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Abstract: The article deals with the application of 
binomial and Butterworth standard fractional order 
forms in the synthesis of control systems. This work 
aims at improving the method for the synthesis of 
fractional controllers for the systems of any structure, on 
condition of applying desired standard fractional order 
forms. Due to the usage of standard fractional forms, a 
range of possible settings for fractional order controllers 
in the synthesis of control system loops has been 
expanded and the better desired quality of transition 
processes in comparison with the integer order 
controllers has been provided. It has been proved that 
given the obtained research results for establishing the 
control system loops,, Butterworth standard fractional 
forms with q = 0,9 ÷ 1,3, as well as the binomial ones 
with q = 0,1 ÷ 2 can be recommended to apply since 
they meet the requirements of control objects. Some of 
the obtained results that can be recommended for 
practical use when configuring control systems are 
presented below. In terms of the research conducted, a 
maximum deviation between the simulation results and 
the desired ones does not exceed 1%. Thus, due to the 
proposed approach, the efficiency of the synthesized 
systems has been increased. 

Key words: synthesis of a fractional order controller, 
fractional order transfer function, standard fractional forms.  

1. Introduction  
Synthesis of control systems (CS) using root 

methods makes a wide use of standard forms of a pole 
distribution in the complex plane. The dynamic charac-
terristics of any control system are determined by a 
transfer function (TF) of the system. If a synthesized CS 
has only poles, the form of the transition function of an 
original coordinate will be determined by them, i.e. if  
CS is presented by a transfer function without zeros, its 
dynamic processes are completely defined by an 
expression of the characteristic polynomial )(sH . For 
the systems described by integer characteristic 
polynomials, it is always possible to choose a desired 
(standard) characteristic polynomial )(sH st  of the 

integer order. The number of )(sH st  is large [1], but 

binominal standard forms ( ))(( sHbin ), as well as 

Butterworth standard forms ( )(sH But ) of the integer 
order  n  [1]  are most often chosen for CS. 

Among a variety of CS, there may be the systems 
described by the characteristic polynomials of fractional 
order q  [2, 4, 5, 6, 7, 9, 11, 12, 13] ( q  is a fraction). 
The synthesis of controllers for such systems is based on 
defined parameters of logarithmic amplitude-frequency 
and phase-frequency characteristics, known as Bode 
diagrams [5]. The research into the fractional PID 
controllers is considered in [8, 10]. 

An approach to the synthesis of fractional order CS 
may have analogy with the root methods, provided that 
the desired characteristic polynomial )(sHdes  is 
described by any expression with known transition 
functions. This desired characteristic polynomial can be 
called standard on the analogy with the integer order ones, 
although it does not reflect the pole placement in the 
complex plane. This is due to the fact that the value of the 
poles for fractional order systems is not informative. For 
example, from the expression below we see 

 q
ocssH )()( ω+=  (1) 

that the pole ocis ω−= , i.e. similar to q  = 1; 2; 3... The 
matter is probably about the systems with different dynamic 
properties, and the pole values in both cases are identical. 
At the same time, the transition functions for both systems 
will be different, as well as their Bode diagrams. 

Apparently, the results of the controllers synthesis on 
the basis of any standard form can be used to obtain 
other controllers than the PID ones. 

The aim of this work is improving the method for the 
synthesis of fractional controllers for CS of any 
structure, on condition of applying desired standard 
fractional order forms [3].  

2. Synthesis procedure  
The approach to the synthesis of CS controllers, which 

makes use of the so-called standard binominal and 
Butterworth forms of fractional order [13] is proposed in 
this article. This approach can be used when it is necessary 
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to provide desired properties of the control coordinate: δ  is 
the overshoot value, 95.0t  represents the time of the first 
achieving 95% of the invariable value of the coordinate. 
The algorithm of this approach is as follows: 

1. According to the given block diagram of the 
closed loop, its TF )(sWcl is calculated; 

2. The expression )(sWcl  is transformed, dividing its 
numerator and denominator by the expression 
numerator. Thus, an expression with the numerator equal 
to one is obtained, and the denominator corresponds to 
the characteristic polynomial, which includes unknown 
parameters; 

3. On choosing a binomial or Butterworth standard 
form as the desired one in terms of the desired 
parameters of the transition process, i.e. the overshoot δ  
and the rise time 95.0t , we bring forward the 
transformation of the expression found in 2 above  into 
the TF expression of a characteristic polynomial of the 
selected standard form )(sWst ; 

4. From the condition of identity of the denominator 
of )(sWcl with that of )(sWst , a system of equations 
will be obtained; 

5. The system of equations having been solved, the 
expressions for finding of unknown parameters of the 
characteristic polynomial are obtained, including a TF 

)(sWc fractional controller. 
This algorithm has the following advantages: 
− the possibility of obtaining the desired transition 

characteristics matching the binomial, Butterworth and 
other standard distribution forms of the characteristic 
equation roots for CS with zeros in TF; 

− the possibility of synthesizing an astatic control 
system, based on the dependent, modal and combined 
control principles. 

We have considered the possibility [13] of using the 
fractional variations of a standard distribution form of 
the characteristic equation roots: both binomial and 
Butterworth as the standard ones for CS loops 
optimization. Below, we give some of the results 
obtained that can be recommended for practical use 
when configuring CS. 

3. Standard fractional forms  
Let us consider a Butterworth standard fractional 

order form represented by CS with a TF component: 

 
oc

q
oc

Butst s
sW

ω
ω
+

=)(. , (2) 

and a binomial standard fractional order form 
represented by TF 

 oc
st.bin q

oc
W ( s )

( s )
ω

=
+ ω

, (3) 

where  ocω  is the desired value of the average geometric 
root of an ACS component, which determines its 
performance. 

By using MATLAB environment, we have 
obtained the transition functions and Bode diagrams 
[13] that meet the Butterworth standard fractional 

order form oc
q

But ssH ω+=)(  for q =0.1÷1.9, and 
the binomial standard fractional order form 

q
ocbin ssH )()( ω+=  for  q =0,1 ÷ 2  if  ocω = 1; 10; 

100 s-1. Fig.1 a, b presents transition functions, and 
Fig.2 a, b shows Bode diagrams of the research for  

ocω = 10 s-1,  and parameters of the obtained 
transition functions are given in Table 1 and Table 2 
respectively. 

 
 

 

Fig. 1. Transition functions: 
( )ButH s  for q =0,9; 1,0; 1,1; 1,2; 1,3 (a) and 

( )binH s  for q =0,1; 0,4; 0,8; 1,2; 1,6; 2,0 (b), if ocω =10s-1. 
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Fig. 2. Bode diagrams: ( )ButH s  for q =0,9; 1,0; 1,1; 1,2;  
1,3 (а) and ( )binH s  for q =0,1; 0,4; 0,8; 1,2; 1,6; 2,0 (b),            

if ocω =10s-1. 

Table 1 
Butterworth standard fractional order form  

HBut(s)=sq+ω0 
№ q ωос [s-1] δ [%] t0.95 [s] tsettling [s] 
1 0,9 1 - 4,75 4,75 
2 1,0 1 0 3,014 3,014 
3 1,1 1 2,7 2,272 2,272 
4 1,2 1 7,3 1,9136 5,0925 
5 1,3 1 13,4 1,72 5,53 
6 0,9 10 - 0,365 0,365 
7 1,0 10 0 0,3 0,3 
8 1,1 10 2,7 0,28 0,28 
9 1,2 10 7,3 0,28 0,75 

10 1,3 10 13,3 0,29 0,94 
11 0,9 100 - 0,02985 0,02985 
12 1,0 100 0 0,0319 0,0319 
13 1,1 100 2,7 0,0361 0,0361 
14 1,2 100 7,3 0,0424 0,1106 
15 1,3 100 11,36 0,0506 0,1628 

Table 2 
Binomial standard fractional order form 

Hbin(s)=(s+ω0)q 
№ q ωос [s-1] t0.95 [s] tsettling [s] 
1 0,1 1 0,3018 0,3018 
2 0,4 1 1,2033 1,2033 
3 0,8 1 2,4095 2,4095 
4 1,2 1 3,405 3,405 
5 1,6 1 4,117 4,117 
6 2,0 1 4,789 4,789 
7 0,1 10 0,0319 0,0319 
8 0,4 10 0,1219 0,1219 
9 0,8 10 0,2418 0,2418 

10 1,1 10 0,322 0,322 
11 1,2 10 0,341 0,341 
12 1,6 10 0,4108 0,4108 
13 2,0 10 0,478 0,478 
14 0,1 100 0,00463 0,00463 
15 0,4 100 0,01387 0,01387 
16 0,8 100 0,02592 0,02592 
17 1,2 100 0,0358 0,0358 
18 1,6 100 0,0432 0,0432 
19 2,0 100 0,0507 0,0507 
 
Let us consider different synthesis options of a 

fractional controller for CS in relation to the proposed 
method reasoned by:  

– the peculiarities of the object under control, 
– the wish to obtain a desired transition process 

(monotonous or with overshoot). 

4. Synthesis example 1  
As one of the options of using the proposed approach to 

optimization, we may consider CS with a TF control object 

 2,2 0,9
1( )

0,8 0,5 1
HW s

s s
=

+ +
. (4) 

Control object (4) is borrowed from [9] in order to 
compare the effectiveness of the proposed synthesis 
method with the swarm particle optimization method 
considered there.  Fig.3 demonstrates a block diagram of 
CS with the control object  )(sWH , fractional 

controller )(sWc  and coefficient fcK  feedback, and a 

transition function of the control object which 
corresponds to the TF is shown in Fig. 4 (curve “1”). 

 
Fig. 3. Block diagram of CS. 

In [9], the author set the following parameters of the 
transition process in CS with TF (4): a maximum 10 % 
overshoot and 0.3 s rise time.  As a result of the synthesis, he 
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obtained a TF of the controller and a transition process with 
the following parameters: the 0.03 s rise time and 0,5 % 
overshoot, which differ significantly from the set ones.. It 
should be noted that the parameters of the synthesized 
controller are difficult to be implemented in practice. 

 1,5 1,41( ) 442,38 324,03 115, 27cW s s s−= + + . (5) 

 
Fig. 4. Transition functions of: a control object – curve “1”, 

an"optimized loop using Batterworth form – curve  “2”. 

Let us synthetize the controller for CS by means of 
the proposed method, for example, with the following 
given in Table 1 parameters of the transition process: 
δ =7,3 %, ocω =10 s-1 and 0.95t =0,28 s. 

According to the block diagram (see Fig 3), the TF of 
the closed loop ( )clW s is as follows: 

 
2,2 0,9

2,2 0,9

1( )
0,8 0,5 1( )

11 ( )
0,8 0,5 1

c

cl
c fc

W s
s sW s

W s K
s s

+ +=
+

+ +

. (6) 

Dividing the numerator and denominator of the 
obtained TF, by the numerator, we will obtain  

 2,2 0,9
1( )

0,8 0,5 1
( )

cl

fc
c

W s
s s K

W s

=
+ +

+

. (7) 

It is obvious that to provide the given parameters of the 
transition process, we choose a Butterworth fractional order 
form . ( )st ButW s , and set the requirement for the 
transformation of expression (7)  into expression (2),  with an 
introduced parameter – the feedback coefficient fcK , which 

in expression (2) is equal to 1. If ( )clW s  (7) and ( )stW s  (2) 
are identical, we shall obtain the following: 

 fc
2,2 0,9

/1
0,8 0,5 1

( )

ос

ос
fc

c

K
ss s K

W s

=
++ +

+

ω
ω

. (8) 

The desired parameters of the transition process with 
a 7,3 % overshoot and 0,95t =0,28 s are selected from 
Table 1, which are possible due to the standard form 
(line №9) with the parameters q =1,2; ocω =10 s-1 and 

fcK = 1. Thus 

 . 1,2
10( )

10
st ButW s

s
=

+
. (9) 

Substituting (9) into (8) we shall obtain 

 2,2 0,9 1,2
1 10

0,8 0,5 1 101
( )C

s s s
W s

=
+ + +

+

.  

Equating the identical left and right components of 
the characteristic polynomials, a TF of the fractional 
order controller will be obtained: 

 1,0 0,3 1,2( ) 8 5 10cW s s s s− −= + + . 
With the use of this controller, we obtain a transition 

process with the following parameters: δ =8,1 %, 

0.95t =0,271 s. (Fig. 4, curve “2”), i.e. the deviation from 
the given parameters is less than 1 %. 

5. Synthesis example 2 
Let us consider another fractional controller synthesis 

with the given parameters of the transition process, as in 
the previous example: δ =7,3 % і 0.95t =0,28 s, but for 
CS with a TF control object: 

 0,9
1( )

0,5 1
HW s

s
=

+
. (10) 

Fig. 5 (curve “1”) shows the transition function of the 
control object that meets this TF.  

In this case, the TF of the closed loop ( ( )clW s ) takes 
the following form: 

 
0,9

0,9

1( )
0,5 1( )

11 ( )
0,5 1

c

cl
c fc

W s
sW s

W s K
s

+=
+

+

. 

Having transformed as in the previous example, and 
set standard form (9) for fcK  = 1 , we shall obtain 

0,9 1,2
1 10

0,5 1 s 101
( )c

s
W s

=
+ +

+

. 

Hence, the TF of the controller is: 

 0,3 1,2( ) 5 10cW s s s− −= + ⋅ . (11) 

So, as a result of the synthesis, a fractional order 
controller has been obtained without a proportional 
component of the І2 type.   

With the use of this controller, we obtain a transition 
process with the following parameters: δ =8,1 %, 
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0.95t =0,271 s (Fig. 5, curve “2”), i.e. the deviation from 
the given parameters is less than 1 %. 

 
Fig. 5. Transition functions of a control object– curve “1”,  

an optimized loop –curve “2”. 

6. Synthesis example 3  
Let us consider another option of fractional controller 

synthesis with the given transition function parameters         
δ =0% and 0.95t =0,32s for CS with  TF control object 
(4) (Fig. 6, curve "1"). It is obvious that in this case, on 
condition that there is no overshoot present, a binomial 
standard fractional form should be used. According to 
Table 2, the given parameters of the transition process 
are provided by a standard form with the parameters in 
line 10 of the Table, if ocω =10 s-1 and fcK =1. Then 

 
1.1

1.1( )
( )
ос fc

st
oc

K
W s

s
=

+

ω

ω
. (12) 

From the condition of identity, ( )clW s  and ( )stW s  
the following equation will be obtained: 

 
1,1

fc
2,2 0,9 1,1

/К1
0,8 0,5 1 ( )

( )

ос

ос
fc

c

s s sK
W s

=
+ + +

+

ω

ω
. (13) 

For fcK  = 1 and ocω =10s-1 , by dividing the 

numerator and denominator of the right expression part 
by 101,1, we shall obtain: 

 2,2 0,9 1,1
1 1

0,8 0,5 1 (0,1 1)1
( )p

s s s
W s

=
+ + +

+

. (14) 

In [13], the possibility of approximation of the 
binomial fractional order form by an expression with the 
integer order derivative is proved:  

 1,1 2(0,1 1) 1 0,11 0,00055s s s+ = + + . 

Then expression (14) can be written as 

 2,2 0,9 2
1 1

0,8 0,5 1 0,00055 0,11 11
( )c

s s s s
W s

=
+ + + +

+

. 

Thus, a TF of the controller will be as follows: 

 
2,2 0,9

2
0,8 0,5 1( )
0,00055 0,11

c
s sW s

s s
+ +

=
+

. (15) 

Substituting TF (15) into the initial CS, we shall 
obtain a system with the transition process shown in 
Fig.6, curve “3”, possessing the following parameters: 
δ = 0 % and 0.95t = 0,3195s. Thus, the deviation from 
the given parameters does not exceed 0,2 %. 

 
Fig. 6. Transition functions of a control object – curve “1”,  a 
binomial  form – curve  “2”, an optimized loop    – curve “3”. 

7. Conclusions 
1. The use of standard fractional forms extends the 

range of possible fractional controllers settings in the 
synthesis of CS loops, provides better quality of 
transition processes in comparison with the integer order 
controllers and thereby encreases the effectiveness of the 
synthesized systems. 

2. On the basic of the results obtained, for the CS 
loops to be established, the Batterworth standard 
fractional forms with q =0,9 ÷ 1,3 and the binomial ones 
with  q  =0,1 ÷ 2 can be recommended as those able to 
meet the requirements of the control objects. 

3. The proposed approach to the synthesis of CS 
loops with fractional controllers can provide the desired 
quality of the transition process. The maximum deviation 
between the simulation results and the desired ones does 
not exceed 1 %. 
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СИНТЕЗ СИСТЕМ АВТОМАТИЧНОГО 
КЕРУВАННЯ ЗА ВИКОРИСТАННЯ 
БІНОМІАЛЬНОЇ ТА БАТТЕРВОРТА 
СТАНДАРТНИХ ФОРМ ДРОБОВОГО 

ПОРЯДКУ 
Ярослав Марущак, Богдан Копчак 

Розглянуто застосування стандартних дробових 
біномінальних форм та форм Баттерворта під час синтезу 
систем керування. Метою цієї роботи є удосконалення 
методу синтезу дробових регуляторів довільної структури, 
за умови забезпечення бажаних стандартних форм  
дробового порядку. У зв’язку з використанням дробових 
стандартних форм розширено гамму можливих 
налаштувань дробових регуляторів під час синтезу 
контурів ЕМС та забезпечено кращу якість перехідних 
процесів порівняно з регуляторами цілого порядку. 
Доведено, що на основі отриманих результатів досліджень 
для налагодження контурів ЕМС можна рекомендувати 
дробові стандартні форми: Батерворта за q = 0,9–1,3 і 
біноміальні за q = 0,1–2, як такі, що задовольняють вимоги 
об’єктів керування.  Наведено деякі з отриманих 
результатів, які можна рекомендувати для практичного 
використання під час налаштування систем керування. З 
огляду на проведене дослідження, максимальне відхилення 
між результатами, отриманими через моделювання і 
бажаними не перевищує 1 %. Отже, завдяки запропоно-
ваному підходу підвищено ефективність синтезованих 
систем. 
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