ВЛИЯНИЕ ИОНОВ ЖЕЛЕЗА НА АКТИВНОСТЬ АТР-ГИДРОЛАЗ КЛЕТОЧНЫХ МЕМБРАН ГЛАДКИХ МЫШЦ ОБОДОЧНОЙ КИШКИ И ПОЧЕК КРЫСЫ

А. А. КАПЛЯ

Институт биохимии им. А. В. Палладина НАН Украины, Киев; e-mail: kaplya@biochem.kiev.ua

Для выяснения особенностей структурной устойчивости АТР-гидролаз в мембране при действии прооксидантов: Fe^{2+} и пероксида водорода, а также N-этилмалеимида (NEM) проведено сравнение Na^+, K^+ -ATPазной активности гладких мышц ободочной кишки (ΓMOK) с активностью соответствующей Mg^{2+} -ATP-гидролазы и ATPаз мозгового слоя почек крысы. Установлено, что при $0.1~{\rm M}{\rm K}M$ концентрации FeSO, активность Na^+, K^+ -ATPазы ГМОК снижается почти на 30%, а в диапазоне 0, 1-10 мкM-до 45% остаточной активности. При сравнении с энзимом почек (исключительно αI -изоформа) чувствительность Na^+, K^+ -ATPазы ΓMOK к Fe^{2+} достоверно выше при его субмикромолярной концентрации. Mg^{2+} -ATPаза ΓMOK значительно более устойчива к действию ионов железа, чем энзим почек, но в обоих случаях ее чувствительность значительно ниже, чем соответствующей Na^+, K^+ -ATPазы. Na^+, K^+ -ATPазная и Mg^{2+} -ATPазная активность ΓMOK и почек одинаково малочувствительна к действию пероксида водорода в концентрациях до 1 мМ на фоне 1 мМ ЭГТА. В то же время в присутствии 20 мкМ FeSO_{1} в диапазоне концентраций $H_{2}O_{1}$ I_{1} I_{2} I_{3} I_{4} I_{5} I_{6} I_{7} $I_{$ в значительно большей степени, чем Mg^{2+} -ATPаза. Чувствительность к NEM двух ATP-гидролазных систем ГМОК находится в соответствии с прооксидантной чувствительностью, что указывает на различия в значимости SH-групп для проявления их функциониональной активности. Сделан вывод, что Na^+, K^--ATP аза может служить маркером чувствительности мембран к окислению, а Mg^{2+} -АТРаза (устойчивая к окислению) может быть критерием окислительной резистентности мембранного энзимного комплекса при сравнении с другими мембранными энзимами, особенно в ГМОК.

K л ю ч е в ы е c л о в a: ATP-гидролазы, Na^+, K^+ -ATPаза, гладкие мышцы ободочной кишки, почки, прооксиданты, ионы железа, пероксид водорода, N-этилмалеимид.

звестно, что в патогенезе многих заболеваний важное место отводится механизмам развития окислительного стресса [1]. Пероксид водорода является одним из важнейших метаболитов в клетках. В то же время, дисбаланс между прооксидантными эффекторами и антиоксидантным потенциалом клеток, приводит к неконтролируемому развитию свободнорадикальных процессов. В свою очередь, ионы железа относятся к эссенциальным ионам, необходимым для функционирования многих важнейших биохимических систем организма. Нарушение гомеостаза железа в организме (гемохроматоз), хроническая «перегрузка» организма железом приводит к развитию хронического токсикоза, патологических структурно-функциональных изменений в клетках,

нарушению их окислительно-восстановительного баланса и даже к развитию злокачественных новообразований [2–5]. Поэтому поиск возможных биохимических мишеней в потенциальных эффекторных органах важен для выяснения механизмов патогенеза и оценки риска развития ряда патологий.

Na⁺,K⁺-ATPаза (АТР-фосфогидролаза, 3.6.1.37) — ключевой интегральный конформационно-лабильный энзим плазматических мембран, осуществляющий энергозависимую противонаправленную трансмембранную транслокацию ионов Na⁺ и K⁺, сопряженную с гидролизом АТР, в результате циклической последовательности конформационных превращений (конформационный цикл энзима). В связи с фундаментальной универсальной функцией

энзим вовлечен в развитие многих физиологических и патологических состояний организма, сопровождающихся изменениями структуры и физико-химических свойств клеточных мембран, метаболизма, регуляторных механизмов. В свою очередь, Na⁺, K⁺-ATPаза является непосредственной мишенью действия патофизиологических и повреждающих факторов окружающей среды или претерпевает адаптацию к новым условиям функционирования клеток и тканей организма [6–12].

В отличие от ионтранспортирующих АТРаз Р-типа, представителем которых является Na⁺,K⁺-ATРаза, Mg²⁺-зависимые ATP-гидролазы характеризуются спецификой структурных и функциональных свойств, особенностями субмембранной локализации, механизмом гидролиза ATP, в транспорт ионов они непосредственно не вовлечены [13, 14].

Сравнительное исследование активности этих АТР-гидролаз при мембранотропных воздействиях важно для выяснения структурнофункциональных свойств мембранных комплексов энзимов с разным механизмом гидролиза АТР и особенностей устойчивости к действию ряда патофизиологических факторов в мембранных препаратах из тканей со спецификой чувствительности к развитию ишемии или интоксикации тяжелыми металлами. Известно, что Na+,К+-АТРаза рассматривается как потенциальная мишень оксидативного стресса [15]. Функциональные нарушения Na+,K+-ATPазы происходят при развитии ряда патологий почечного эпителия, в том числе при ишемии, сопровождаясь снижением ее активности [16, 17]. Кроме того, Na+,K+-ATPаза почек является гомогенной по изоформному составу каталитической субъединицы и содержит исключительно α1-изоформу [7, 8], что важно при сравнении с энзимными комплексами с малоизученным изоэнзимным составом, в частности из гладких мышц ободочной кишки (ГМОК) [18, 19], и возможной спецификой чувствительности изоформ к прооксидантам [20].

Цель исследований заключалась в изучении особенностей чувствительности Na^+,K^+ -АТРазы клеточных мембран ГМОК крысы при действии прооксидантов (ионов Fe^{2+} и/или H_2O_2) при сравнении с активностью Mg^{2+} -АТРазы и АТРаз мозгового слоя почек.

Материалы и методы

Постмитохондриальную мембранную фракцию получали из мозгового вещества почек и из гладкой мышцы ободочной кишки крыс в присутствии ЭДТА в соответствии с методическими условиями, описанными ранее [18]. Конечный мембранный осадок суспендировали в среде выделения, не содержащей ЭДТА. Na^+,K^+ - ATPазная активность препаратов составляла 50-60 и 13-17 мкмоль P_i /час на 1 мг протеина для почек и гладких мышц ободочной кишки крыс соответственно. Mg^{2+} -ATPазная активность составляла 25-35 мкмоль P_i /час на 1 мг протеина.

Концентрацию протеина определяли методом Лоури с использованием 1%-го раствора DSNa для солюбилизации мембран [21]. Для демаскирования латентной АТРазной активности мембраны предварительно инкубировали с 0,2%-ым дигитонином (1 мг детергента/1 мг протеина = 1/1) при 23 °C 15 мин в среде, содержащей: 30 мМ трис-HCl (рН 7,54), 0,16 М сахарозу, 2 мг/мл протеина, 2 мг/мл дигитонина в соответствии с методическими принципами, применяемыми ранее [22, 23]. Аликвоты 5-10 мкл немедленно вносили в среду прединкубации с прооксидантами (пероксид водорода и/ или FeSO₄) без ЭГТА (конечный объем 0,45 мл), содержащей все стандартные компоненты АТРазной реакции [22], кроме АТР, инкубировали 30 мин при 37 °C. АТРазную реакцию запускали внесением 50 мкл смеси 3 мМ АТР-Na и 1 мМ ЭГТА (конечные концентрации). Воздействие самого пероксида водорода оценивали на фоне 1 мМ ЭГТА для исключения влиянии примесных двухвалентных металлов. Мд²⁺-АТРазную активность определяли на фоне 2 мМ уабаина с учетом спонтанного гидролиза АТР. При изучении влияния N-этилмалеимида (NEM) алкилирующий агент вносили в среду прединкубации или непосредственно в среду АТРазной реакции. В первом случае обработанные дигитонином мембраны вносили в среду, содержащую 30 мМ трис-HCl (рН 7,54 при 23 °C), 1 мМ ЭГТА 1-5 мМ NEM, инкубировали 30 мин при 37 °C. Реакцию останавливали внесением 10 мМ дитиотреитола (в конечной концентрации) при охлаждении. Аликвоты вносили в среду АТРазной реакции. Неорганический фосфат определяли по методу [24]. Н₂О₂ в исследованном концентрационном диапазоне (при концентрации до 0,1 мМ в среде окраски) не влияет на определение P_i . Значения кажущихся констант ингибирования $I_{0,5}$ рассчитывали стандартным образом с использованием линеаризованных графиков Хилла в координатах $\lg (A/A_0 - A) = f (\lg [I])$, где A_0 — удельная активность без ингибитора, а A — в присутствии ингибитора (прооксидантов или NEM) в концентрации I.

Статистический анализ и аппроксимацию кривых проводили общепринятыми методами статистики с помощью компьютерных программ Microsoft Excel и OriginPro 7.0. Достоверность различий между средними величинами оценивали с помощью *t*-критерия Стъюдента.

Результаты и обсуждение

Исследование ингибирования Na^+,K^+ -АТРазы ионами двухвалентного железа (рис. 1) свидетельствует об эффективной инактивации энзима, начиная с субмикромолярных концентраций $FeSO_4$. Для Na^+,K^+ -АТРазы ГМОК при 0,1 мкМ концентрации Fe^{2+} энзиматическая активность уменьшается почти на 30%, а в диапазоне 0,1–10 мкМ — до 45% остаточной активности. По сравнению с энзимом почек чувствительность Na^+,K^+ -АТРазы ГМОК к

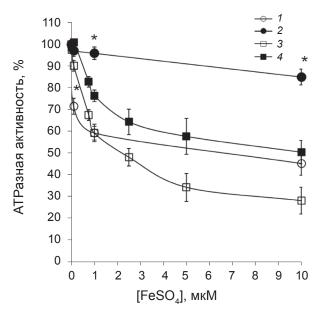


Рис. 1. Влияние Fe^{2+} на Na^+, K^+ -АТРазную (1,3) и Mg^{2+} -АТРазную (2, 4) активность мембранной фракции ГМОК (1, 2) и почек (3, 4) крысы ($M\pm m$, n=4–10). * $P\leq 0.05$ относительно энзима почек. 100% – активность в отсутствие Fe^{2+}

инактивации ионами ${\rm Fe^{2+}}$ достоверно выше при его субмикромолярной концентрации. Однако кажущиеся константы ингибирования ионами железа сходны и составляют: ${\rm I_{50}}=2,25\pm0,50$ и $4,65\pm2,29$ мкМ ($M\pm m,n=5-6$), для энзимов почек и ГМОК соответственно.

 ${
m Mg^{2+}\text{-}ATPa3a}$ ГМОК значительно более устойчива к действию ионов железа, чем подобная энзиматическая активность почек (85 и 50% остаточной активности при 10 мкМ ${
m FeSO_4}$ соответственно). Однако в каждой из двух тканей ${
m Na^+,K^+\text{-}ATPa3}$ ная активность всегда более чувствительна к инактивации ионами ${
m Fe^{2+}}$ по сравнению с соответствующей ${
m Mg^{2+}\text{-}ATPa3}$ ной активностью (рис. 1).

На фоне 1 мМ ЭГТА Na+,К+-АТРазная и Мg²⁺-АТРазная активность ГМОК и почек сходным образом малочувствительна к действию пероксида водорода в концентрациях до 1 мМ (рис. 2, 3). Однако в присутствии FeSO₄ и в отсутствие ЭГТА инактивация Na+, K+-АТРазы происходит как при физиологических концентрациях $H_2O_2 (\ge 1-10 \text{ HM})$, так и в цитолитическом диапазоне (≥ 1 мкМ H₂O₂). В этих условиях закономерно развитие стадии генерации гидроксильных радикалов, которая катализируется ионами двухвалентных переходных металлов [1]. Таким образом, сам по себе пероксид водорода, являясь слабым прооксидантом, практически не оказывает воздействие на функциональные свойства мембранных комплексов Na+, K+-ATPазы. В других исследованиях [25] была установлена низкая чувствительность Na+,К+-АТРазы из разных тканей к Н₂О₂. Степень инактивации пероксидом водорода определяется эффектом ионов Fe²⁺ и является индикатором их концентрации, а наличие инактивации энзима, особенно на фоне физиологических концентраций Н₂О₂, указывает на их присутствие в среде.

 ${
m Mg^{2+}\text{-}ATPa3}$ ная активность менее подвержена инактивации в этих условиях, чем ${
m Na^+,K^+\text{-}ATPa3}$ ная активность. При 20 мкМ ${
m FeSO_4}$ в диапазоне концентраций ${
m H_2O_2}$ 1 нМ - 1 мМ ${
m Na^+,K^+\text{-}ATPa3a}$ ${
m ГМОК}$ ингибируется в значительно большей степени (до 50% остаточной активности), чем ${
m Mg^{2+}\text{-}ATPa3a}$ - до 80% (рис. 2). Однако энзимы из почек более чувствительны к действию ${
m Fe^{2+}}$ + ${
m H_2O_2}$ по сравнению с таковыми из ${
m ГМОК}$ (рис. 3). Так, инактивация ${
m Na^+,K^+\text{-}ATPa3a}$ существенна даже на фоне 1 мкМ ${
m Fe^{2+}}$. При 20 мкМ ${
m FeSO_4}$ ${
m Na^+,K^+\text{-}ATPa3a}$ почек ингиби-

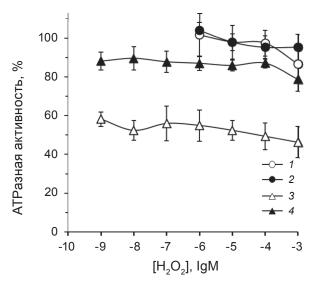


Рис. 2. Влияние H_2O_2 на Na^+,K^+ -АТРазную (1,3) и Mg^{2+} -АТРазную (2,4) активность ГМОК в присутствии 1 мМ ЕГТА (1,2) или 20 мкМ $FeSO_4$ (3,4) ($M\pm m,n=4$). Тут и на рис. 3:100%- активность АТРазы без эффектора

руется до 25% остаточной активности, а Mg^{2+} - ATPаза — до 60%. Значительная степень инактивации Na^+,K^+ -ATP-азы почек в присутствии Fe^{2+} + H_2O_2 указывает на структурную деградацию энзима в системе генерации гидроксильных радикалов OH $^+$ (реакция Фентона) [1]. Известно, что гидроксильные радикалы — наиболее агрессивные окислители биохимических систем клет-

ки, в том числе Na⁺,K⁺-ATPaзы [15, 26]. Показано, что связывание ионов переходных металлов на определенных сайтах полипептидной цепи Na⁺,K⁺-ATPaзы при наличии пероксида водорода приводит к сайт-селективному расщеплению полипептидной цепи энзима [27, 28]. Очевидно, данный феномен является более специфичным для Na⁺,K⁺-ATPaзы, чем для Mg²⁺-ATPaзы. Полученные результаты соответствуют данным литературы, полученным для других тканей [29].

Таким образом, различия в чувствительности Na^+,K^+ -АТРазы и Mg^{2^+} -АТРазы к действию прооксидантов свидетельствуют об особенностях структурно-функциональной организации протеин-липидных комплексов этих энзиматических систем в клеточных мембранах как ГМОК, так и почек.

Для дальнейшего выяснения отдельных структурных различий в устойчивости энзиматических систем к окислению проведено сравнительное изучение чувствительности двух АТР-гидролазных комплексов ГМОК к действию сульфгидрильного реагента NEM (рис. 4). Na⁺,K⁺-AТРазная активность ГМОК в большей степени ингибируется NEM в сравнении с Mg²⁺-AТРазной активностью в условиях прединкубации с NEM без лигандов и в его присутствии в полной АТРазной среде. Очевидно, что во втором случае, конформационная стабилизация Na⁺,K⁺-ATРазы в присутствии ее

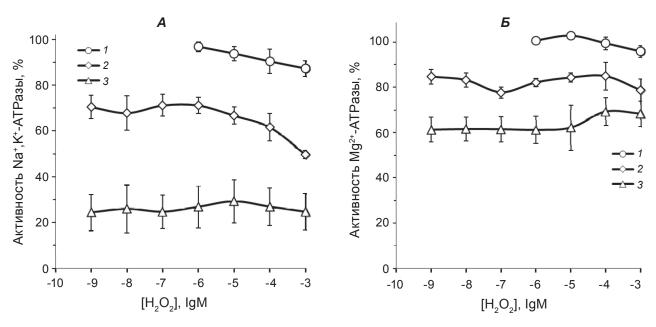


Рис. 3. Влияние H_2O_2 на Na^+, K^+ -АТРазную (A) и Mg^{2+} -АТРазную (Б) активность почек в присутствии 1 мМ ЕГТА (1) или 1 мкМ (2), или 20 мкМ $FeSO_4$ (3) ($M\pm m, n=3-4$)

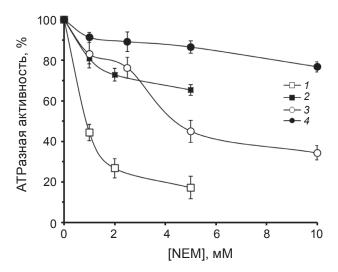


Рис. 4. Влияние N-этилмалеимида (NEM) на Na^+, K^+ -АТРазную (1, 3) и Mg^{2+} -АТРазную (2, 4) активность ГМОК в условиях прединкубации с NEM (1, 2) или его присутствия в АТРазной среде (3, 4) См. «Материалы и методы» ($M \pm m$, n = 4-6)

эссенциальных лигандов (Na+, K+, Mg2+, ATP) в значительной степени защищает энзим от ингибирования NEM. При этом величина I_{50} по NEM составляет $4,68 \pm 0,58$ мМ по сравнению с $I_{50} = 0.86 \pm 0.15$ мМ в случае прединкубации мембран с NEM ($P \le 0.05$, $M \pm m$, n = 4-6). Данные свидетельствуют о различиях в функциональной значимости нативных SH-групп в каталитических механизмах исследуемых АТР-гидролаз. Показано, что каталитическая активность Na+, K+-АТРазы в значительной степени зависит от нативности функциональных сульфгидрильных групп в активном центре энзима. Анализ данных литературы и собственные исследования свидетельствуют о высокой чувствительности SH-групп к окислению, в том числе при действии гидроксильных радикалов, что лежит в основе механизма инактивации энзима из других тканей [7].

Следует подчеркнуть, что Na⁺,K⁺-ATPаза почек представлена исключительно α1-изоформой [7, 8], которая превалирует и в ГМОК, где, очевидно, присутствует дополнительная минорная уабаинчувствительная изоформа [18, 19], что характерно и для ряда других гладких мышц [30, 31]. Однако влияние изоэнзимного состава на специфику окислительной инактивации Na⁺,K⁺-ATPазы в препаратах ГМОК и почек не

является очевидным. Скорее всего важное значение для обеспечения относительной окислительной чувствительности АТР-гидролаз имеет структурно-функциональная организация их протеин-липидных комплексов в мембранах и окислительный потенциал самих мембран.

Таким образом, независимо от окислительных путей эффект ингибирования обусловлен тканевыми особенностями способности к окислению мембранных комплексов АТР-гидролаз. Эффективность ингибирования Na+,K+-ATPазы может служить маркером чувствительности мембран к окислению. При этом Mg²⁺-ATРазная активность всегда устойчива к окислительной инактивации и может служить критерием резистентности к окислению при сравнительной оценке мембранных энзимных комплексов. В большей степени это выражено для гладко-Mg²⁺-ATР-гидролазы ободочной мышечной кишки. В наших исследованиях прооксидантная чувствительность энзиматической АТРгидролитической системы соответствует ее чувствительности к модификации SH-групп. В то же время функциональное значение специфики окислительной чувствительности АТР-гидролаз in vivo в развитии определенных эпителиальных патологий почек или гладкомышечных клеток в условиях окислительного стресса или интоксикации металлами требует специальных исследований.

ВПЛИВ ІОНІВ ЗАЛІЗА НА АКТИВНІСТЬ АТР-ГІДРОЛАЗ КЛІТИННИХ МЕМБРАН ГЛАДЕНЬКИХ М'ЯЗІВ ОБОДОВОЇ КИШКИ ТА НИРОК ЩУРА

О. А. Капля

Інститут біохімії ім. О. В. Палладіна НАН України, Київ; e-mail: kaplya@biochem.kiev.ua

З метою з'ясування особливостей структурної стійкості АТР-гідролаз у мембрані за дії прооксидантів: Fe²⁺ і пероксиду водню, а також N-етилмалеїміду (NEM) проведено порівняння Na⁺,K⁺-ATРазної активності гладеньких м'язів ободової кишки (ГМОК) з активністю відповідної Mg²⁺-ATP-гідролази і ATРаз мозкової речовини нирок щурів. Установлено, що за 0,1 мкМ концентрації FeSO₄

активність Na+, K+-АТРази ГМОК знижується майже на 30%, а в діапазоні 0,1-10 мкМ - до 45% залишкової активності. За порівняння з ензимом нирок (виключно α1-ізоформа) чутливість Na+,K+-АТРази ГМОК до Fe2+ вірогідно вище за його субмікромолярної концентрації. Mg²⁺-АТРаза ГМОК значно резистентніша до дії іонів Fe^{2+} , ніж ензим нирок, проте в обох випадках її чутливість значно нижче, ніж відповідної Na^+,K^+ -АТРази. Na^+,K^+ -АТРаза та Mg^{2+} -АТРаза ГМОК і нирок однаково малочутливі до дії пероксиду водню за концентрацій до 1 мМ на тлі 1 мМ ЕГТА. Водночас у присутності 20 мкМ FeSO₄ в діапазоні концентрацій H₂O₅ 1 нМ − 1 мМ Na⁺, K⁺-ATPаза інгібується значно більшою мірою, ніж Mg²⁺-ATPаза. Чутливість до NEM двох ATP-гідролазних систем ГМОК ϵ відповідною до прооксидантної чутливості, що вказує на відмінності в значимості SH-груп для виявлення їхньої функціональної активності.

Дійшли висновку, що Na⁺,K⁺-ATPаза може слугувати маркером чутливості мембран до окислення, а Mg²⁺-ATPаза (резистентна до окислення) може бути критерієм окисної резистентності мембранного ензимного комплексу за порівняння з іншими мембранними ензимами, особливо ензимами ГМОК.

Ключові слова: АТР-гідролази, Na⁺,K⁺- АТРаза, гладенькі м'язи ободової кишки, нирки, прооксиданти, іони заліза, пероксид водню, N-етилмалеїмід.

THE INFLUENCE OF IRON IONS ON ATP-HYDROLASES ACTIVITY OF CELL MEMBRANES OF RAT COLON SMOOTH MUSCLE AND KIDNEY

A. A. Kaplia

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv; e-mail: kaplya@biochem.kiev.ua

To elucidate the specific features of the ATP-hydrolases structural resistance in the membrane under the action of the prooxidants: Fe²⁺ and hydrogen peroxide, and N-ethylmaleimide (NEM) the colonic smooth muscle (CSM) Na⁺,K⁺-ATPase activity was compared with activities of the corresponding Mg²⁺-ATP-hydrolase and ATP-ases from kidney medullar layer of rats. The inhibition study of the CSM Na⁺,K⁺-ATPase by divalent iron shows

the decrease of the activity by 30% at 0.1 µM FeSO and in the range of 0.1-10 μ M – to 45% of residual activity. When comparing with kidney enzyme (represents exclusively α1-isozyme) the CSM Na⁺,K⁺-ATPase sensitivity to Fe²⁺ is reliably higher at its submicromolar concentration. CSM Mg²⁺-ATPase is much more resistant to iron ions effect, than kidney one. However for two tissues Mg2+-ATPase activity is always more resistant as compared with corresponding Na+,K+-ATPase activity. Against 1 mM EGTA Na+,K+-ATPase and Mg2+-ATPase activities of GMOK and kidneys are equally insensitive to effect of hydrogen peroxide in concentration up to 1 mM. But in the presence of 20 μM FeSO₄ in the concentration range of 1 nM - 1 mM of H₂O₂ the Na+,K+-ATPase is inhibited to greater extent, than Mg²⁺-ATPase activity. NEM sensitivity of the two ATP-hydrolase systems corresponds to prooxidant sensitivity that indicates the distinct importance of SH-groups for their functioning.

It is concluded that Na⁺,K⁺-ATPase can serve as a marker of membrane sensitivity to oxidation, Mg²⁺-ATPase is resistant to oxidation and can be considered as criterion of the oxidation resistance when comparing membrane enzyme complexes, especially in GMOK.

K e y w o r d s: ATP-hydrolases, Na⁺,K⁺-ATPase, colonic smooth muscle, kidney, prooxidants, ferrum ions, hydrogen peroxide, N-ethylmaleimide.

References

- 1. Baraboy V. A., Sutkovoy D. A. Oxidative and antioxidative homeostasis in norm and pathology. Kiev: Chernobylinform, 1997. 420 p. (In Russian).
- 2. Lubianova I. P. Modern concepts about the methabolism of iron from the position of the occupational pathologist. *Actual problems of transport medicine*. 2010;20(2):47-57. (In Russian).
- 3. Iron overloading deseases (hemochromatosis). Ed. By A. G. Rummianceva and Yu. N. Tokareva. M: Medpractica Press, 2004. 325 p. (In Russian).
- 4. Belous A. M., Konnic A. T. Physiological role of iron. Kiev: Naukova Dumka, 1991. 104 p. (In Russian).
- Iron and human disease. Ed. By Randall BnLauffer. CRC Press, Boca Raton Ann Arbor: London – Tokio, 1992. 534 p.

- Lingrel J. B., Kuntzweiler T. Na⁺,K⁺-ATPase.
 J. Biol. Chem. 1994;269(31):19659-19662.
- 7. Kaplia A. A. Structural organization and functional role of Na⁺,K⁺-ATP-ase isozymes. Kiev: Kiev University Press, 1998. 162 p. (In Russian).
- 8. Blanco G. Na,K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. *Semin. Nephrol.* 2001;73(5):17-22.
- 9. Lingrel J., Moseley A., Dostanic I., Cougnon M., He S., James P., Woo A., O'Connor K., Neumann J. Functional roles of the alpha isoforms of the Na,K-ATPase. *Ann. NY Acad. Sci.* 2003;986:354-359.
- 10. Kaplia A. A., Mishchuk D. O. Na⁺,K⁺-ATPase isoenzymes of excitable tissues in pathological states. *Ukr. Biokhim. Zhurn.* 2001;73(5):17-22. (In Russian).
- 11. Kaplya A. A., Hizhnyak S. V., Kudryavceva A. G., Papageorgakopoulou N., Osinsky D. S. Na⁺,K⁺-ATPase and Ca²⁺-ATPase isozymes in malignant neoplasmsm. *Ukr. Biokhim. Zhurn.* 2006;78(1):29-42. (In Russian).
- 12. Kaplia A. A., Morozova V. S. Na⁺,K⁺-ATPase activity in polarized cells. *Ukr. Biokhim. Zhurn*. 2010;82(1):5-20. (In Russian).
- 13. Knowles A. F., Isler R. E., Reece J. F. The common occurrence of ATP diphosphohydrolase in mammalian plasma membranes. *Biochim. Biophys. Acta.* 1983;731(1):88-96.
- 14. Knowles A. F., Chiang W. C. Enzymatic and transcriptional regulation of human ecto-ATPase/E-NTPDase 2. *Arch. Biochem. Biophys.* 2003;418(2):217-227.
- 15. Boldyrev A. A., Bulygina E. R., Kramarenko G. G. Is Na,K-ATPase the target of oxidative stress? *Biull. Eksp. Biol. Med.* 1996; Mar;121(3):275-278. (In Russian).
- Kako K., Kato M., Matsuoka T., Mustapha A. Depression of membrane-bound Na⁺-K⁺-ATPase activity induced by free radicals and by ischemia of kidney. *Am. J. Physiol.* 1988;254(2, Pt 1):C330-337.
- 17. Rajasekaran A. K., Rajasekaran S. A. Role of Na-K-ATPase in the assembly of tight Junctions. *Am. J. Physiol. Renal Physiol.* 2003;285(3):F388-396.
- 18. Kaplia A. A. The heterogeneity of the Na⁺, K⁺-ATPase ouabain sensitivity in microsomal membranes of rat colon smooth muscles. *Ukr. Biokhim. Zhurn.* 2011;83(5):89-93. (In Russian).
- 19. Burke E. P., Sanders K. M., Horowitz B. Sodium pump isozymes are differentially expressed in

- electrically dissimilar regions of colonic circular smooth muscle. *Proc. Natl. Acad. Sci. USA*. 1991;88(6):2370-2374.
- 20. Xie Z., Jack-Hays M., Wang Y., Periyasamy S. M., Blanco G., Huang W. H., Askari A. Different oxidant sensitivities of the alpha1 and alpha2 isoforms of Na⁺,K⁺-ATPase expressed in baculovirus-infected insect cells. *Biochem. Biophys. Res. Commun.* 1995;207(1):155-159.
- 21. Cadman E., Bostwick J. R., Eichberg J. Determination of protein by modified Lowry procedure in the presence of some commonly used detergents. *Anal. Biochem.* 1979;96(1):21-23
- 22. Kaplia A. A., Kudryavceva A. G., Hizhnyak S. V., Osinsky D. S., Dyomin E. N. Na⁺,K⁺-ATPase activity characteristics in human colon adenocarcinoma. *Ukr. Biokhim. Zhurn.* 2007;79(4):90-96. (In Russian).
- 23. Kaplya O., Khyzhnyak S., Kudryavceva A., Dyomin E., Osynski D. Na⁺,K⁺-ATPase functioninginhumancolorectaladenocarcinomas depending on tumor differentiation. Annales Universitatis Mariae-Sklodowska (Lublin, Polonia). Sectio DDD. 2008;21(1):303-305.
- 24. Chen P. S., Toribara T. Y., Warner H. Microdetermination of phosphorus. *Anal. Chem.* 1956;28(11):1756-1758.
- 25. Huang W. H., Wang Y., Askari A., Zolotarjova N., Ganjeizadeh M. Different sensitivities of the Na+/K(+)-ATPase isoforms to oxidants. *Biochim. Biophys. Acta.* 1994;1190(1):108-114.
- 26. Huang W. H., Wang Y., Askari A. (Na⁺ + K⁺)-ATPase inactivation and degradation induced by oxygen radicals. *Int. J. Biochem.* 1992;24(4):621-626.
- 27. Goldshleger R., Bar Shimon M., Or E., Karlish S. J. Metal-catalysed cleavage of Na,K-ATPase as a tool for study of structure-function relations. *Acta Physiol. Scand. Suppl.* 1998;643:89-97.
- 28. Goldshleger R., Patchornik G., Shimon M. B., Tal D. M., Post R. L., Karlish S. J. Structural organization and energy transduction mechanism of Na⁺,K⁺-ATPase studied with transition metal-catalyzed oxidative cleavage. *Bioenerg. Biomembr.* 2001;33(5):387-399.
- 29. Krstić D., Krinulović K., Vasić V. Inhibition of Na+/K(+)-ATPase and Mg(2+)-ATPase by metal ions and prevention and recovery of inhibited activities by chelators. *J. Enzyme. Inhib. Med.* Chem. 2005;20(5):469-476.

- 30. Floyd R. V., Wray S., Quenby S., Martín-Vasallo P., Mobasheri A. Expression and distribution of Na, K-ATPase isoforms in the human uterus. *Reprod. Sci.* 2010;17(4):366-376.
- 31. Shelly D. A., He S., Moseley A., Weber C., Stegemeyer M., Lynch R. M., Lingrel J., Paul R. J.

Na(+) pump alpha 2-isoform specifically couples to contractility in vascular smooth muscle: evidence from gene-targeted neonatal mice. *Am. J. Physiol. Cell Physiol.* 2004;286(4):C813-C820.

Получено 10.06.2014