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Abstract: A study of the conditions of application of
an approximate method for analysis of a three-
dimensional pulse electromagnetic field with an arbitrary
current loop, which is located near the flat surface of a
conductive body, has been performed. It has been shown
that each term of the asymtotic series is calculated with
some accuracy, and therefore it has its own minimum
cutoff frequency. An assessment of cutoff frequencies
has been done and appropriate intervals from the pulse
start have been obtained depending on the number of the
series’ term and its chosen tolerable error.
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1. Introduction

The task of electromagnetic field analysis,
distribution of its Joule’s losses and electromagnetic
forces in the system of “a current loop of arbitrary spatial
configuration — a conductive body” was fairly well
investigated [1, 2], but despite this, the practical needs of
developing new devices with specific conditions of field
distribution are still of interest to researchers of this area
of expertise. The discussed devices comprise electro-
hydraulic pulse installations [3], appliances for magnetic
pulse processing of metals [4], equipment for induction
heat processing of metals [5, 6] and others. A variety of
geometrical shapes of electrical devices with three-
dimensional structure of their electromagnetic field
raises the need to develop special methods of calculation
for the each case based on a number of simplifying
assumptions that take into account the most important
features of electromagnetic process.

In these examples, a source of external alternating
field comprises currents flowing through conductors
that, in general case, form loops of arbitrary spatial
configurations. In case of fast pulsing or high-frequency
processes a quite strong skin effect arises in conducting
bodies, whose field penetration depth is considerably
less than the size of a typical electromagnetic system
(size of circuits, distance from them to the surface or
points where the field is computed, curvature of
interfaces between media, etc.). Moreover, if the
electromagnetic wave length is much greater than the
characteristic size of a system, then, for engineering

calculations, the electromagnetic process can be
regarded as a quasi-stationary process for which the
condition of continuity of current is fulfilled, including
the closure of the current circuit.

The purpose of this paper is presenting a linear
solution for, in general case, a three-dimensional
problem of quasi-stationary electromagnetic field
analysis, induced by pulse current flowing in a loop of
arbitrary configuration located over the conductive half-
space characterized by conductivity vy, and relative

permeability ;. It is stated that with the loop with the
current is placed in a non-magnetic medium.

2. Mathematical model

In general, the problem is described by
electromagnetic field equations and boundary conditions
at the border surfaces between different media for
vectors of magnetic field B and electric field E , when
current density j, of external sources in loop elements
is given and current density yE of induced currents in

the conductive body is taken into account [2]:
B . .
rotB=pp,j, + pyYE; rotE :—% ;divB=0;divE=0. (1)
t

In the case of pulse current i(f) acting in linear

media it is convenient to use the Duhamel integral to
determine the time dependence of vector potential,
magnetic field or functions that define them [7]:

o=t

i(r)dr, )

g=t-1

0
where v, (t) is a system response (time dependence of an
appropriate function) to unit pulse current:
0, <0
u(t)=
I, t=20.
To determine v, (t) , the known solution for

electromagnetic field induced by a sinusoidal current
flowing in an arbitrary loop located over conductive
half-space has been used [2, 8]. In the area where the

sinusoidal current with the complex amplitude 7 flows

the complex amplitudes of vector potential A4 and
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magnetic field B are determined by using appropriate
expressions of integration along the loop / :

A= Mot ! J‘(i_t_l—ix grad GJdl, (3)
47 \r n

B:_yoyejf[txr_tlxrl

3 3
dr 3\ r n

(x -V)gradGJ dl. 4

1 T(9p) 4

where G= 2[
0 w

)

To explain the corresponding geometry, a local
element dl of the loop carrying the current / and its
mirror image dl, (mirrored with respect to the flat

surface of the conducting body) are shown in Fig. 1. The
expressions (3) - (5) include the following denotations:
r, r are radius-vectors joining the observation point
QO and the

correspondingly; ¢, ¢ are tangential orts with respect to

current element and its image,

the loop and its mirrored

1
w=9+—4F +iopypy; ; Jo(-) is the Bessel fun-

1

image; A=e, xt;

ction of the first kind of the zero-order; z and p are
local cylindrical coordinates of the point Q (bounded to
a current element); @ is angular frequency; i is ima-
genary unit.

If we consider / (za)) to be a frequency spectrum of
a nonsinusoidal current, the expressions (3) i (4) give us
frequency spectra of the vector potential and the
magnetic field, correspondingly. The first integration
terms describe the magtetic field of the current loop
only, i. e. without taking into account the eddy currents

in the conducting body. The second integration terms
describe the field of induced currents and correspond to

the current /, that flows in the mirrored loop. The
values of the currents /, and / are equal, and their
directions are described by the relation Idl=—1dl,,

which means that / , and I flow in opposite direction

for horizontal proections of the element dl and do in the
same direction for vertical proections. Since the current
frequency does not show up in the first and second
terms, their frequency spectra do not differ from the

frequency spectrum of the current / (za)) The first and

second terms describe the solution of the problem of
field distribution of an arbitrary current loop for high-
speed or high-frequency processes when the field

penetration O =./2/(w,p;y;) is considerably less

than system dimensions [9].

1z dl. Adl - o
i
h
=0 b=l
h Yis Wi
M,
dl,

Fig. 1. Current element over the interface of the media.

For smaller frequencies the impact of electro-
physical properties of the medium is taken into account
by the third integration term. Namely, this term is
responsible for the difference between the frequency
spectrum of the current and the frequency spectrum of
the field. That is why, to find the frequency spectrum of
the vector potential and the magnetic field it is necessary

to obtain the frequency spectrum of the function G(iw)

as a part of the expressions (4) and (5) under integration
sign to receive its spatial derivatives and to perform loop
integration.

Utilizing the formula of Fourrier transformation for

a unit pulse u(t)+U(ia)) =1/iw, we receive the expre-
ssion of the frequemcy spectrum component caused by
the third term in (4) i (5) in the form of the product:

V]G(ia))zU(ia))'G(ia)). (6)

In general case the representation of G(iw) in the

form of improper integral (6) from the expression
containing special functions is fairly complicated for the
analysis and computation. However, it was shown in [8]

that under the condition &= u;0 / ﬁrl <1 the function

G may be approximated by an asymptotic series with
limited number N of its terms as follows:

. N .
Gy=2G,, (7
n=0
where each series term has its own frequency
dependency:
: . Zan(,ui) " (1 g,
G,=(-1) — = @
i) io)

1

n+l _n
1 a
[Iuvlw%:ui%']

In the latter expression a, (ui) denotes the

coefficients of the Taylor series of such function:
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Each term of the series (8) depends only on one

. 1 o . .
coordinate —, what allows us to utilize the integration
"

in accordance with the Biot-Savart law only along the

mirrored loop [8].
Taking into account (6)-(8), the component of the

frequency spectrum V'IG (ia))zU (la))G(la)) may be

represented in the form of the following asymptotic
series:

> _N gn

The reverse Fourrier transformation for each term of

the series Vl (la)) is known [10]. As a result, the time

(10)

dependency for magnetic field computation in case of
unit pulse current u(¢) takes the form

o (1)= S 8n iz (1)
n=0 n+3
")

where T(-) is gamma-function.

Putting the expression (11) into (2), one receives the
dependency v, (t) for the case of an arbitrary current

i(r): |
G

N

Ve (f ) =2 nr

n=0

3. Conditions for the application of the asymptotic
method

Despite the relatively simple form of the
approximate analytical solution of the general problem
of three-dimensional pulse field distribution with
consideration of eddy currents in the lower conducting
half-space, the possibility of its application requires an
analysis of the conditions under which the calculation
error does not exceed a certain preset value. In
particular, the requirement of smallness of & parameter
in the series (7) - (9) implies that the representation of
the results in the form of asymptotic series is justified
not in the entire frequency range. The condition is
violated for small frequencies and expansion is possible

H;
2
Hom

)2 Vdr (12)

if o>

The asymptotic expansion (8) - (10) is featured be
the fact that its every term is calculated with a certain
error which depends on the small parameter ¢ and
increases along with increasing the series term number
n . This fact urges us to confine to smaller number N of
the series terms, so the error of the last term included
does not exceed a certain value. The lower the value ¢,
the greater number of the series terms may be conside-
red. For this reason, as shown in [8], there is an optimal
number of the series term when the error is minimal.

Let us analyze how the influence of the series terms’
number on the approximate value of the function

modulus ‘G N‘ in comparison with the exact value ‘G‘
depends on the value of the small parameter ¢. In the
points located over a mirrored current loop element with
p=0 (rp=z+h), when J,(8p)=J,(0)=1 takes its
maximum value, the improper integral (5) may be
received in analytical form for nonmagnetic medium

(4; =1) [11]. In such case the exact expression of the

function G may be written as follows:

i Vi &
R

where H, 1 N, are the Struve function and Neumann

(13)

function, correspondingly.
Fig. 2 shows the dependencies of the moduli of the

exact function ‘G‘ and the approximate functions ‘G N‘

from the & parameter for different number of series
terms taken into consideration. As one can see, by small
¢ the most exact results are obtained when greater
number of the terms of the asymptotic series is taken into
consideration. With increasing the value of & the
deviation from the exact values increases, and the
deviation may reach its maximum when senior series
terms are taken into consideration. The latter is more
evident while relative calculation errors of the modulus

of the approximate functions Ay :“GN‘—‘G“ / ‘G‘ are

compared (Fig. 3).

For the dependencies shown in the case of small &
the most accurate approximation includes four series
terms (N =4). When the value of & parameter
increases, at some moment the calculation error starts to
be greater for N =4 that for N =2 . Further, for even
greater values of & parameter the error increases, and
includes less

At the same
time the biggest error in this range of ¢ value appears

the most accurate approximation

asymptotic series terms, namely N =1.

by the approximation with the biggest number of series
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terms. While computing the magnetic field of a pulse
current applying the asymptotic expansion, the limitation

Hi

RO oY

manifested by requirement to apply not the full spectrum
of pulse frequencies but only the frequencies that are
greater than appropriate values. Moreover, for each
series term its own cutoff frequency exists. The
application of frequencies that are less than the cutoff
frequency leads to the calculation error of the series term
that exceeds a given tolerable level.

by certain values of &= parameter is
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Fig. 2. The approximate and exact values of the

modulus of G Sfunction for different number N
of series terms by U, = 1 in the observation point.
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Fig. 3. Influence of the number N of the series
termson the relative error of the approximate value

of G Junction calculation by p; = 1 in the observation

point p=0,z=0.

To estimate a relative calculation error of each term

G of the asymptotic series the formula

/|G

exact value; this error depends on the number of a series
term and on the value of & parameter in the form:

n

A, = G,, - GOn was used in [8], where GOn is its

/e i 1 .
A = k=0 kle (14)
n n 1 N
l-e?y —
im0 klg*

Since the parameter ¢ depends on the frequency, to
obtain  its  cutoff  value f, =120, =
_ Hi o
= 3 it is necessary to solve the

2
2(z+h) & uyy

equation (15) for a given tolerable calculation error A,
of a series term and find the frequency f,. We used

normalized cutoff frequencies with the basic frequency
-1
5 =(7rh2 yz ,uO]/) as normalization basis; the basic

frequency is the frequency when the field penetration
into the conducting body is equal to the wvertical
coordinate 6 =4 of a current loop element. In that case,
for computation of the normalized frequency

.
£ Iy 262 (1+z/hY

(14) corresponding values of ¢,

it is necessary to find from

Fig. 4 shows the normalized values of cutoff
frequencies as dependences from the number n of a
series term for three permissible relative calculation
errors for the determination of the asymptotic series
terms. The cutoff frequencies have been obtained by
4; =1 for the point p=0,z=0, i.e. for the point with
the minimum value of the distance #; =/ and, therefore,

with the maximum value of the parameter & and, res-
pectively, with maximum values of cutoff frequencies.
For this point the part of the pulse frequency spectrum
that is not taken into account is the greatest one.

The conducted analysis shows that application of the
asymptotic expansion leads to the fact that the high-
frquency part of a spectrum is taken into consideration
the most. When the spectrum frequency decreases, it is
necessary to decrease the number of series terms up to

that complete elimination for the frequencies f f < fo*.

It is worth to emphasize that the extent of the signal
spectrum consideration or, on the other hand, the
excluded part of the spectrum depends on the frequency
spectrum of the signal, i.e. on the location of
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corresponding cutoff frequencies fn* in the spectrum,

and the values of the latters depend, inter alia, on the
given accuracy A, for calculation of the series terms.

In
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Fig. 4. Normalized cutoff frequencies for different terms
of the asymptotic series in the point p =0,z=0.
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Fig. 5. Normalized maximum instants for different terms
of the asymptotic series depending on their calculation
error A, in the point p=0,z=0.

For a pulse current changing in time the confinement
of the spectrum by certain cutoff frequencies is
manifested by the fact that computation is performed not
during the entire time span but only until some instants
and taking into account only certain number of series
terms. Such relative maximum time intervals may be

calculated using the obtained frequencies fn* by the
formula 7, =1/f: ,where 1, =1, ;.

Fig. 5 shows normalized values of cutoff instants as
dependencies from the given accuracy A, for the first

five series terms.

It should be mentioned that the permissible time
span for the calculations strongly depends both on the
number of the last series term and on the chosen
accuracy A, . It mens that, the closer to the pulse start

the calculation instant is, the more accuratly the
calculation (with application of the proposed asymptotic
method) of three-dimensional electromagnetic field is
carried on.

4. Conclusion

The proposed approach to the calculation of the three-
dimensional electromagnetic field induced by a pulse
current flowing in an arbitrary loop with taking into
account eddy currents in an external conductive body can
significantly simplify the problem and allows us to present
the solution in the form of asymptotic series, whose terms
are functions of the current loop field.

The peculiarity of this method is that each series
term is calculated with a certain error that increases with
increasing of the number of a series term and depends on
the signal frequency. As a result, in the calculation not
the entire range of the frequency spectrum of the pulse is
used. Therewith, concerning the time domain, it is
possible to obtain the time dependency of the field not
for the entire time span but only for its part.

Found for each series term, the lower boundaries of the
frequency spectrum and the corresponding maximum
values of time intervals (counted from the pulse start) allow
us, depending on the chosen permissible calculation error,
to get the permissible number of the series terms which
determines the accuracy of the calculation.

Since the lower cutoff frequencies increase with
increasing of the series term number, the most accurate
calculation may be carried out for the initial period. Usually
a current pulse varies very rapidly and reaches its highest
values during a relatively small period of time, so for this
very period the electromagnetic field is caculated.
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YMOBH 3ACTOCYBAHHS
ACHMIITOTHYHOI'O METOJA PO3PAXYHKY
EJEKTPOMATHITHOI' O IIOJIAA B CHCTEMI
“CTPYMOBHUI KOHTYP-EJEKTPOIIPOBIJTHE
CEPEJIOBHIIIE”

HOpiit Bacensknit, [ppaa Ma3sypesko,
Koctsutun [3t00a

TIpoBelleHO JOCTIIDKEHHS YMOB 3aCTOCYBaHHA HabIH-
JKEHOI'0 METOLY PO3PaxyHKy
TO eJIEKTPOMATHITHOTO TIOJS TOBUTBHOTO KOHTYpPa 31 CTPyMOM,
pO3TANIOBAHOTC  TIOOIU3Y TMOBEPXHI  EJIEKTPO-
MIPOBITHOTO TiNa. [Toka3aHo, MI0 KOXKHMIT WIEH aCHMTOTHIHOTO
PO3KIIAIaHHA OOYUCIIIOETLCA 3 TIEBHOK IIOXHOKOK, y 3B SI3-

TPUBUMIPHOI'O  IMILYJILCHO-

TUIOCKOT

Ky 3 4MM BIH Ma€ BJACHY MIHIMAJIBHY TPaHUYHY Hac-
ToTy. OTpUMAaHO OLIHKY TPaHIYHHUX YacTOT Ta BCTAHOBICHO

BIAINOBIIHI TIPOMDKKM 4Yacy BiI ToYaTKy IMITyJdsca B
3AIENKHOCTI BiT HOMEpa WieHAa psay 1 oOpaHoi mpumycTHMOT
HOTo TTOXMOKH.
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