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Abstract: The mathematical model of a 
synchronous machine developed by means of the 
authors' method of average voltages on an integration 
step is described. This model is formed in phase 
coordinates and takes into consideration non-linearity of 
a magnetization characteristic. The features of the 
mathematical model developed are high calculation 
performance and numerical stability that enables the 
developed model to be used for real-time modeling of 
complicated electrical power systems. The described 
mathematical model has been used as a  part of the real-
time mathematical model of the electric power 
generation system of South-Ukrainian Nuclear Power 
Plant. The computer simulation results are presented. 
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1. Introduction 
The area of application of mathematical modeling 

methods is constantly expending. Today, mathematical 
models are being used not only to analyse  complicated 
electrical engineering systems but also to control and 
diagnose them. Hybrid models have good prospects for 
being applied since they combine mathematical (digital) 
models and physical objects. Such models can be used for 
solving the whole complex of tasks related to the analysis of 
operating regimes, diagnostics and tuning of control 
systems, training of maintenance staff. In this case, the 
mathematical models must work in real-time mode and, 
also, be characterized by high calculation performance and 
numerical stability. The development of such mathematical 
models for the elements of electrical engineering systems, 
in particular for synchronous machines widely used in 
power systems, is of interest at this time.  

2. Statement of problem 
There are known mathematical models of synch-

ronous machines in phase coordinates that take into 
consideration non-linearity, asymmetry of windings, 
influence of damper system [1, 2]. Such models, together 
with the models of semiconductor converters and other 
typical component elements, can be used for the creation 

of computer models of complicated electrical power 
systems. However, they require a considerable amount 
of calculations on the integration step, accuracy and 
numerical stability being largely determined by the 
chosen method of integration. This complicates their 
application in control systems and hybrid models, which 
must function in a real-time mode. 

 Simpler models in orthogonal coordinates provide 
high performance of calculations but they have a limited 
area of application because of lower completeness of 
description, and impossibility of asymmetry realization. 

Consequently, it is vital to develop mathematical 
models of synchronous machines that would combine 
high description completeness inherent in the models in 
phase coordinates, and would require a diminished 
amount of calculations. 

In order to increase the performance of computations 
and to provide real-time calculations, such models must 
allow long-term calculations at a greater integration step. 
This article is concerned with the creation of such models.  

3. Synchronous machine equations 
Let us consider a nonsalient pole synchronous 

machine (SM) without taking into account the influence 
of rotor damper circuits.  

Let us present each phase of SM's stator as an 
electric branch as shown in Fig. 1. 

 
Fig. 1. Electric branch of a SM's stator. 

The value of equivalent inductance can be found by 
the transformation from the known equivalent circuits of 
SM in dq-axes as 
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In order to take into consideration the non-linearity 
of a magnetization characteristic, the inductance Lad  is 
defined as a function of magnetization current. 

The e.m.f. in SM's stator phases electric branches are 
determined as 
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where ' fr  is the resistance of a field winding 

referred to the stator winding; ,  ,  fA fВ fСu u u  are the 

projections of excitation voltage on the stator’s winding 
axis, which are determined as: 
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 2 / 3=ρ π , ' fu  stands for the excitation voltage, 

referred to the stator winding; , ,fA fВ fСі і і  are the 

projections of an excitation current on the stator winding 
axis; Rω  represents the angular speed; pz is the number 

of pole pairs. 
The flux linkage of the stator's phases in (1) will be 

equal to: 
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The currents of stator and rotor windings are 
determined through the following differential 
equations  
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The electromagnetic torque of SM will be equal to: 
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The rotation speed of SM is determined by using the 
equation below: 

 SM eR M Md
dt J

−
=

ω
, (7) 

where еМ  is the external torque. 

4. The algebraization of SM's equations based on 
the method of average voltages on an integration step 

For the algebraization of SM's equations, let us use 
the method of average voltages on an integration step 
that is notable for its stability and high accuracy, even at 
a large integration step value [3]. 

According to this method, the equation for electric 
branch that contains the source of e.m.f., inductance, 
capacity and resistance is written as 
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where ,  ,  ,  ,  R C Lu e u u u  represent the instantaneous 
values of the applied voltage, e.m.f., voltages on 
resistance, ideal capacitor and inductance, 0t  stands for 
the time value at the beginning of an integration step, 

t∆  denotes the integration step value.  
Having integrated (8), the following equation has 

been obtained: 
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are the average values of the applied voltages and the 
voltages on the  branch elements, respectively; 0 1,ψ ψ  
stand for the flux linkages at the beginning and at the 
end of an integration step. 

The instantaneous values of the voltages on the 
resistance and capacitor is presented as 

 0R R Ru u u= + ∆ , 0C C Cu u u= + ∆ , (10) 

where 0 0,R Cu u  are the values of voltages at the 
beginning of an integration step: 
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represent the increments of these voltages beginning 
from 0t t> ; 
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 are the k-order derivatives of 

the voltages at the time moment 0t t= . 
When analysing, it is necessary for currents, voltages 

and flux linkages to be calculated at the end of an 
integration step. For this purpose, the character of a 
current curve should be defined within the integration 
step. It can be a straight line, a parabola, or an m-order 
polynomial in general. In this case, the increment of the 
current on the integration step will be equal to: 
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With (12) being taken into consideration, the 
dependences between the derivatives of voltages and 
currents are as follows:  
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On the basis of (10) – (13) in [1], an equation for the 
branch has been obtained, The equation contains such 
unknowns as the branch current at the end of the 
integration step і1 and the average value of the applied 
voltage U on the step: 
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where 0i is the branch current at the beginning of the 
integration step; 0 1,  L L  are the branch inductances at the 

beginning and at the end of the integration step, m  
represents the order of a polynomial by which the 
current curve is described on the integration step (order 
of method); t∆  stands for the integration step value. 

As an example, in accordance with the 2nd-order 
method of average voltages on an integration step, an 
electric branch that contains resistance R, inductance L 
and e.m.f. is described by the following equation 
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Having applied equation (15) to the SM's  model, we 
shall obtain the following equations for the SM's stator 
(indexes 0 and 1 correspond to the variable value at the 
beginning and at the end of the integration step 
respectively):  
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The average values of е.m.f. on an integration step 
are defined as 

0 2
A

A A
de tE e
dt

∆
= + , 0 2

B
B B

de tE e
dt

∆
= +  

 0 2
C

C C
de tE e
dt

∆
= + . (17) 

The derivatives of е.m.f. in the stator phases will be 
determined from (1): 
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where the derivatives of excitation current projections on 
the stator winding axis are determined from (5); the 
derivatives of stator flux linkage will be equal to:  
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the derivatives of excitation voltage projections on the 
stator winding axis, according to (2): 
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The projections of an excitation current on the 
stator winding axis at the end of an integration step are 
determined from the formulas below: 
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5. The algorithm of equation solving 
The algorithm for solving mathematical model 

equations on an integration step is as follows. 
1. The projections of an excitation voltage on the stator 

winding axis , ,fA fВ fСu u u  are determined from (2); the 

flux linkage of stator phases , ,А В Сψ ψ ψ  are determined 
from (3) based on the values of stator and field currents at 
the beginning of an integration step; the e.m.f. in the stator 
phases , ,А В Сe e e  are determined from (1). 

2. The derivatives of stator currents are determined 
from (4). 

3. The electromagnetic torque of SM is determined 
from (6) 

4. The derivative of SM’s rotation speed is 
determined from (7). 

5. The derivatives of excitation current projections 
on the stator winding axis are found from (5). 

6. The derivatives of stator flux linkage are obtained 
from (19), and the derivatives of excitation voltage 
projections on the stator winding axis are determined 
from (20). 

7. The derivatives of stator е.m.f. are determined 
from (18). 

8. The average values of the stator е.m.f. on an 
integration step , ,А В СE E E  are determined from (17). 

9. The values of stator currents 1 1 1, ,A В Сi i i  at the 
end of an integration step are determined from (16). 

10. The projections of an excitation current on the 
stator winding axis 1 1 1, ,fA fВ fСi i i  are determined from 

(21) (the amplitude of these currents is equal to the 
excitation current). 

The input computational information includes  voltages 
applied to the stator phases, values of the variables at the 
beginning of an integration step,  electromagnetic parameters, 
an external torque on the shaft of SM. 

5. The model application results 
The described mathematical model of a synchronous 

machine has been used for the mathematical modeling of 
parallel-working turbogenerators SG2 and SG3 as part of the 
mathematical model of the electric power generation system 
of South-Ukrainian Nuclear Power Plant (Fig. 2), which 
contains three 1000 МW turbogenerators SG1, SG2 and SG3 
operating in parallel. The nominal data of the turbogenerators 
are:  26.7nI =  kA,  24nU =  kV, ncos  0.9=ϕ . 

The excitation system of the turbogenerators contains 
a brushless exciter (the excitation systems of the 
turbogenerators SG2 and SG3 are not shown in Fig. 2). 

The mentioned mathematical model of the electric power 
generation system of South-Ukrainian Nuclear Power Plant 
works in a real-time mode as part of the digital diagnostic 
complex designed for the testing and diagnostics of real 
excitation systems by connecting the physical excitation 
system to the real-time computer model of a power unit; 
tuning of excitation controllers and protection systems; 
analysis of turbogenerator's operating regimes and detection 
of reasons for abnormal situations; training of maintenance 
staff of a power plant (works as a trainer) [4]. 

 
Fig. 2. The functional scheme of an electric power generation 
system: EX – brushless exciter; TR1 – input transformer of the 
main generator's excitation system; TR2, TR3, TR4 – generator 

transformers, AT –  autotransformers, EC – excitation controller. 
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The features of the implemented in the DDC model 
of an electric power generation system are as follows: 
taking into consideration the non-linearity of electric 
machines (modelled in phase coordinates) and 
semiconductor converters (every thyristor (or diode) is 
replaced by the branches with resistance and 
inductance); taking into consideration the asymmetry 
and interferences between all component parts; the 
possibility of model’s interacting with real physical 
equipment through analogue and discrete signals. 

A necessity of applying superfast mathematical 
models of generators operating in parallel is explained 
by the necessity of increasing the speed of computation  
and providing the continuos real time model operation 
for a long period of time (for about twenty-four hours). 

Figures 3–6 depict the simulation results in the form of 
time dependencies of variables for the regimes of initial 
excitation of the synchronous generator TG2, its connection 
to a power network and loading by active power. 

 
Fig. 3. Stator phase voltage of TG2 in the regime  

of initial excitation. 

 
Fig. 4. Excitation current of TG2 during the initial excitation, 
connecting to a power network and loading by active power. 

 
Fig. 5. Stator currents of TG2 during the initial excitation, 

connecting to a power network and loading by active power. 

 
Fig. 6. Active and reactive output power of TG2 during  

the initial excitation, connecting to a power network  
and loading by active power. 

Fig. 7 shows a computation oscillogram of reactive 
power on the outputs of TG1 and TG2 for the regime of 
output reactive power redistribution between the 
generators as the result of increasing TG2's voltage set 
point. The results demonstrate that with the reactive 
power on the output of TG2 increasing, the reactive 
power generated by TG1 is reduced. The value of  
reactive power is determined by the value of voltage in a 
power line and the voltage set point signals in the 
excitation controllers of the generators. 

 
Fig. 7.  Computation oscillograms of reactive power 

redistribution between TG1 and TG2. 

6. Conclusion 
The developed mathematical model of a 

synchronous machine is notable for a diminished amount 
of calculations on an integration step and, at the same 
time, keeps all the advantages of the mathematical 
models in phase coordinates. 

The use of the method of average voltages on an 
integration step for the creation of this mathematical 
model provides high numerical stability, possibility to 
increase the step value resulting in high computational 
accuracy. This substantially enhances computation 
performance of the model and provides good prospects 
of using it in real-time systems. 
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МАТЕМАТИЧНА МОДЕЛЬ 
СИНХРОННОЇ МАШИНИ  

НА ОСНОВІ МЕТОДУ СЕРЕДНІХ 
НАПРУГ НА КРОЦІ ІНТЕГРУВАННЯ 

Омелян Плахтина, Андрій Куцик 

Описано математичну модель неявнополюсної синх-
ронної машини, створену з використанням авторського 
методу середніх напруг на кроці чисельного інтегрування. 

Математичну модель створено у фазних координатах з 
урахуванням нелінійності характеристики намагнічування. 
Особливістю цієї моделі є її висока швидкодія та числова 
стійкість, що дає змогу використовувати її для мате-
матичного моделювання в реальному часі складних 
електротехнічних систем.  
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