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Abstract. The task of signa recovery is one of the
most important for automated diagnostics and control
systems. This task is computationally complex,
especialy when there are alot of heterogeneous errorsin
the signals and recovery is to be performed in real time.
The article deals with the application and investigation
of a modified algorithm for the method of quadrature
formulas for the numerical solution of the Volterra
integral equations of the | kind in solving the problem of
signal recovery in red time. A method is proposed for
selecting the parameters of regularizing links of
computing means.
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1. Introduction

The integra formulation of the problem of
reconstructing the input signa of a stationary dynamic
object is described by the Volterra equation of the | kind

t
oK (t- s)y(s)ds=f(t), (1)
0

where the functions y(t) and f(t) represent respectively

the input and output signals, and a kernel (function K (t))

istheimpul se response function of the object.

The problem of solving equation (1) belongs to a
class of ill-posed problems, since the presence of errors
in itsright side and the kernel usualy causes numerical
instability of the solution process, which makes it
necessary to use regularization methods [1].

In many cases, in order to increase the stability of
the solution process of the integral equation of type (1)
A.N. Tikhonov's regularization method [2] is used,
reducing the problem to solving the integro-differential
equation, one of the conditions for which is K(0) # O.
However in rea objects usually K (0) = 0, which limits
the possibilities of the method.

In this article to ensure the <ability of the
computing process, a possibility of using the Lavrentiev
regularization method is considered with a specific
modernization of the regularization parameter search
process.

2. Application of Lavrentiev method
According to the Lavrentiev method, the following
equation is solved instead of equation (1):

ay(t)+z(?K(t- s)y(s)ds= f (t). 2)

The problem of determining the regularization
parameter a is time- and effort-consuming [3]. In the
work [3] multiple ways of determining a are shown,
including the method of model experiments (examples)
for the Fredholm integral equation of the | kind.

Let us condgde the possibility of applying the method of
modd experiments to determining the regularization
paramder a in the solution of the Volterra integral equation
of the | kind. The procedure of determining the parameter a
cond gsof thefollowing seps

1. For solving the integral equation (1) a model
equation is created

At 9)yo (9ds = fo 1), @

0

in which Q(t) coincides with the predetermined function
K(t) and solution yo(t) is given (selected) in such a way,
that theright sidefo(t) isas close as possibleto f(t), i.e.

t

f(t)» fq (t):g)Q(t- s) Yo (s)ds 4

2. In practice, measurement mistakes are inevitable
and instead of the equation with exactly known right side

f (t) we obtain an approximate right side, i.e.

f(t)=f(t)+Df (t),
where Df (t) is an error. Having the law (e.g., normal)
of Df (t) distribution, we can write down
f(t)="f(t)+xf(t),

where x is a normally distributed random number.
Therefore, the right part of the model equation (3) we
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perturb with an error at which values”DfQ"/" fQ" and

”DfQ"/" fQ" are approximately equal, i.e. instead of
equation (3) we have

Rt~ )% (s = 15 (1), ®

0

where f(s (t) = fq (t)+x fo(t).
Applying the Lavrentev regularization method
allows usto represent equation (3) as

aYoa (t)+z(;)Q(t- S) Yaa (8)ds= o (t). (6)

3. By repeated numerical solving equation (6), e.g.
by using quadrature formulas, aguo iS determined for
some values of a, at which

_go|yQa (t)- Yo(t) =min, i=1m (@

where misthe number of sampling points.

4. The obtained value ayg is used to solve integral
equation (1).

Numerical smulations show that using the method
of modeling experiments for the development of the
algorithm for solving a numerical equation for signa
restoration problem (1) allows determining the effective
values of the parameter a which regularizes the problem.

When solving the considered problem numerically,
it isimportant to understand possible errors of the result.

Note that for a linear integral equations the error of
solutions can be expressed using the fundamental error
formulas. Indeed, the machine solution can be
represented as depending on a number of quantities g,
Oz, .-, On Characterizing the model parameters, input
actions, etc., whose deviations cause errors of the result.
If there are deviations, real solution can be decomposed
into the limited Taylor seriesand can be represented as

Y (t o + Doy, K, 6 + Doy ) » Y (1,0, <, 0 ) +
+ul(t)q1+u2(t)q2 +K+up, (t)qn,

where uy(t), ux(t), ... un(t) are influence (or sensitivity)
coefficients.

Subtracting the exact solution of Y(t, qi, O, ..., On)
from (8), we obtain

DY (t) +uy (t) Doy +us, (t) Do +K +uy, (t) Doy

®)

3. Determination of sensitivity coefficients

To determine the sengtivity coefficients, the
corresponding equations can be obtained. We assume
that the parameters q; Oy, ..., 0, are determined by the
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internal properties of the modd, i.e. they are part of the
kernel of the solved machine equation, which in this case
has the form

aY (1) + oK (t- 50,6 )Y(9)ds= F (1), (9
0

(Y(t) is the sought approximate sol ution)
Differentiating both sides of (9) in respect to the
parameter g (i = 1, ..., n), we obtain

() ty
a—*r+5—Kpy (t- 55q,K,q,)Y(s)ds=0
o oo m (-5 k)Y (s)

or

t @ .
a ﬂY(t)+£ﬂKM (t S’ql’K’q”)Y(s)+
o oe fig
LA EN
o o

+KM (t' S!Ql!K!Qn)

Introducing the notation

v (s)
fioy =ult)

K (t- s q.K,qy)
T
we obtain the sought equations

= K@Iqi (t' S!Ql!K!Qn),

au (t)+t()KM (t- s, K,q,)u (s)ds=

L (10)
=- Kfhg (t- 5.0, K,an)Y(s)ds

0

The function Y(s) on the right side of equation (10) can
be expressad in terms of approximate solutions. Asit can be
seen from (10), to determine the sengtivity coefficients we
can decide to use the badc solved equation, since the kernd
of equation (10) coinddes withitskernd.

4. Estimation of error

Asit isdonein the case of differential equations, the
equation for the error can be obtained for linear integral
equations. We assume that while solving (2), equation
actually being solved looks like this

(11)

%(t)+z?(%(t- 8)y(s)ds=j(t),
where &(t- s)= K (t- s)/a,jb(t) = f (t)/a.

We assume that d‘i(t- s) takes into account initial

modeling errors (methodical and instrumental ones) and
represents the sum

&(t- s)=G(t- s)+DG(t- s).
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The right side j#(t) of equation (11) contains the
externa disturbance error and equals

j#(t)=i (t)+0O (t);
¥(t) isan approximate solution determined by the
relation

¥(t)=y(t) +Dy(t).

where Ay(t) is the tota error of the solution. Then, by
subtracting expression (2) from (11), we obtain

rdgs(t- )+ 06(t- iy (9)+ (9
- G(t- s)y(s)hds=Dj (t).

Expanding brackets under the integral and

considering errors AG(t — s) and Ay(t) so small that their
product can be neglected, we obtain the sought equation

Dy(t)+Z?G(t- $)Dy(s)ds=Dj (t)- oG (t- s)y(s)ds

0
or

t

aoy(t)+§<(t- s)Dy(s)ds = DF (1)- oK - s)y(s)ds

0

It is difficult to use this equation for calculating the
error Ay(t) because of the uncertainty generally occurring
in primary errors, as well as due to the fact that instead
of true solution y(s) on the right side we must use the
approximate one. However, it is applicable for a
gualitative study of errors, since it particularly shows
that various components of the total error can be defined
separately (leaving in the right side only Af(t), we can
determine the inherited error of the result, and leaving
only the integral — the numerical algorithm error). In
addition, the equation for the error allows us to make its
assessment. Let us give an example of such an
assessment.

If (t, ) belongsto theregion D, O£t£d,0£s£Et

and you can set constraints

(tmallxD|K (t-s |£K ax |Iﬂ%(t- s)|£lﬂ%,
max |DK (t-s )| , Hﬁ |
(t.sfiD ) [Od]

max |Df(t)|£h,

g E(K I%)t 1 83%
Dy(t)£§fdea %- +mged

e ) u

e

5. Conclusion

Thus, the use of the Lavrentiev regularization
method in solving the Volterraintegral equations of the |
kind provides required stability of the signal recovery
process, and the method of model experiments allows
determining the values of the regularization parameter.
Expressions obtained on basis of the accuracy anaysis of
solved equations are the basis of deterministic and
probahilistic error estimate of the sought solution.
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CIIOCIB PET'YJISAPU3ALII 3AJIAYUT
BITHOBJIEHHS BXIZTHOI'O CUT'HAJTY
JUHAMUYEYHOI'O Ob' €EKTA

Annpiii Bepnans, 1O. Crepren, HOpiii ®yprat

3amaya BIJHOBJICHHS CHTHAJIB € OJHIEI0 3 IepIIo-
YeproBuxX JUIl aBTOMATH30BAHUX CHCTEM JIIarHOCTHKH 1
yrpasiiaHas. Lle o0uncmoBanbHO CKilaqHa 3a/1a49a, 0COOJIMBO 3a
HasIBHOCTI B CHTHAJIaX BEJIMKOI KIIBKOCTI T€TEPOreHHHX 3aBaf i
HEOOXiIHOCTI IPOBOJMTH BiJJHOBJICHHS B peajbHOMY uaci. Y
CTaTTi PO3IISIHYTO NUTAHHS 3aCTOCYBAaHHS Ta JIOCIIJKEHHS
MOAN(IKOBAHOIO ANTOPUTMY METONY KBaApaTypHHX (OpMyI
YHCEJIbHOTO PpIIIeHHs IHTErpalbHUX pIBHSIHb BonbTeppa
MepIIoro poxy Yy pasi po3B’si3aHHS 3a7adi  BiJHOBJICHHS
CHTHAJIIB y pealbHOMY 4aci. 3amporoHoBaHO crocié BubOpy
rapaMeTpiB  peryjsipu3yiodux  3B'S3KIB  MOJEITIOBAaIBHHUX
JIAHITIOT1B O0YHCITIOBAJILHUX 3aCO0IB.
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