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Abstract. The task of signal recovery is one of the 
most important for automated diagnostics and control 
systems. This task is computationally complex, 
especially when there are a lot of heterogeneous errors in 
the signals and recovery is to be performed in real time. 
The article deals with the application and investigation 
of a modified algorithm for the method of quadrature 
formulas for the numerical solution of the Volterra 
integral equations of the I kind in solving the problem of 
signal recovery in real time. A method is proposed for 
selecting the parameters of regularizing links of 
computing means. 

Key words: Signal reconstruction, interference, real 
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1. Introduction 
The integral formulation of the problem of 

reconstructing the input signal of a stationary dynamic 
object is described by the Volterra equation of the I kind 

 ( ) ( ) ( )
0

,
t

K t s y s ds f t− =∫  (1) 

where the functions y(t) and f(t) represent respectively 
the input and output signals, and a kernel (function K (t)) 
is the impulse response function of the object. 

The problem of solving equation (1) belongs to a 
class of ill-posed problems, since the presence of errors 
in its right side and the kernel usually causes numerical 
instability of the solution process, which makes it 
necessary to use regularization methods [1]. 

In many cases, in order to increase the stability of 
the solution process of the integral equation of type (1) 
A.N. Tikhonov’s regularization method [2] is used, 
reducing the problem to solving the integro-differential 
equation, one of the conditions for which is K(0) ≠ 0. 
However in real objects usually K (0) = 0, which limits 
the possibilities of the method. 

In this article, to ensure the stability of the 
computing process, a possibility of using the Lavrentiev 
regularization method is considered with a specific 
modernization of the regularization parameter search 
process. 

2. Application of Lavrentiev method 
According to the Lavrentiev method, the following 

equation is solved instead of equation (1): 

 ( ) ( ) ( ) ( )
0

.
t

y t K t s y s ds f t+ − =∫α  (2) 

The problem of determining the regularization 
parameter α is time- and effort-consuming [3]. In the 
work [3] multiple ways of determining α are shown, 
including the method of model experiments (examples) 
for the Fredholm integral equation of the I kind. 

Let us consider the possibility of applying the method of 
model experiments to determining the regularization 
parameter α in the solution of the Volterra integral equation 
of the I kind. The procedure of determining the parameter α 
consists of the following steps. 

1. For solving the integral equation (1) a model 
equation is created  

 ( ) ( ) ( )
0

,
t

Q QQ t s y s ds f t− =∫  (3) 

in which Q(t) coincides with the predetermined function 
K(t) and solution yQ(t) is given (selected) in such a way, 
that the right side fQ(t) is as close as possible to f(t), i.e. 

 ( ) ( ) ( ) ( )
0

.
t

Q Qf t f t Q t s y s ds≈ = −∫  (4) 

2. In practice, measurement mistakes are inevitable 
and instead of the equation with exactly known right side 

( )f t  we obtain an approximate right side, i.e. 

( ) ( ) ( ) ,f t f t f t= + ∆  

where ( )f t∆  is an error. Having the law (e.g., normal) 

of ( )f t∆ distribution, we can write down 

( ) ( ) ( ) ,f t f t f t= +ξ  

where ξ is a normally distributed random number. 
Therefore, the right part of the model equation (3) we 
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perturb with an error at which values Q Qf f∆  and 

Q Qf f∆  are approximately equal, i.e. instead of 

equation (3) we have 

( ) ( ) ( )*

0
,

t
Q QQ t s y s ds f t− =∫                  (5) 

where ( ) ( ) ( )* .Q Q Qf t f t f t= + ξ  

Applying the Lavrentev regularization method 
allows us to represent equation (3) as 

( ) ( ) ( ) ( )*

0
.

t
Q Q Qy t Q t s y s ds f t+ − =∫α αα            (6) 

3. By repeated numerical solving equation (6), e.g. 
by using quadrature formulas, αoptQ is determined for 
some values of α, at which 

( ) ( ) 2

0
min, 1, ,

m
Q i Q i

i
y t y t i m

=
− = =∑ α          (7) 

where m is the number of sampling points. 
4. The obtained value αoptQ is used to solve integral 

equation (1). 
Numerical simulations show that using the method 

of modeling experiments for the development of the 
algorithm for solving a numerical equation for signal 
restoration problem (1) allows determining the effective 
values of the parameter α which regularizes the problem. 

When solving the considered problem numerically, 
it is important to understand possible errors of the result. 

Note that for a linear integral equations the error of 
solutions can be expressed using the fundamental error 
formulas. Indeed, the machine solution can be 
represented as depending on a number of quantities q1, 
q2, ..., qn, characterizing the model parameters, input 
actions, etc., whose deviations cause errors of the result. 
If there are deviations, real solution can be decomposed 
into the limited Taylor series and can be represented as 

( ) ( )
( ) ( ) ( )

1 1 1

1 1 2 2

, , , , , ,

,
n n n

n n

Y t q q q q Y t q q

u t q u t q u t q

+ ∆ + ∆ ≈ +

+ + + +

K K

K
    (8) 

where u1(t), u2(t), ..., un(t) are influence (or sensitivity) 
coefficients. 

Subtracting the exact solution of Y(t, q1, q2, ..., qn) 
from (8), we obtain 

( ) ( ) ( ) ( )1 1 2 2 .n nY t u t q u t q u t q∆ + ∆ + ∆ + + ∆K  

3. Determination of sensitivity coefficients 
To determine the sensitivity coefficients, the 

corresponding equations can be obtained. We assume 
that the parameters q1, q2, ..., qn are determined by the 

internal properties of the model, i.e. they are part of the 
kernel of the solved machine equation, which in this case 
has the form 

( ) ( ) ( ) ( )1
0

, , , .
t

M nY t K t s q q Y s ds f t+ − =∫ Kα      (9) 

(Y(t) is the sought approximate solution) 
Differentiating both sides of (9) in respect to the 

parameter qi (i = 1, ..., n), we obtain 

( ) ( ) ( )1
0

, , , 0
t

M n
i i

Y t
K t s q q Y s ds

q q
∂ ∂

+ − =
∂ ∂∫ Kα  

or 

( ) ( ) ( )

( ) ( )

1

0

1

, , ,

, , , 0.

t
M n

i i

M n
i

K t s q qY t
Y s

q q

Y s
K t s q q ds

q

∂ −∂
+ +∂ ∂

∂ 
+ − =∂ 

∫
K

K

α

 

Introducing the notation 

( ) ( ),i
i

Y s
u t

q
∂

=
∂

 

( ) ( )1
1

, , ,
, , , ,

i
M n

Mq n
i

K t s q q
K t s q q

q
∂ −

′= −
∂

K
K  

we obtain the sought equations 

( ) ( ) ( )

( ) ( )

1
0

1
0

, , ,

, , , .
i

t
i M n i

t
Mq n

u t K t s q q u s ds

K t s q q Y s ds

+ − =

′= − −

∫

∫

K

K

α

      (10) 

The function Y(s) on the right side of equation (10) can 
be expressed in terms of approximate solutions. As it can be 
seen from (10), to determine the sensitivity coefficients we 
can decide to use the basic solved equation, since the kernel 
of equation (10) coincides with its kernel. 

4. Estimation of error 
As it is done in the case of differential equations, the 

equation for the error can be obtained for linear integral 
equations. We assume that while solving (2), equation 
actually being solved looks like this 

( ) ( ) ( ) ( )
0

,
t

y t G t s y s ds t+ − =∫ % %% ϕ              (11) 

where ( ) ( ) ( ) ( ), .G t s K t s t f t− = − =% % %α ϕ α   

We assume that ( )G t s−%  takes into account initial 
modeling errors (methodical and instrumental ones) and 
represents the sum 

( ) ( ) ( ).G t s G t s G t s− = − + ∆ −%  
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The right side ( )t%ϕ  of equation (11) contains the 
external disturbance error and equals 

( ) ( ) ( );t t t= + ∆%ϕ ϕ ϕ  

( )y t%  is an approximate solution determined by the 
relation 

( ) ( ) ( ).y t y t y t= + ∆%  

where Δy(t) is the total error of the solution. Then, by 
subtracting expression (2) from (11), we obtain 

( ) ( ) ( ) ( ) ( ){
( ) ( )} ( )

0

.

t
y t G t s G t s y s y s

G t s y s ds t

∆ + − + ∆ − + ∆ −      

− − = ∆

∫

ϕ

 

Expanding brackets under the integral and 
considering errors ΔG(t – s) and Δy(t) so small that their 
product can be neglected, we obtain the sought equation 

( ) ( ) ( ) ( ) ( ) ( )
0 0

t t
y t G t s y s ds t G t s y s ds∆ + − ∆ = ∆ − ∆ −∫ ∫ϕ  

or 

( ) ( ) ( ) ( ) ( ) ( )∫∫ −∆−∆=∆−+∆
tt

dssystKtfdssystKty
00

.α
 

It is difficult to use this equation for calculating the 
error Δy(t) because of the uncertainty generally occurring 
in primary errors, as well as due to the fact that instead 
of true solution y(s) on the right side we must use the 
approximate one. However, it is applicable for a 
qualitative study of errors, since it particularly shows 
that various components of the total error can be defined 
separately (leaving in the right side only Δf(t), we can 
determine the  inherited error of the result, and leaving 
only the integral – the numerical algorithm error). In 
addition, the equation for the error allows us to make its 
assessment. Let us give an example of such an 
assessment. 

If (t, s) belongs to the region D, 0 , 0t s t≤ ≤ ≤ ≤δ  
and you can set constraints 

( )
( )

( )
( )

( )
( )

[ ]
( )

, ,

, 0,

max , max ,

max , max ,

t s D t s D

t s D t

K t s K K t s K

K t s f t f

∈ ∈

∈ ∈

− ≤ − ≤

∆ − ≤ ≤

% %

%
δ

δ
 

[ ]
( )

0,
max ,

t
f t

∈
∆ ≤

δ
η  

then, using the results of [4], we obtain the estimate 

( )
( )1

1
1

K K t
Ktey t f e

K K

− 
 −

∆ ≤ + 
− 

  

%
%

%
α

αδ µ . 

5. Conclusion 
Thus, the use of the Lavrentiev regularization 

method in solving the Volterra integral equations of the I 
kind provides required stability of the signal recovery 
process, and the method of model experiments allows 
determining the values of the regularization parameter. 
Expressions obtained on basis of the accuracy analysis of 
solved equations are the basis of deterministic and 
probabilistic error estimate of the sought solution. 
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СПОСІБ РЕГУЛЯРИЗАЦІЇ ЗАДАЧІ 
ВІДНОВЛЕННЯ ВХІДНОГО СИГНАЛУ 

ДИНАМИЧЕЧНОГО ОБ’ЄКТА 
Андрій Верлань, Ю. Стертен, Юрій Фуртат 

Задача відновлення сигналів є однією з першо-
чергових для автоматизованих систем діагностики і 
управління. Це обчислювально складна задача, особливо за 
наявності в сигналах великої кількості гетерогенних завад і 
необхідності проводити відновлення в реальному часі. У 
статті розглянуто питання застосування та дослідження 
модифікованого алгоритму методу квадратурних формул 
чисельного рішення інтегральних рівнянь Вольтерра 
першого роду у разі розв’язання задачі відновлення 
сигналів у реальному часі. Запропоновано спосіб вибору 
параметрів регуляризуючих зв’язків моделювальних 
ланцюгів обчислювальних засобів. 
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