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Abstract: The paper describes a mathematical model of 

elastic deformation of non-ferromagnetic conductive bodies 
under the action of pulsed electromagnetic fields (EMF), 
which takes into account the adiabatic character of processes 
of heating and deformation of conductive bodies by pulsed 
electromagnetic fields. Within this model, the dynamic 
problem of thermo-mechanics has been formulated for a non-
ferromagnetic conductive planar layer under the action of 
pulsed electromagnetic fields. A technique of approximate 
solution to the formulated problem, that applies a cubic 
polynomial approximation of all key functions’ distributions 
with respect to a thickness coordinate, has been proposed. 
The solution to the problem under consideration in case of 
homogeneous electromagnetic pulse has been found and 
discussed. The thermo-mechanical behavior and load-
carrying capacity of non-ferromagnetic conductive plates 
under the action of electromagnetic pulses (EMP) has been 
investigated. 

Key words: non-ferromagnetic plates, electromagnetic 
pulse, thermo-mechanical behavior, load-carrying 
capacity, critical EMP parameters. 

1. Introduction  
Structural elements of modern engineering work 

under the impact of multivariate loads that dictate their 
respective thermo-mechanical behavior. One kind of 
those loads is frequently represented by an 
electromagnetic field, particularly by a pulsed one [1, 
10]. The action of such load is principal for work of 
various electrical apparatus, and it is also used in modern 
technologies of structural elements processing in many 
industries [1, 5, 9]. Some of the above mentioned 
devices, namely those for removing undesirable 
extraneous formations from surfaces of functional 
elements of various engineering products (by creating 
mechanical vibrations removing the formations) and 
reusable pulse induction systems, particularly those for 
pulse processing of machine components, mechanisms 
and devices, have become widely employed. These 
applications basically require that the load-carrying 
capacity of the relevant structural elements be ensured. 

To address the mentioned engineering and 
technology problems, the theory of thermo-mechanics of 

non-ferromagnetic conductive bodies under the action of 
pulsed electromagnetic fields was developed [2, 3, 7, 8], 
that takes into account the special features of these fields 
impact on the material continuum. The theory is applied 
for the rational design and development of devices for 
removing extraneous formations (including icing ) using 
pulsed electromagnetic fields, of reusable pulse 
induction systems and their operation modes as well as 
the modes of structural elements magnetic pulse 
treatments, for securing the load-carrying capacity of 
both the elements and products as a whole. 

Based on the developed theory, this paper presents a 
description of the mathematical model of elastic 
deformation of conductive bodies by pulsed 
electromagnetic fields and formulates the dynamic 
problem of thermo-mechanics for non-ferromagnetic 
conductive planar layer being under the action of an 
electromagnetic pulse. Using the technique of numerical 
solution of corresponding initial boundary value 
problems of electrodynamics and thermo-elasticity, a 
solution to the formulated dynamic problem has been 
obtained; a numerical analysis of dependency of thermo-
mechanical behavior and load-carrying capacity of the 
examined layer on the EMP parameters has been 
performed. 

2. Mathematical model of conductive body elastic 
deformation under the action of pulsed EMF and 
estimation of its load-carrying capacity in such condition 

Let us set forth basic physical and mathematical 
conditions and write down the system of basic equations 
of the theory of thermo-mechanics of non-ferromagnetic 
conductive bodies under the action of pulsed 
electromagnetic fields that describe the relationship 
between electromagnetic, thermal and mechanical 
processes by taking into account the special features of 
EMF impact on a conductive body. 

We consider a conductive isotropic body that takes a 

domain 3V R  with the boundary surface S  exposed to 
the action of pulsed electromagnetic fields which can be 

described by the magnetic field intensity vector  ,H r t
 

 

on the surface of the conductive body in the form 
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     *
0 * 0 0,H r t H t H r

  
. Here  *

0 0H r
 

 is a function 

that describes the distribution of the magnetic field intensity 

vector  ,H r t
 

 on the surface S  of the conductive body; 

the surface is described by the equation 0r r
 

;  *H t  is a 

pulse function that describes time-dependency of the 

magnetic field intensity vector  ,H r t
 

 on the surface S  of 

the conductive body and satisfies the conditions: 

 * 1H t     0, it t ,  * 0 0H  ,   * 0iH t  ;  

where it  – electromagnetic pulse duration; r


 and 0r


 – 

radius-vectors of points inside the conductive body and 
on its surface. 

We assume that the parameters  *
0 0H r
 

,  *H t , it  

describing the acting EMF are such that the EMF belongs to 
the class of “non-destructive” pulsed EMF [5, 9], i.e. its pulse 
duration is considerably less than one tenth of the second 
( t <0,01с) and its maximum magnetic induction value is less 

than 50 Т ( max 50B  Т). We consider such EMP whose 

action doesn’t lead to the emergence of a shock front 

( 7
max 10H  А/m, where maxH  – the maximum value of 

magnetic field intensity on the body surface). 
The corresponding problem of mathematical physics 

describing the thermal and mechanical processes in the 
case of such electromagnetic action may be formulated 
as follows. 

In the case of the above assumed parameters of the 
electromagnetic pulse the stress and deformations as 
well as their velocity in the body are so small that linear 
elasticity theory can be applied and the influence of 
medium movements on the EMF characteristics is 
negligible [2,3,5,7-10]. 

It was experimentally proven that fluidity limit т  

for different materials increases along with the increase 
of deformation   velocity at normal temperature, both 
in the process of stretching and compression. That is 

why in the case of dynamic power load the stress i  – 

deformation i  diagrams for the majority of metals and 

their alloys are different from the static ones [4,5].  
Therefore, we can assume that the process of 

conductive body deformation under the action of pulsed 
EMF is of dynamic character and is featured by all the 
mechanic behavior peculiarities of deformable bodies 
exposed to dynamic and pulsed power and thermal loads 

(the value of elastic deformation dynamic limit d  may 

increase by a factor of 2 3  in comparison with elastic 

deformation static limit s ; it was determined 

experimentally for different materials and depends on 
deformation velocity). 

We consider widespread homogeneous isotropic non-
dielectric non-ferromagnetic bodies [3, 7, 8, 10], for 
which electromechanical and thermoelectric effects are 

negligible, induction vectors D


 and В


 are collinear to 

electric Е


 and magnetic Н


 field intensity, conduction 

current density j


 is collinear to Е


. In that case we may 

describe EMF by means of medium-related 

electrodynamics equations [3, 8, 10]: ,D E 
 

 

,B H 
 

 0 ,j E 


 where 0 *    , 0 *    ; * , 

*  – relative dielectric permittivity and magnetic 

permeability; 0  – conductivity , 0 , 0  – electric and 

magnetic constant. 
According to the accepted assumptions the influence 

of a pulsed EMF on processes of thermal and elastic 
deformation in a conductive body may be taken into 

account by Joule heat 0Q E E  
 

 and ponderomotive 

force 0F E H   
  

 [5, 9, 10]. These factors give rise 

to unsteady thermal and mechanical fields. 
On the basis of such approximating assumptions and 

given material characteristics (they are assumed to be 
equal to average values over the given temperature 
interval) a two-stage formulation of basic relations for 
numeric description of the parameters that feature 
electromagnetic, thermal, and mechanic processes in the 
bodies exposed to electromagnetic pulses was proposed 
[2, 3, 7, 8]. 

At the first stage we write down the equations for 
determining the EMF parameters and expressions for 
heat and ponderomotive forces as functions of the 
electromagnetic parameters. 

At the second stage we utilize the dependencies 
describing the mechanical and thermal parameters for 
given initial and boundary conditions consisting of 

temperature T  and components ij  of the stress tensor 

̂ , where heat sources and volumetric forces are 

represented by Joule heat loses Q  and ponderomotive 

forces found at the first stage. 

For a known temperature T  and components ij  of 

the stress tensor ̂  we analyze the parameters of 
ongoing physical and mechanical processes and their 
characteristics depending on the pulse electromagnetic 
loads. Using the condition [2-4, 8]  

   2
2 1ˆ ˆ3 2i dI I       , 

(wherе i  is the stress intensity;  ˆ ,  1,2jI j   are the 

invariants of stress tensor; d  is the elastic deformation 

limit) we determine the permissible EMF parameters that 
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ensure the load-carrying capability of the bodies under 
consideration. 

Solving such a complex problem, even for bodies 
with simple geometric configurations is associated with 
considerable mathematical difficulties. In order to utilize 
approximate approaches to solving constituent problems 
(e.g. thermo-elasticity at the second stage) the 
corresponding mathematical physics problems are 

formulated for the key functions Н


, T , ̂ . Note that 
the formulation of direct problems with regard to these 
key functions allows us effectively use an approximate 
method of solution, i.e. a method of polynomial 
approximations, and improve their accuracy. 

At the first stage of determining the EMF parameters in 
the conductive body under study we finding the magnetic 

field intensity vector  ,H r t
 

 on the basis of Maxwell’s 

equations while neglecting displacement currents: 

 0 0
H

H
t


   




, 0DivH 


. 

A unique solution may be found for given initial conditions, 
namely absence of EMF at the initial time point 0t  : 

 ,0 0H r 
 

 

and given values of  ,H r t
 

 on the body surface 

(boundary conditions). In such a case the problem is 
reduced to solving only one equation 

 0 0
H

H
t


   




 (1) 

for zero initial and corresponding boundary conditions in 

the form of tangential components of  ,H r t
 

 on the 

body surface. 

For the found components of the vector  ,H r t
 

 the 

expressions for Joule heat Q  and ponderomotive forces 

F


 are as follows: 

  
2

0,Q rotH r t   
 

, 

    , ,F rotH r t H r t  
   

.  (2) 

At the second stage of determining the parameters 
describing the thermo-elastic condition of the 

temperature T  and stress tensor ̂  are chosen as key 
functions [2, 3, 7, 8]. Assuming that at the initial time 

point 0t   the displacement U


 and its velocity dU dt


 

are equal to zero, and the temperature T  is equal to 0T , 

we receive the initial conditions [2, 3, 8] 

 ,0 0T r 


,  ˆ ,0 0r 


,

     *ˆ ,0 ,0 ,01 ˆ 0
2

r T r r
I

G t t E t

    
       

  
. (3) 

where T  is the temperature deviation from its initial 

value 0T ;  * 1 11 22 33ˆ êêI           ; 

 2 1G E       is the shear modulus; ,   are the 

coefficient of linear thermal expansion and Poisson 

coefficient; E  is Young's modulus;  ˆ
iêI    is a unit 

tensor; iк  are the Kronecker symbols. 

The temperature T  and stress tensor components 

iк  determined by dependencies (2) may be represented 

as the sum of two constituents [2, 3, 7, 8]: 

 Q FT T T  , Q F
iк iк iк     , 

where QT , Q
iк  and FT , F

iк  are the constituents caused by 

Joule heat and ponderomotive forces, respectively. 
It was experimentally proven [5, 9] that in the case 

of a pulsed EMF that belongs to the class of "non-
destructive" pulsed EMF, a body exposed to its action 
heats up adiabatically, i.e. its temperature at any point 
depends only on the amount of EMF energy that has 
been irreversibly absorbed by an appropriate elementary 
volume (Joule heat). Under those conditions, the 

temperature field QT  can be described by the equation 

 
QT

Q
t

 


 
 

where ,   are the temperature coefficient and thermal 

conductivity. Therefore, in the considered case the tempe-

rature constituent QT  can be found from the expression: 

    
0

, ,
t

QT r t Q r t dt



 

 
 

We assume that the body is free from power load. In 
such case, using the thermo-elasticity equations 
formulated in terms of temperature and stress tensor 
components [2, 3, 7, 8] for determining the components 

Q
ік  of the stress tensor constituent ˆ Q  caused by the 

temperature QT , we obtain the following system of 
equations [2, 3, 8] 

 
2

*2

1 ˆˆ ˆ
2

Q Q Q QDef Div T I
t G E

               
(4) 

The system (4) is solved utilizing initial conditions 

  ˆ ,0 0Q r 


, 

     *ˆ ,0 ,0 ,01 ˆ 0
2

Q Q Qr T r r
I

G t t E t

   
       

  
(5) 

and boundary conditions  

 ˆ 0Qn 


 for 0r r
 

, 

where   is the density of the body material; Def  – 

deformator. 
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When finding the temperature FT and stress F
кj  

constituents caused by the action of ponderomotive force 

F


, we take into account the fact that the thermal 
perturbation in the conductive body is resulted from the 
deformation due to dynamic power (ponderomotive 

force F


), which also has a pulsed character. In such 
case the deformation process of the conductive bodies 
may be considered adiabatic [5, 9] and the temperature 

FT  increment is determined at small thermal 

perturbations (
0

FT

T
<< 1) by the formula [5, 6],  

 
 * * 03 2 F

ккF T
T

    
 


, 

where F
кк  is the first invariant of the tensor of deformations 

ˆFe  caused by the action of ponderomotive force; 

* *, G    are the isothermal Lame coefficients Lame. 

Taking into account that in the case of adiabatic 
deformation of the body Hooke's law is given by [6] 

 *2F F F
ік ік s кк ік        , 

where  

    
  

2
** * 0

*

1 13 2

1 1 2s

ET         
    

    
 

is the adiabatic Lame coefficient;  

 
 

 
  

2 2 2
* * 0 0

*
* *

3 2 1

2 1 1 2

T ET        
  

        
 

Is the parameter of deformation and temperature fields 
coupling, the expression of volumetric deformation of 

the body takes the form 
*3 2

F
F кк
кк

s


 

  
. 

Then the temperature FT  increment with respect to 

the initial temperature 0T  can by calculated by [2,3,7,8]: 

 
 

* * 0

*

3 2

3 2

F
ккF

s

T
T

        
     

 

   
0

*1 3 1 1
F
кк

T
  

        
 (6) 

On the basis of thermo-elasticity equations and 
boundary conditions for the unloaded body surface we 

conclude that the stress ˆ F  satisfies the following 
equation [2, 3, 7, 8]: 

 
2

*
*2

1 ˆˆ ˆ
2

F F FDef Div F I
t G E

           


 (7) 

as well as initial conditions 

  ˆ ,0 0F r 


, 
 ˆ ,0

0
F r

t







 

and boundary conditions 

 ˆ 0F n 


 for t >0 and 0r r
 

, 

where 
  

      
*

*

*

1 1 2
1

1 1 3 1 1

    
  

        
. 

As an example, we use this model to formulate the 
thermo-mechanics problem for a conductive layer. 

3. Dynamic thermo-mechanics problem for a con-
ductive layer exposed to pulsed electromagnetic action. 

Formulation of the problem. Let us consider a 
conductive layer of constant thickness 2h  and position 
the Cartesian coordinates ( , ,x y z ) in such a way that the 

plane xOy  coincides with the medial plane of the layer. 

The layer’s material layer is homogeneous, isotropic 
and non-ferromagnetic. Its physical and mechanical 
properties are constant (they are equal to average values 
over the heating period). The layer is exposed to the 
action of non-stationary (arbitrarily varying with time) 
EMF that is given by the values of tangential component 

yH  of the magnetic field intensity vector 

 0; ;0yH H


 on both sides of the layer z h  . 

The system of initial equations and relations. In the 

case when all the key functions задачі  ,yH z t , 

 tzzz ,  depend only on the thickness coordinate z  and 

time t , the non-zero component  ,yH z t  of the magnetic 

field intensity H


 is described by Maxwell's equation 

 
2

02
0y yH H

z t

 
   

 
,  (8) 

boundary conditions  

    ,y yH h t H t   (9) 

and zero initial condition 

  ,0 0yH z  . 

Specific density of Joule heat Q  and the 

ponderomotive force F


 can be determined, using the 

function zH , in the following form: 
2

0

1
, 0;0; .z z

z z

H H
Q F F H

z z

              


 (10) 

The temperature constituent QT  can be found by 
time integration of the expression ( , )Q z t , and the stress 

constituent Q
jj  ( , ,j x y z ; repeated indices are 

excluded from summation indices) caused by Joule heat 
( , )Q z t  can be found from the system [3, 8] 

 
2 2 2

2 2 2 2
1

1 1

1

Q Q Q
zz zz v T

z ñ t v t
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1 1
Q Q Q Q
xx yy zz

v E
T

v v


     

 
              (11) 

supplemented by initial conditions 

( ,0) ( ,0)
( ,0) 0,

1 2

Q Q
Q zz
zz

z E T z
z

t v t

  
   

  
    (12) 

and boundary conditions 

 ( , ) 0Q
zz h t   .  (13) 

Correspondingly, the stress constituent F
jj  

 , ,j x y z  and the temperature constituent FT  

caused by action of the ponderomotive force 

 0,0, ( , )zF F z t


are described by the relations [3, 8]: 

 
2 2

2 2 2
1

1F F
zz zz z

à

F

z c t z

    
  

  
,  

 
 1

F F F
xx yy zz

v

v
    


, 

 
 

 
   

0
1 2

,
1 1 3 1 / 1

F
zzF T

T


   
 

           
 (14) 

supplemented by initial conditions 

 
( ,0)

( ,0) 0, 0
F

F zz
zz

z
z

t


  


 (15) 

and boundary conditions 

 ( , ) 0F
zz h t    (16) 

where 1 1 *1ac c    is the adiabatic velocity of elastic 

expansion waves in the layer. 
For different kind of layer fixation other boundary 

condition should be formulated [6]. 

4. The methodology of obtaining solutions to 
initial-boundary problems.  

To find the numerical solutions of the problem, i.e. the 
values of electromagnetic field characteristics, temperature 
and stress we apply the technique based on approximation of 

the sought functions    F
zz

Q
zzyHtzФ  ,,,   with 

respect to the thickness coordinate z  by cubic polynomials 
[2, 3, 8] in the form 

    
4

1
1

1

, ф i
i

i

Ф z t a t z 




 ,  (17) 

where the coefficient  1
ô
ia t  of approximation 

polynomials (17) are determined by the expression 

         
3 41 1,1 1 1,2 2 1,3 1,4  ф ф ф ф ф

i i i i ia t a Ф t a Ф t a Ф t a Ф t 
       

where  Ф t  are the values of the sought functions on 

the layer’s planar surfaces; 

  
 

 
1

1

1

, , 1,2
2

s
s s

s
Ф t Ф z t z dz s

h




  .  (18) 

are their integral characteristics with respect to the 
thickness coordinate z  

To obtain the integral characteristics  sФ t  we 

should integrate the function  ,Ф z t  defined in the 

section 3 applying the formula (18) and taking into 
account the expression (17).  

The transformations having been completed,  we 
obtain a set of equation that serves for determination of 

integral characteristics  ysH t  and  zzs t  of the 

component yH  of magnetic field intensity vector and of 

the components of stress tensor. As a result we have 
obtained the following expressions for the integral 

characteristics  ysH t  1,2s   of the component 

 ,yH z t  of magnetic field intensity vector: 

  1
1

0*

3
3y

y y y

dH
H H H

dt m
    , 

  2
2

0*

15
5y

y y y

dH
H H H

dt m
    ; (19) 

for the integral characteristics     1,2Q
zzs t s   of the 

components  ,Q
zz z t  of the  stress tensor constituent ˆ Q : 

2 2 2
1 1 1

12 2 2

3
,

1 2

Q Q
Qzz
zz

d c d TE

dt h dt

 
   

 
 

2 2 2
2 1 2

22 2 2

15

1 2

Q Q
Qzz
zz

d c d TE

dt h dt

 
   

 
,            (20) 

and for the integral characteristics     1,2F
zzs t s   of 

the components of stress tensor  ,F
zz z t  of the 

constituent ˆ F : 

    
2 2

1 1 1
12 2

3
1, 1, ,

F
Fzz
zz z z

d c c
F t F t

dt h h


         

2 2
2 1

22 2

15F
Fzz
zz

d c

dt h


    

     
1

1

1

1, 1, ,z z z

c
F t F t F z t dz

h 

 
    

 
        (21) 

where 2
0* 0m h   .  

The equation (19) should be solved by zero initial 

conditions for the function  ysH t  , the equation (20) 

should be solved by the initial conditions: 

      0 0
0 0,

1 2

Q Q
zzs sQ

zzs

d dTE

dt dt

 
   

 
, (22) 

and the equation (21) should be solved by the initial 
conditions: 
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    0
0 0, 0

F
zzsF

zzs

d

dt


   . (23) 

To solve the obtained set of equations (so called Cauchy 
problems) with regard to the integral characteristics of the 
sought functions we can apply Laplace transforms with 
respect to time variable t  and taking into account the 
corresponding initial conditions. As a result, the following 
expressions have been obtained: 

– for the integral characteristics    ,  1,2ysH t s   

of the component  ,yH z t  of magnetic field intensity 

vector

       
2

0 0*
3 3

1

0

3 ,
t

h t m
yH t e e H H d

             

       
2

0 0*
15 15

2

0

5
t

h t m
yH t e e H H d

            ; 

 (24) 

– for the integral characteristics  ,Q
zzs z t  of the 

components  ,Q
zz z t  of the stress tensor constituent 

ˆ Q   

       1 *
1 1

0

cos ,
1 2

Qt
Q
zz

dTE
t t d

d


      

    

      2 *
2 2

0

cos
1 2

Qt
Q
zz

dTE
t t d

d


      

   ;   (25) 

– for the integral characteristics  ,F
zzs z t  of the 

components  ,F
zz z t  of the stress tensor constituent 

ˆ F  

        *1
1 1

0

1, 1, sin ,
3

t
F
zz z z

c
t F F t d            

 (26) 

  
t

zz
F
zz FF

c
t

0

1
2 ),1(),1(

15
)(   

  dtdzF
t

z ))(sin(),( *
2

1



 


, 

where * 1
1

3c

h
  ,  * 1

2

15c

h
   are the two first 

natural frequencies of the layer’s oscillations along the 
thickness coordinate. On the basis of the found functions 

  ,ysH t   Q
zzs t ,  F

zzs t  we can find the expressions:  

– of the component  ,yH z t  of magnetic field 

intensity vector 

       2 3
1 2

3 15
, 1

4 4y y yH z t H t z H t z z      

     21
1 3

4 y yH t H t z        

     31
3 5

4 y yH t H t z z                 (27) 

– of the component  ,Q
zz z t  of the stress tensor 

constituent ˆ Q  

    2
1

3
,  1

4
Q Q
zz zzz t t z      

  3
2

15
 +  

4
Q
zz t z z  ;                     (28) 

 

– of the component  ,F
zz z t  of the stress tensor 

constituent ˆ F  

    2
1

3
,  1  

4
F F
zz zzz t t z      

  3
2

15
 

4
F
zz t z z   ,                  (29) 

where the functions  ysH t ,  ,Q
zzs z t ,  ,F

zzs z t  

 1,2s   have been found from (24)–(26). 

Therefore, the general closed form solution to the 
dynamic one-dimensional boundary problem of thermo-
mechanics for the planar conductive layer on the whole 
time interval of arbitrary homogenous non-stationary 
electromagnetic action. 

5. Investigation of thermo-mechanical behavior 
and load-carrying capacity of the non-ferromagnetic 
conductive layer exposed to electromagnetic pulses 

Let us consider the homogeneous (with respect to 
coordinates) pulsed electromagnetic action that is 

mathematically represented by the function  *H t  [3, 5, 

8, 9] in the form 

      1 2
* 0 0

t tH t H t kH e e   
,
 (30) 

where k  is the normalization factor, 0H  represents the 

maximum value of magnetic field intensity vector 
generated by the electromagnetic pulse on the surface of 

the conductive body, 1 , 2  stand for the parameters 

characterizing the pulse’s front rise and decay time. 
This expression reflects with sufficient accuracy the 

generic time dependency of the electromagnetic pulse, which 
is widely used in the practice of magnetic-pulse treatment of 
conductive material – it begins with a rapid rise to the 
maximum and then slowly decays [5, 9]. Such time 
dependency is caused by the specific nature of capacitor-

solenoid systems’ operation. The parameter 2 >> 1  what 

provides the afore-described time dependency of the pulse. 
That EMP time dependency is shown in Fig. 1. 
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Fig. 1. Time dependency of the electromagnetic pulse. 

Let us consider a layer that is exposed to the action 
electromagnetic pulse (EMP), defined by the values of 

tangential component yH  on both sides of the layer in 

the form (30), i.e. 0( 1, ) ( )yH t H t  . 

Numerical studies have been conducted for layers 
made of the following non-ferromagnetic materials: steel 
(X18H9T), copper (Cu), and aluminum (Al) of 

32 2 10h    m thickness. 
In Fig. 2 – Fig. 8 there are shown the time 

dependencies of Joule heat Q , the component zF  of the 

ponderomotive force F


, the temperature constituents 
QT  and FT , the stress tensor components zz  і xx , 

and the total stress intensity і  in the layer under the 

action of a pulse with the duration of 100it   mcs. The 

parameters of the pulse: 1 =69000; 2 =138000; к =4. 

The dependencies 1-3 in Fig. 2 – Fig. 4 and Fig. 8 
correspond to the functions’ values calculated for z =1; 
0,5; 0, respectively. The dependencies in Fig. 5 – Fig. 7 
are given for such z -coordinate when their values reach 

maximum ones (Fig. 5 shows FT  time dependency for 

z  0; Fig. 6 shows Q
zz  and F

zz  time dependencies for 

z  0; Fig. 7 shows Q
xx  time dependency for z h  and 

F
xx  time dependency for z  0). 

Joule heat dependencies have the character of two 
consecutive pulses – the maximum of the first one is 
significantly bigger than the maximum of the second 
one. At the initial instants the ponderomotive force is of 
compressive nature, later on it is of stretching nature and 

at 0,5 it t  decays to zero. The temperature constituent 
QT  has its highest values on the layer’s sides z h  . 

The time dependency of the temperatures constituent 
FT  caused by the ponderomotive force corresponds to 

the time dependency of stress tensor components F
jj  

 , ,j z x y , and its maximum (for these specific EMP 

parameters) is by two orders less than the maximum of 

the temperature constituent QT  caused by Joule heat. 

That is why the temperatures constituent FT  negligible 

in comparison with the temperature constituent QT . 
 

 

Fig. 2. Time dependencies of Joule heat within the layer. 

 
Fig. 3. Time dependencies of the ponderomotive  

force within the layer. 

 

Fig. 4. Time dependencies of the temperature  

constituent QT  within the layer. 
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Fig. 5. Time dependencies of the temperature  

constituent FT  within the layer. 

 

 

Fig. 6. Time dependencies of normal stress zz   

within the layer. 

 

Fig. 7. Time dependencies of tangential stress xx   

within the layer. 

At the initial instants the stress tensor component 
F
zz  is of compressive nature, later on it gets of 

stretching nature, and at 0,4 0,5 it t   it enters natural 

mode. The maximum values of compressive stress F
zz  

are about three times bigger than the maximum values of 
stretching stress. At the initial instants the stress tensor 

component Q
zz  is of compressive nature, later on it 

starts to oscillate around zero. Its values are much 

smaller than those of the stress tensor component F
zz . 

The stress tensor component F
xx  is of the same 

character as the stress tensor component F
zz , but its 

maximum values are three times smaller. Stress Q
xx  is 

of compressive nature, its time dependency reflects the 

temperature QT  time dependency, and its values exceed 

by one order the values of stress F
xx . Stress F

zz  and 

stress Q
xx  are of the same magnitude. 

 

 

Fig. 8. Time dependencies of the total stress  

intensity i  within the layer. 

Fig. 9 illustrates the dependency of total stress 

intensity max
i  maximum on the value of 0H  in the 

steel, aluminum, and copper planar layers of 2h = 2 mm 

thickness for two given pulse durations (t1 = 1000 mcs – 

thick curves, t1 = 100 mcs – thin curves). With the help 
of those dependencies one can find maximum critical 

values of 0H  ( 0 0
крH H ), when the load-carrying 

capacity of the layer is lost, for given values of dynamic 

limit of elastic deformation d  of the layer’s material. 

For the layers under study the following results have 
been obtained:  

а) For EMP duration 1000it  mcs   

– for the steel layer ( d  300 МPa) – 0
крH  is not 

reached if 7
0 5 10H   А/m, 

– for the copper layer ( d  70 МPa) – 
7

0 1,3 10крH   А/m,  

– for the aluminum layer ( d  30 МPa) – 
7

0 0,65 10крH   А/m. 
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б) For EMP duration 100it  mcs 

– for the steel layer ( d  300 МPa) – 0
крH  is 

reached if 7
0 3,3 10крH   А/m, 

– for the copper layer ( d  70 МPa) – 
7

0 0,8 10крH   А/m,  

– for the aluminum layer ( d  30 МPa) – 
7

0 0,55 10крH   А/m,  
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Fig. 9. Dependency of maximum values of the total stress 

intensity max
i  on the value of 0H  in the layers made 

 of different material. 

Similar dependencies have been also received for 
non-ferromagnetic layers of different thickness. 

6. Conclusions 
The obtained dependencies of the total stress 

intensity maximum values in the investigated conductive 
plates made of different non-ferromagnetic materials, 
including stainless steel X18H9T, copper and aluminum, 
on the maximum value of magnetic field intensity on the 
surface of the body for different EMP durations allow us 
to find critical values of EMP physical and temporal 
parameters – their exceeding leads to loss of load-
carrying capacity of the plate as a structural element. 

Those qualitative and quantitative patterns of thermo-
mechanical behavior of conductive plates under the action of 
EMP can serve as a basis for development of rational 
operation modes of structural elements of appliances and 
devices exposed to pulsed electromagnetic field, in order to 
maintain their load-carrying capacity. 

References  
1. Y. Batyhin, V. Lavinskyi, L. Khimenko, Pulsed 

Magnetic Fields for Progressive Technologies. – 
Kharkiv, Ukraine: – Тоrnado. – 2003. – 288 p. (Russian) 

2. Y. Burak, O. Hachkevych, R. Musiy, Thermo-
elesticity of Non-ferromagnetic Conductive Bodies exposed 

to Pulsed Electromagnetic Fields // Matematychni metody ta 
fizyko-mekhanichni polia. – Kyiv, Ukraine. – № 49 (1). – 
2006.– P. 75-84. (Ukrainian) 

3. O. Hachkevych, R. Musiy, D. Tarlakovskyi, 
Thermomechanics of Non-ferromagnetic Conductive 
Bodies under the Action of Pulsed Electromagnetic 
Fields with Amplitude Modulation. – Lviv, Ukraine – 
SPOLOM. – 2011. – 216 p. (Ukrainian) 

4. V. Ionov, P. Ogibalov, Stress in Bodies exposed 
to Pulse Load. – Moscow, Russia: Vysshaya shkola. – 
1975. – 463 p. (Russian) 

5. T. Knopfel, Superstrong Pulsed Magnetic 
Fields. Generation Techniques and Physical Phenomena 
Related to Generation of Pulsed MegaOersted Fields. – 
Moscow, Russia: Mir. – 1972. – 392 p. (Russian)  

6. A. Kovalenko, Fundamentals of Thermo-elsticity. – 
Kyiv, Ukraine: Naukova dumka. – 1970. – 307 p. (Russian) 

7. R. Musiy, Mathematical Model of Thermo-
mechanics of Conductive Bodies under the Action of 
Pulsed Electromagnetic Fields // Theoretical and Applied 
Mechanics // Teoretychna ta prykladna mekhanika. – 
Donetsk, Ukraine: Publishing house of Donetsk National 
University. – Vol. 34. – 2001. – P. 177-183. (Ukrainian) 

8. R. Musiy, Dynamic Problems of Thermo-
mechanics for Conductive Bodies of Cone Form. – Lviv, 
Ukraine: Rastr-7. – 2010. – 216 p. (Ukrainian) 

9. Superstrong and Strong Magnetic fields and 
their Application [Edited by F. Herlach] – Moscow, 
Russia: Mir. – 1988. – 456 p. (Russian) 

10. N. Tamm, Fundamentals of Electricity Theory. – 
Moscow, Russia: Nauka. – 1976. – 616 p. (Russian) 

ТЕРМОНАПРУЖЕНИЙ СТАН І НЕСУЧА 
ЗДАТНІСТЬ НЕФЕРОМАГНІТНИХ 

ЕЛЕКТРОПРОВІДНИХ ПЛАСТИН ЗА ДІЇ 
ЕЛЕКТРОМАГНІТНИХ ІМПУЛЬСІВ 

Роман Мусій 

Розглянуто математичну модель пружного деформування 
неферомагнітних електропровідних тіл за дії імпульсних 
електромагнітних полів (ЕМП), яка враховує адіабатичний 
характер процесів нагрівання і деформування електропровідних 
тіл імпульсними ЕМП. В рамках даної моделі сформульовано 
динамічну задачу термомеханіки для неферомагнітного 
електропровідного шару з плоскопаралельними границями за 
дії імпульсного ЕМП. Запропоновано методику наближеного 
розв’язування сформульованої задачі, яка використовує 
апроксимацію розподілів всіх ключових функцій за товщинною 
координатою кубічним многочленом. Знайдено і чисельно 
проаналізовано розв’язок розглядуваної задачі за однорідної дії 
електромагнітного імпульсу (ЕМІ). Досліджено термомеха-
нічну поведінку і несучу здатність неферомагнітних електро-
провідних пластин за дії електромагнітних імпульсів. 
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