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INJURY AND PROTEIN DEPRIVATION
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Arginase activity and L-arginine content in both cytosolic and mitochondrial fractions of rat liver
cells under the conditions of toxic injury on the background of protein deprivation was studied. The most
significant reduction of arginase activity in liver cells and depletion of L-arginine pool was found in rats
with toxic acetaminophen-induced liver injury maintained on the ration balanced by all nutrients as well as
in protein deficiency rats. It was concluded that reduction of the arginase activity in the cytosolic fraction of
rat liver cells, combined with simultaneous decrease of L-arginine content, may be considered as one of the
mechanisms of ornithine cycle disturbance. The decline of activity of mitochondrial isoform of arginase 11, for
certain, is related with activation of NO-synthase system.
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present due to a constant increase of carbohy-

drates and fats content in a ration combined
with the reduction of protein content or replacement
of a full-value dietary protein with a low-value soya
protein [1]; vegetarianism, dietary restrictions in dif-
ferent diseases, irrational artificial feeding [2].

Quite often a restriction in exogenous proteins
supply is accompanied by the deficiency of essential
amino acids in the organism and intensified hydroly-
sis of the endogenous proteins, resulting in the nega-
tive nitrogen balance and subsequent development
of acute or chronic inflammatory processes in the
liver [3-5].

At the same time an open access to a wide
variety of medications contributes to the problem
of their common haphazard and irrational use for
the correction of pathological states without appro-
priate maintenance of dosage regimen. A common
consequence of uncontrolled self-treatment is drug-
induced liver injury.

There are numerous literary data about
methods of experimental modeling of the acute or
chronic injury arising from the use of toxic factors
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with various mechanisms of prolonged effect [6].
Model of acetaminophen injury is one of the most
widely used [7]. Acetaminophen (paracetamol) is a
drug with analgesic/antipyretic activity. Its overdose
as well as its use on the background of some triggers
influence, like deficiency of essential nutrients, may
lead to the development of liver failure [8].

Mechanism of liver tissue injury is realized
through the formation of a highly reactive toxic me-
tabolite. The most of drug dose is conjugated with
glucuronic acid or sulfate and is excreted from the
body. Another part of acetaminophen is metabo-
lized by cytochrome P450 system, with the forma-
tion of highly reactive derivative N-acetyl-p-benzo-
chinonimin, which rapidly reacts with the reduced
glutathione (GSH) leading to the depletion of its re-
sources in the liver [9].

The issue of arginine metabolism and its influ-
ence on the hepatobiliary system is widely discussed
nowadays [10-12]. In a human body L-arginine may
be synthesized in liver provided by the balanced ra-
tion with both quantitative and qualitative composi-
tion of a dietary protein being of fundamental im-
portance [13, 14].
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In contrast to the most of amino acids, arginine
is essential not only for protein biosynthesis but also
for the formation of several regulatory and signaling
molecules [15].

Arginine level is controlled by the enzyme ar-
ginase (EC 3.5.3.1) with its highest activity observed
in the liver. There are two isoforms of this enzyme,
which differ from each other by the intracellular lo-
calization and metabolism [16, 17].

Arginase [ is mostly found in the liver whereas
arginase II is active in all the tissues, especially in
kidneys. While both enzymes are responsible for the
urea synthesis, arginase | (cytosolic enzyme) func-
tions in the urea cycle and is involved in the ornith-
ine synthesis and later — formation of polyamines,
whereas mitochondrial arginase II regulates cellular
concentration of L-arginine/ornithine and also nitric
oxide (NO) synthesis [18-19].

Limited data concerning the investigation of ar-
ginase activity in cells under the normal conditions
and in various pathological states of the organism,
particularly toxic injuries, are available to date.

The aim of current research was to study the
arginase activity and L-arginine content in both mi-
tochondrial and cytosolic liver fractions under the
conditions of toxic injury against the background of
protein deficiency.

Materials and Methods

Experiments were conducted on white non-
linear rats aged 2.5-3 months weighing 100-120 g.
The research was carried out in accordance with the
rules set by the European Convention for the Protec-
tion of Vertebrate Animals Used for Experimental
and Other Scientific Purposes (Strasbourg, 1986)
and General Ethical Principles of Experiments In-
volving Animals approved by the First National Bio-
ethics Congress (Kyiv, 2001).

The animals were kept in plastic cages with
sand bedding and free access to water. The daily ra-
tion was regulated in accordance with principles of
pair feeding [20].

The acetaminophen-induced liver injury was
modeled by per os administration of 2% starch sus-
pension of acetaminophen in daily dose 1250 mg/kg
of the body weight during 2 days [21]. The animals
were divided into the following experimental groups:
I — animals maintained on the full-value semi-
synthetic ration balanced by all nutrients — control
group (C) [22]; Il — animals maintained on the semi-

synthetic low-protein ration (1/3 of the commonly
accepted daily protein requirements) (LPR) [23];
IIT — animals subjected to acetaminophen-induced
liver lesions receiving complete ration (H) (TI); IV
— animals subjected to acetaminophen-induced liver
lesions that were previously fed semi-synthetic low-
protein ration (LPR+H).

Cervical dislocation was performed under the
light ether anesthesia on 28" and 31" day of the ex-
periment.

Mitochondrial fraction was separated by dif-
ferential centrifugation [24]. Homogenate medium
contained: 250 mM sucrose solution, 1 mM EDTA,
10 mM Tris-HCI, pH 7.4. Nuclei and cellular frag-
ments were precipitated by centrifugation at 700 g
during 10 min. Mitochondrial fraction was precipi-
tated at 10000 g during 10 min. Obtained sediment
was washed twice with medium without EDTA.

Microsomal fraction was obtained by the
method of [25]. Supernatant liquid, which remained
after the receiving of microsomal fraction, was used
as a cytosolic fraction in the following experiments.

Arginase activity in the subcellular fractions
was determined by the formation of urea [26]. Re-
active mixture contained: 2 M Tris-HCI, pH 7.5,
0.2 M MnCl,, 10 M NaOH, 1 M arginine solution
and 100 pg of protein. Samples were incubated at
37 °C during 30 min. Reaction was stopped by the
adding of 100 pl 50% TCA. Total urea content was
determined with the help of diagnostic kit “Filicit
diagnostica” (Ukraine) in accordance with instruc-
tion. Arginase activity was expressed in pmol of
formed urea during 1 min per 1 mg of total protein
in a sample.

L-arginine content in cytosolic and mitochon-
drial fractions was determined by the method of [26]
after precipitation of proteins with 20% TCA solu-
tion. The obtained supernatant was incubated during
20 min at 37 °C in the reactive mixture containing
20% NaOH, 0.02% a-naphtol, 10% urea, hypobro-
mide reagent (Br, and 5% NaOH, correlation 1:100).
Extinction of samples was measured at wavelength
500 nm. L-arginine concentration was expressed in
umol/mg of protein.

Protein content in the studied samples was de-
termined by Lowry method [27].

Statistical analysis of research results was pro-
cessed with MS Excel software using standard Stu-
dent’s ¢-test. Differences were considered as statisti-
cally significant at P < 0.05.
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Results and Discussion

Intracellular arginases compartmentalization
plays an important role in the metabolism of L-ar-
ginine. Ornithine, which was formed in a cytosol
with the involvement of arginase I, is transformed
into putrescine under the influence of ornithine de-
carboxylase, whereas in mitochondria L-arginine
metabolism with the participation of arginase II and
ornithine aminotransferase results in the formation
of proline and L-glutamate [16-18]. It is known that
the expression of arginase isoforms shifts under the
influence of exogenous and endogenous factors and
metabolic demands.

Research results have shown that under the
conditions of low-protein diet in the cytosolic frac-
tion of rat liver there was a two-fold decrease in ar-
ginase activity compared to control (Fig. 1). At the
same time an administration of toxic acetaminophen
doses to control and protein-deficiency animals
causes monodirectional changes: enzyme activity is
reduced in animals of the both groups (Fig. 1).

Since arginase I takes part in the process of
ammonium inactivation, the established decrease
in the enzyme activity is obviously caused by the
inhibition of urea cycle due to the alimentary depri-
vation of protein [28]. On the other hand products of
the arginase reaction — ornithine and urea — are able
to inhibit L-arginine metabolism in the urea cycle
by the principle of negative feedback, causing the
reduction of cytosolic isoform enzymatic activity
[18, 19].

Thus, the established decrease of arginase ac-
tivity in the liver cell cytosol is accompanied by the
reduction of L-arginine content compared to control
in all of the studied groups (Fig. 2).

According to literature data [13, 14], reduction
of L-arginine cellular pool is caused by the distur-
bances of its delivery to cell or its intensified use
in metabolic processes. As is known, a significant
amount of arginine is used for the creatinine syn-
thesis — the substrate of creatine kinase system is re-
sponsible for the deposition and transport of energy
within cells in a form of creatine phosphate [15]. It
may be assumed that under the conditions of pro-
tein deficiency there is an intensification of cellular
creatine fund restoration system as a consequence
of enhanced L-arginine utilization in the anabolic
processes.

As is shown in Fig. 2, administration of aceta-
minophen in toxic doses is accompanied by the
significant decrease of L-arginine concentration in
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Fig. 1. Arginase activity in the cytosolic fraction of
rat liver cells under the conditions of acetaminophen-
induced toxic injury on the background protein dep-
rivation. Here and in Fig. 2-4: C — rats maintained
on full-value semi-synthetic ration — control group;,
LPR — rats maintained on low-protein ration, H —
animals subjected to acetaminophen-induced liver
lesions receiving complete ration; LPR+H — animals
subjected to acetaminophen-induced liver lesions
that were previously fed semi-synthetic low-protein
ration, * significant difference compared to control,
P<0.05

cytosol regardless of feeding ration, which may be
linked not only with the influence of exogenous fac-
tors but also has an endogenous character. Apparent-
ly, the established fact is the result of both intensified
use of arginine in the processes of protein synthesis
and disturbances of its formation in ornithine cycle
[28].

Concentration of intracellular L-arginine de-
pends on its dietary intake, synthesis/resynthesis
within the organism, active intracellular transport
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Fig. 2. L-arginine level in the cytosolic fraction of
liver cells under the conditions of acetaminophen-
induced toxic injury on the background protein dep-
rivation
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and activity of arginine degradation enzymes. Pro-
tein catabolism and/or resynthesis of L-arginine
from citrulline in the L-citrulline cycle are capable
of compensating acertain lack of L-arginine [29].

It is established [30], that L-citrulline of intes-
tinal enterocytes of mammals is almost a unique
source of endogenous arginine. In the intestinal
cells citrulline is produced as the end product of glu-
tamine/glutamate metabolism under the influence of
urea cycle enzymes — carbamoyl phosphate synthase
and ornithine carbamoyl transferase, and then it is
carried with blood to kidneys. Kidney — is the main
organ of enterocytes’ citrulline transformation by
arginine succinate synthase and arginine succinate
lyase into arginine with subsequent transport of the
latter to the liver and its hydrolysis by arginase. Up-
take of the physiological arginine concentration in
the liver is restricted by the decreased activity of the
transport system of positively charged amino acids
in hepatocytes [31].

Therefore, ornithine cycle is not the main en-
dogenous provider of L-arginine since it imports
only 5-15% of plasms urea [32]. Consequently, meta-
bolic compartmentalization of arginine under the
current experimental conditions is of a determining
character, since functional disturbances of intestines
or kidneys (as it was indicated earlier [33]) may lead
to the decrease of arginine endogenous synthesis, di-
rectly affecting its total cytosol content.

Moreover, there are data concerning the in-
hibition of lipid absorption by arginine though the
reduction of low density lipoproteins level with si-
multaneous increase of high density lipoproteins
concentration in blood, which diminishes the de-
gree of fatty liver dystrophy [15]. Probably, under
the conditions of acetaminophen-induced injury a
reduction of this amino acid level not only results in
the disturbances of desintoxication processes (first of
all ammonia neutralization), but also indicates dys-
metabolic changes of lipids. Numerous researches
[11, 18, 19] testify to the fact that deficit of arginase
I induces the 11 isoform of enzyme.

Obtained results point to the reduction of argi-
nase activity in the mitochondrial fraction of liver
cells in all groups of experimental animals main-
tained under the current conditions (Fig. 3). Simul-
taneously, as is shown in Fig. 3, similar tendency to
the maximal reduction of enzyme activity remains
under the conditions of toxic acetaminophen doses
administration, independent of protein amount in the
ration.
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Fig. 3. Arginase activity in the mitochondrial frac-
tion of liver cells under the conditions of acetami-
nophen-induced toxic injury on the background of
protein deprivation

Taking into consideration the established
[23, 26] interrelation of arginase Il and NO-synthase
activity, it may be assumed that the reduction of
arginase activity in a mitochondrial fraction of liver
cells is accompanied with the activation of nitrogen
oxide synthesis. A balance between NO-synthase
and arginase pathways of L-arginine metabolism
maintains the cellular physiological pool of this
amino acid and determines the intensity of NO and
its metabolites production.

However the relationship between these two
enzymes is much more complex than a simple com-
petition for substrate. In particular, the intermediate
product of NO synthesis is N°-hydroxy-L-arginine,
which has a high affinity for arginase and is a strong
endogenous competitive inhibitor of this enzyme
[34].

It was established, that a decrease of arginine
quantity in the mitochondrial fraction of liver cells
is observed in all groups of experimental animals
(Fig. 4), whereas the lowest indices are registered
under the conditions of acetaminophen injury on
the background of protein deficiency. Reduction of
L-arginine bioavailability under the current experi-
mental conditions is probably caused by the activa-
tion of NO-dependent system.

As is known, NO-dependent synthesis of es-
sential NO (“basal rate”) is determined by the acti-
vation of constitutive Ca*'-dependent NOS isoforms
(cNOS), whereas synthesis of additional amounts
of nitrous oxide under the pathological conditions
is realized with the involvement of inducible NO-
synthase (iNOS) [35].
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Fig. 4. L-arginine level in the mitochondrial frac-
tion of liver cells under the conditions of acetami-
nophen-induced toxic injury on the background of
protein deprivation

Considering all the foregoing, it may be as-
sumed that competition between NO-synthase iso-
forms and arginase for the common substrate causes
the depletion of this amino acid reserves either on
the background of protein deficiency or after the ad-
ministration of acetaminophen in toxic doses.

Thus, the reduction of arginase activity in the
cytosolic fraction of liver cells with simultaneous de-
crease of L-arginine level may be considered as one
of the mechanisms of ornithine cycle disturbances,
while the decrease in activity of mitochondrial iso-
form arginase II is obviously caused by the activa-
tion of NO-synthase system. Toxic liver injury under
the current experimental conditions is accompanied
by the maximal decrease of arginase activity in liver
cells and depletion of L-arginine pool.
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NpoTeiHny. BCTaHOBIIEHO, 1[0 B yMOBaX TOKCUYHO-
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MUTOXOHIPHAJIBHONH M30QopMbI aprunassl I, mo-
BUJIUMOMY, CBsA3aHO ¢ akTuBanueil NO-cuHTa3HOI
CUCTEMBI.
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