 expression [14].

Another report suggests a functional link between TGF

�1 signaling and the ATM-mediated genotoxic stress

response [15]. In this study we have also observed that,

in addition to Chk2 and RAD9, TGF�1 is effecting an

expression a few other proteins implicated in DNA re-

pair, cell cycle checkpoint control, apoptosis and main-

tenance of the genomic integrity including c-Abl, ATM,

MRE11B (Meiotic recombination (S. cerevisiae) 11 ho-

molog B). Downregulation of the expression of c-Abl,

ATM, RAD9 and RAD53 genes in malignant cells upon

TGF�1 treatment suggests an additional mechanism of

increasing genomic instability, which can potentially

contribute to the cancer development.

TGF�1 is a ubiquitous cytokine that switches its ro-

les from tumor suppressor to tumor promoter as the tu-

mor progresses through the multiple mechanisms, in-

cluding mutational inactivation of TGF�1 receptors and

Smad proteins, loss of selective cytostatic gene respon-

se, and activating tumor promoter genes [1–5]). Given

the integral role of TGF�1 in the tumor progression, it

follows that TGF�1 signaling offers an attractive target

for cancer therapy.

Techniques such as microarray hybridization allow

a big-scale analysis of genes implicated in TGF�1-

dependent signal transduction. In conjunction with path-

ways analysis, transcriptional profiling might be benefi-

cial for identification of the key signal transmitters and

assessment of a functional load of the distinct signaling

components.
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Symbol Entrez Gene Name:

ATM ataxia telangiectasia mutated;

BAX BCL2-associated X protein;

CCNA1 cyclin A1;

CCNA2 cyclin A2;

CCND1 cyclin D1;

CCND2 cyclin D2;

CCND3 cyclin D3;

CCNE2 cyclin E2;

CDK2 cyclin-dependent kinase 2;

CDK4 cyclin-dependent kinase 4;

CDK6 cyclin-dependent kinase 6;

CDKN2A cyclin-dependent kinase inhibitor 2A;

CHEK2 checkpoint kinase 2;

RB1 retinoblastoma 1;

TFDP1 transcription factor Dp-1

Fig. 2. The Ingenuity Path-

ways Knowledge analysis of

the signalling networks. 41

genes, those expression was

changed significantly upon

TGF�1 treatment in MCF7

human breast adenocarcino-

ma cell line were used to con-

struct a TGF�1-dependent

cell cycle regulating network.

Upstream regulator analysis

revealed Smad2, Smad3 and

TGF�1 as transcriptional re-

gulators involved in gene re-

gulatory network (A); An

overlapping of the canonical

pathways involving identi-

fied genes revealed, among

others, a preferential activa-

tion of the aryl hydrocarbon

receptor (AhR) pathway, the

growth arrest and DNA da-

mage (GADD45) pathway

and p53 signaling rout. The

genes involved in the AhR

signaling are shown in the

left panel (B) APAF1 apop-

totic peptidase activating

factor 1



To identify the key cell cycle regulators of TGF�1-

signaling we performed low-density microarray analysis

of human breast adenocarcinoma MCF7 cell line treated

or non-treated with TGF�1. Among the 96 genes that ha-

ve been annotated as cell cycle regulators, expression of

41 genes was changed significantly upon TGF�1 treat-

ment in MCF7 human breast adenocarcinoma cell line.

Some of identified genes have been reported before as

TGF�-responsive targets (transcription factors DP-1, DP-

2, cyclins CCND1, CCNF, CCNG1 and CCNG2, CDK2,

CDK4, CDK6, CDK7, cyclin-dependent kinase inhibi-

tors CDKI1C, CDKI2A, CDKI2B, CDKI2C, CDKI2D)

[9]. However, for the most of the differentially regula-

ted genes identified in this study, little information is

known on their role in the TGF�1-directed cell cycle re-

gulation.

A lot of recent data suggest that regulation of the

cell cycle depends on protein degradation by the ubiqui-

114

DUBROVSKA A. M., SOUCHELNYTSKYI S. S.

A B

Smad3-myc

TGF�/T�RI

L
u

ci
fe

ra
se

a
ct

iv
it

y
,

a
rb

it
ar

y
u

n
it

s

Chk2-flag Smad3-myc

TGF�/T�RI

Chk2-flag

IB, WCL:anti-flag

anti-myc

IB, anti-Smad3

IB: anti-flag

� Smad3

�Chk2

� Chk2

20

60

100

140
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and luciferase activity has been measured; a representative experiment out of three performed, is shown. *p < 0.05); B – to explore whether Chk2
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overexpressed in 293T cells
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involved in the interaction with Smad3 protein



tin-proteasome machinery. On the other hand, the TGF�/

Smads-dependent signaling is known to be regulated by

reversed ubiquitination and protein degradation pro-

cess [16, 17]. The ubiquitination reaction requires the

coordination of various classes of functional modules,

and cullin complexes play an important role in the regula-

tion of protein degradation through their ubiquitin-li-

gase activity. Human genome encodes five different cul-

lins – Cul1, Cul2, Cul3, Cul4, and Cul5. All of them can

compose the catalytic core of the different cullin-based

ubiquitin-ligase, and, therefore, target a large number

of substrates for ubiquitin-dependent degradation, inclu-

ding p27, p21, p57, p130, Cyclin E, E2F-1, Cdk9, c-Myc,

which are involved in regulation of cell proliferation

and apoptosis [18]. We found that expression of two cul-

lins 4A and 4B, as well as ubiquitin-conjugating enzyme,

CDC34 were suppressed by TGF�1, suggesting that pro-

teosomal degradation is one of the mechanisms trough

which TGF�1 can regulate the cell cycle machinery.

Our previous proteomics studies indicate that TGF�1

can regulate transcription machinery via controlling

gene expression and through the post-translation modi-

fication mechanisms [17, 19]. In this study we also obser-

ved that some of the identified TGF�1-responsive pro-

teins are involved in the regulation of gene transcription,

such as E2F6 (E2F transcription factor 6), TFDP1 (Ho-

mo sapiens E2F-related transcription factor, DP-1),

TFDP2 (Transcription factor DP-2, E2F dimerization

partner 2). Recent studies suggest that transcriptional

repression of c-myc protooncogene is critical for the

manifestation of TGF�1-dependent cytostatic program.

The c-myc transcription is repressed through the E2F4/

5, DP-1 and Smad3 complexes [20, 21]. Transcriptio-

nal factor c-Myc is one of the key regulators of cell

growth, metabolism and apoptosis [22]. TGF�1-depen-

dent downregulation of DP-1 gene in MCF7 cells can

contribute to the restraining of TGF�1-dependent trans-

cription repression of c-myc. At the same time the E2F/

DP heteromeric transcription factor family is a very

well characterized pRb interactor [23]. A lot of studies

have demonstrated that transcriptional activity of E2F

proteins is linked to poor clinical outcome in a wide-va-

riety of different types of human cancers [24–27]. They

have an oncogenic function, which has been attributed

to the ability of the E2F proteins to induce S-phase of

cell cycle through the transcriptional regulation of cyc-

lins A and E, proto-oncogenes c-myc and c-myb, genes

important for DNA replication, and Rb family genes

(Rb and p107) [23, 28]. On the other hand, E2F pro-

teins are known to be the inductors of p53-dependent

apoptotic pathway. Plasticity of E2F dependent func-

tional outcomes can provide the fine-tuned mechanism

of TGF�1-dependent regulation of cell growth and

inhibition.

Activities of cyclin-dependent kinase (CDKs) and

their activating subunits, the cyclins are critical for the

function of cell cycle machinery [29, 30]. The pattern

of cyclin expression defines the cell position within the

cell cycle. Cyclin-dependent kinase inhibitors (CDKIs)

bind and inhibit cyclin-associated kinase and serve as

negative regulators of the cell cycle machinery. We ha-

ve found that TGF�1 is regulating a number of cyclin

genes (cyclin D1, D2, D3, E2, F, G1), cyclin-dependent

kinase (CDK 2, 4, 6, 7), cyclin-dependent kinase inhibi-

tors (CDKI1C, p57; CDKN2A, p16; CDKN2B, p15;

CDKN2C, p18; CDKN2D, p19) suggesting that TGF�

might regulate the cell cycle at the different stages and

by the various molecular mechanisms. Some of these

cell cycle regulatory genes have been previously reported

as TGF�-responsive genomic targets. Previous investi-

gation of the human umbilical vein endothelial cells (HU

VEC) infected with T�RI-expressing adenovirus has

shown that transcription a number of cell cycle regula-

tors can be affected by TGF� signaling activation, inclu-

ding cyclin-dependent kinases CDK2, CDK4, CDK6,

CDK7; cyclins CCND2, CCND3, CCNF, CCNG1; cyc-

lin-dependent kinase inhibitors CDKN2B, CDKN2C,

CDKN2D) [7]. Some of these genes exhibited expres-

sion profiles similar to those stimulated by TGF�1 in

our study, including CCND3, CDK2 (unregulated) and

CCNF, CCNG1, CDKN2D (downregulated). However,

some of identified genes have the different manner of

TGF�1-dependent regulation for breast adenocarcinoma

and nonmalignant human endothelial cells (CDKN2D,

CDK4, CDK6, CDK7, CDKN2B, CDKN2C), sugges-

ting the duel manner of TGF�1-dependent cell growth

regulation in normal and cancer cells. To check a possi-

bility of differential regulation of some other TGF�-

responsive genes in normal and malignant cells, we ha-

ve performed semi-quantitative RT-PCR analysis for

MRE11B, c-Abl, CCND3, CDKN2D, RAD9, RAD53

gene expression in MCF10A non-tumorigenic epithelial
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cells and MCF7 human breast adenocarcinoma cell

line. We found distinct TGF�1-dependent regulation of

c-Abl, CDKN2D and RAD9 genes, suggesting that the-

se genes can potentially contribute to the switching the

responsiveness of the normal and tumor epithelial cells

to TGF�1.

In order to search the TGF�1-dependent signaling

modules connected to the regulation of cell cycle, we

examined the identified genes in known pathways net-

work with using of the Ingenuity Pathways Knowledge

Base. An overlapping of the canonical pathways invol-

ving identified genes revealed, among others, a prefe-

rential activation of the aryl hydrocarbon receptor (AhR)

pathway.

Recent study demonstrated that glioma pathoge-

nesis involves altered AhR regulation of the TGF�/

Smad pathway suggesting AhR as a promising target

for the treatment of human tumors associated with pa-

thological TGF� activity [31]. Nevertheless, the role of

AhR for the TGF�-driven breast tumor development re-

mains unknown. Finding of these signaling compounds

might provide an insight into mechanism of TGF�1-de-

pendent cell cycle control.

Taken together our study suggest that investigation

of the TGF�-dependent gene expression regulation in

breast cancer cells and their normal counterparts might

contribute to the identification of molecular mechanisms

critical for cancer development and can potentially be

applied for the development of new therapeutic ap-

proaches.

Àíàë³ç TGF�-çàëåæíî¿ ðåãóëÿö³¿ êë³òèííîãî öèêëó â êë³òèíàõ

ë³í³¿ MCF7 ðàêó ìîëî÷íî¿ çàëîçè ëþäèíè ç âèêîðèñòàííÿì

ì³êðîìàñèâ³â ç íèçüêîþ ù³ëüí³ñòþ

À. Ì. Äóáðîâñüêà, Ñ. Ñ. Ñóøåëüíèöüêèé

Ðåçþìå

Òðàíñôîðìóþ÷èé ðîñòîâèé ôàêòîð �1 (TGF�1) º âàæëèâèì ðåãó-

ëÿòîðîì êë³òèííîãî ðîñòó. Â³í ÷èíèòü àíòèïðîë³ôåðàòèâíó ä³þ

íà íèçêó åï³òåë³àëüíèõ êë³òèí íà ðàíí³õ ñòàä³ÿõ òðàíñ- ôîðìàö³¿

³ ïðè öüîìó ñïðèÿº ïîÿâ³ îíêîãåííîñò³ íà ï³çí³øèõ ñòà- ä³ÿõ ðîç-

âèòêó ðàêó. Ìîëåêóëÿðí³ ìåõàí³çìè ïîäâ³éíî¿ ðîë³ TGF�1 ó ðåãó-

ëÿö³¿ ðîñòó ïóõëèíè ëèøàþòüñÿ ìàëîâèâ÷åíèìè. Ìåòà. Àíàë³ç

TGF�1-çàëåæíî¿ ðåãóëÿö³¿ êë³òèííîãî öèêëó ðàêîâèõ êë³òèí ìî-

ëî÷íî¿ çàëîçè. Ìåòîäè. Âïëèâ TGF�1 íà åêñïðåñ³þ 96 ãåí³â – ðåãó-

ëÿòîð³â êë³òèííîãî öèêëó – âèâ÷àëè íà êë³òèíàõ ðàêó ìîëî÷íî¿ çà-

ëîçè ëþäèíè MCF7, ÿê³ îáðîáëÿëè TGF�1. Ð³âåíü åêñïðåñ³¿ ãåí³â äî

³ ï³ñëÿ îáðîáêè àíàë³çóâàëè ìåòîäîì GEArray Q ÏÖÐ. Ðåçóëüòà-

òè. Äàí³ ÏËÐ äîçâîëèëè âèÿâèòè ðåãóëÿòîðè êë³òèííîãî öèêëó,

ÿê³ ìîæóòü áóòè çàëó÷åí³ äî TGF�1-çàëåæíî¿ ñòèìóëÿö³¿ ïóõëèí-

íîãî ðîñòó, ç-ïîì³æ íèõ ãåíè ðåòèíîáëàñòîìè PRB1, ê³íàçè Chk2,

ìàðêåðà ðàêó ìîëî÷íî¿ çàëîçè BRCA1, ðåãóëÿòîðà ðåïàðàö³¿ ÄÍÊ

RAD9, öèêë³í-çàëåæíî¿ ê³íàçè CDK2, öèêë³íó CCND1. Âèñíîâêè.

Âèâ÷åííÿ êëþ÷îâèõ ìîäóë³â TGF�1-çàëåæíîãî êë³òèííîãî ñèãíà-

ë³íãó, ÿêèé êîíòðîëþº êë³òèííèé öèêë, ìîæå äîïîìîãòè â ðîçó-

ì³íí³ ïîäâ³éíî¿ ðîë³ öüîãî ôàêòîðà â ðåãóëÿö³¿ ïóõëèííîãî ðîñòó

òà ñïðèÿòèìå ðîçðîáö³ íîâèõ òåðàïåâòè÷íèõ ï³äõîä³â.

Êëþ÷îâ³ ñëîâà: òðàíñôîðìóþ÷èé ôàêòîð ðîñòó �1, ðàê ìî-

ëî÷íî¿ çàëîçè ëþäèíè, êë³òèííà ë³í³ÿ MCF7, ðåãóëÿö³ÿ êë³òèííîãî

öèêëó, ì³êðîìàñèâè.

Àíàëèç TGF�-çàâèñèìîé ðåãóëÿöèè êëåòî÷íîãî öèêëà â êëåòêàõ

ëèíèè MCF7 ðàêà ìîëî÷íîé æåëåçû ÷åëîâåêà ñ èñïîëüçîâàíèåì

ìèêðîìàññèâîâ íèçêîé ïëîòíîñòè

À. Ì. Äóáðîâñêàÿ, Ñ. Ñ. Ñóøåëüíèöêèé

Ðåçþìå

Òðàíñôîðìèðóþùèé ðîñòîâîé ôàêòîð�1 (TGF�1) ÿâëÿåòñÿ âàæ-

íûì ðåãóëÿòîðîì êëåòî÷íîãî ðîñòà. Îí îêàçûâàåò àíòè- ïðîëè-

ôåðàòèâíîå äåéñòâèå íà ðÿä ýïèòåëèàëüíûõ êëåòîê íà ðàííèõ

ñòàäèÿõ òðàíñôîðìàöèè è ïðè ýòîì ñïîñîáñòâóåò ïîÿâëåíèþ

îíêîãåííîñòè íà áîëåå ïîçäíèõ ñòàäèÿõ ðàçâèòèÿ ðàêà. Ìîëåêó-

ëÿðíûå ìåõàíèçìû äâîéíîé ðîëè TGF�1 â ðåãóëÿöèè ðîñòà îïó-

õîëè îñòàþòñÿ ìàëîèçó÷åííûìè. Öåëü. Àíàëèç TGF�1-çàâèñèìîé

ðåãóëÿöèè êëåòî÷íîãî öèêëà ðàêîâûõ êëåòîê ìîëî÷íîé æåëåçû.

Ìåòîäû. Âëèÿíèå TGF�1 íà ýêñïðåññèþ 96 ãåíîâ – ðåãóëÿòîðîâ

êëåòî÷íîãî öèêëà – èçó÷àëè íà êëåòêàõ ðàêà ìîëî÷íîé æåëåçû ÷å-

ëîâåêà MCF-7, êîòîðûå îáðàáàòûâàëè TGF�1. Óðîâåíü ýêñïðåñ-

ñèè ãåíîâ äî è ïîñëå îáðàáîòêè àíàëèçèðîâàëè ìåòîäîì GEArray

Q ÏÖÐ. Ðåçóëüòàòû. Äàííûå ÏÖÐ ïîçâîëèëè âûÿâèòü ðåãóëÿòî-

ðû êëåòî÷íîãî öèêëà, êîòîðûå ìîãóò áûòü âîâëå÷åíû â TGF�1-

çàâèñèìóþ ñòèìóëÿöèþ îïóõîëåâîãî ðîñòà, ñðåäè íèõ ãåíû ðåòè-

íîáëàñòîìû PRB1, êèíàçû Chk2, ìàðêåðà ðàêà ìîëî÷íîé æåëåçû

BRCA1, ðåãóëÿòîðà ðåïàðàöèè ÄÍÊ RAD9, öèêëèí-çàâèñèìîé êè-

íàçû CDK2, öèêëèíà CCND1. Âûâîäû. Èçó÷åíèå êëþ÷åâûõ ìîäó-

ëåé TGF�1-çàâèñèìîãî êëåòî÷íîãî ñèãíàëèíãà, êîíòðîëèðóþùåãî

êëåòî÷íûé öèêë, ìîæåò ïîìî÷ü â ïîíèìàíèè äâîéíîé ðîëè ýòîãî

ôàêòîðà â ðåãóëÿöèè îïóõîëåâîãî ðîñòà è áóäåò ñïîñîáñòâîâàòü

ðàçðàáîòêå íîâûõ òåðàïåâòè÷åñêèõ ïîäõîäîâ.

Êëþ÷åâûå ñëîâà: òðàíñôîðìèðóþùèé ôàêòîð ðîñòà �1,

ðàê ìîëî÷íîé æåëåçû ÷åëîâåêà, êëåòî÷íàÿ ëèíèÿ MCF7, ðåãóëÿ-

öèÿ êëåòî÷íîãî öèêëà, ìèêðîìàññèâû.
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