COMPUTATIONAL PROBLEMSOF ELECTRICAL ENGINEERING

Vol. 6, No. 2, 2016

SOLVING 3D PROBLEMSOF POTENTIAL THEORY
IN PIECEWISE HOMOGENEOUSMEDIA BY USING INDIRECT
BOUNDARY AND NEAR-BOUNDARY ELEMENT METHODS

Liubov Zhuravchak, Olena Kruk
Lviv Polytechnic National University, Ukraine
| Zhuravchak@ukr .net, olena0306@gmail.com

© Zhuravchak L., Kruk O., 2016

Abstract: Effective numerical-anaytical approaches
for solving the direct problem of eectrica prospecting
for the media with inclusions of arbitrary shape and
constant eectrical characteristics are suggested. They are
based on the combination of a fundamental solution of
Laplase's equation and principal ideas of the method of
boundary integral equations and that of collocation.

Using the indirect boundary and near-boundary
dement methods, numerical-anaytical approaches for
solving the problems of potential theory in patial piecewise
homogeneous objects under conditions of an idea contact
between their components are devedoped. Discrete
continuous models for finding the intensties of unknown
sources introduced into the boundary and near-boundary
elements, and approximated by congstants are reduced to the
sysems of linear algebraic equations resulted from the
stifaction, in a collocation sense, of the boundary
conditionsand those of an ideal interface contact.

The software implementation of the approaches
proposed in a half-space with inclusons of various
shapes and eectrical conductivity for the electrical
profiling method in a 3D problem of dc dectrica
prospecting is done. The numerical analysis performed
for some mathematica models illustrates high accuracy
and potential abilities of the methods suggested. The
developed algorithms make it possible to calculate the
potential and intensity of an dectric fied in
inhomogeneous media which are characterized by
nonplanar boundaries and arhitrary, by depth and lateral
distribution, stationary current sources.

An influence of conductivity and depths of
inclusions, their shapes, a distance between two
spherical inclusions on the apparent resistivity calculated
by the difference of potentials measured on a haf-space
surface is investigated. It is shown that information on a
potential field obtained on the surface of the object can
be used to identify local foreign inclusions.

The proposed approaches could be the basis for
solving inverse problems of geophysics and technical
diagnostics in devel oping methods for the identification
of foreign inclusions, voids and defects, and determining
their conductivity, dimentions, and location.

Key wards. indirect boundary dement method, indirect
near-boundary dement method, piecewise homogeneous
medium, electrical profiling method, 3D problems of
potential theory.

1. Introduction

Considering as many physical properties of
inhomogeneous continuous media and potential fields
acting in the media as possible allows the researchers to
study their structure in the best possible way.
Mathematical models for the distribution of stationary
fields of various physical nature (thermal, diffusion,
direct current) in three-dimensona piecewise
homogeneous media are based on solving boundary
problems for the systems of dliptic equations. The
development of effective numerical-andytical approaches
to solving these problems is of considerable applied
interest both for engineering and for various
applications, in particular in geophysics, as this enables
us to estimate the intensity of these fields quantitatively,
and consider their interaction.

At every stage of the prospecting investigation, from
desining and choosing rational observation systems to
interpreting field data, the possibility of mathematical
modelling of real stuations is of particular importance.
Under the existing conditions, solving the direct and
inverse problems of prospecting often employs a
theoretical analysis of an eectric field in complex
geoel ectric sections by means of mathematical modelling
and computer facilities. Analytical solutions to such
problems for inhomogeneous media were obtained by
using Green's functions only for particular cases when
the inclusions are of canonic form. The application of the
method of finite differences and the one of finite
elements to study dectric fieds is complicated by
inaccuracy of the models description, especialy in the
case of infinite or half-infinite objects.

In this connection, for inhomogeneous media we
find it expedient to use the ideas and schemes of
systhesis of a new effective numerical-anaytical
technique [1] based on the principles of decomposition
and composition, and take into account the advantages of



118

different methods. We propose a technique of numerical
solution of a 3D direct problem of eectrical prospecting
by a direct current in complex geoelectric sections with
arbitrary, in particular nonplanar, media interfaces. It is
based on the simultaneous application of the method of
boundary integral equations [2-5], which facilitates the
description of a haf-infinite domain, and the near-
boundary element method [1] in which the integra
equations are written in the outer near-boundary zone of
the solution domain (unlike the boundary €ement method
with integral equations on the domain boundary).

2. Deve oping a mathematical model

Consider an object Wi R® consigting of M domains
w=EM_ (W, E G,,) whee G, is the boundary of the
domain W, inthe Cartesian coordinate system Xy, %, Xs.

Assumethat the unknown variable (temperature, dectric
or magneticfield potendid) 4™ (x) (m=1..,M ) satifies
the equation

R™@™ ) =0a ™) =-y ™ (0, xT W,

W, 1 R m=1%,M
with the given boundary conditions:

@

q™ ) = £D (9, x1 W, @

1™ _ @y o7 D
lom——t = f X1 , 3
om ey~ 6 (X W ®

19 (%) (M) (o — ®
-IomﬂnT)(x)Jru(X)q (X)) =u(x) f5” (x), @
xT W3,

and the conditions of anided contact at themediainterface:
aMx) =q®(x), xI G™, s>msl {2,.,M}, (5
1a™e) 19t

MM % O (k) (6)
xI G™,s>msl {2,..,M}.

Here W, is the homogeneous domain with &/
constant characteristic | gn,; Y (m)(x) is the intensity of
the determined inner sources in the domain W,;
n™ (%) = (n{™ (),n{™ (x),n{™ (x)) is the vector of an
T W
G™ =W, C W, is the media interface of W, and
Ws; u(x) isthe coefficient, which characterizes the object

outer uniquely determined norma @ to

surface; féj)(x) are the known functions.
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3. Integral representations of solutions to equations,
and boundary integral equation syssem (BIES)
To develop an algorithm for solving problem (1)- (6),

let us now consider the set R3(M) that is composed of

the spaces Rﬁq and owns the following properties[1]:

R CRE=W,EG, RS CRE=G™,
REM)CR3=WEG
According to the indirect near-boundary eement
method (INBEM) [1, 6-8, 10], It us introduce the outer
near-boundary domains Gy =By \ Wy,
(W1 Byi RE,G,CYB, =&, 1B, is the domain
boundary of By) with the unknown functions
i (C™ (x) which describe the distribution of ~fictitious

sources. Similarly, according to the indirect boundary
element method (IBEM) [2], on the boundaries of G, , let

Y]

us introduce the unknown functions j (Gm)(x). The
domain of defining the functionsq(m)(x) having been

extended for the whole Rﬁq , from (1), we obtain

R @™ 09) =-j @™ (egm-y ™ em xT R,
8
where gl {GG}, Cm,Cgm ae€ the characteristic
functions of Wj,,,0,,€qual to one within these domains and
to zero on and outside ther boundaries.

As for the operator P((,m) (q(m)(x)) there exigs a

known fundamental solution U(m)(x,x) , then the integra

representations of the unknown potentials asthe solutionsto
equation system (8) and their derivatives with respect to the
normal are of thefollowing form [1, 2J:

q(gm)(x) = F(gm)(X,U(m))+b(m)(X,U(m)), 9

9™ (x) _

-
™ gn(m (x)

F(gm) (X, Q(m)) + b(m) (X, Q(m)) , (10)

where

FOM(x,FM) = 5F ™ (xx)j @ (x)dgpn(x), (10)
Im

o™ (xF ™M)= o FMxxy Me)dwnc), (12

Win

U(m)(x,x(m)) is the fundamental solution (FS) to the

Laplace operator which exactly satisfies eguation
(8) in Wy,:
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Directing x from the middle of the domain W, to the
boundary G, instead of (9) we obtain a BIES which

links the unknown functions j ™ (x) with the known
onesy M), and P (%), f2 ), 1& (%) inorder to
satisfy boundary conditions (2)-(4):

F(gm)(X,U (m)) - fél)(x) - p(m (X,U(m)),

(15
xT oW
_1i@m (@M (4 oM =
> () +F77 (%, QYY) 16
= féz)(x)_ b(m)(X,Q(m)), xT W2
or
FCM (x oMy = £ (x)- b (x, OM),
(xQ¥7) = 15" (X (x Q™) a7
xT W,
L (@M (3 + FEM (x QM +u (U ™) =
2 (18)
u(x) f((;3)(X)- b(m)(X,Q(m) +UgmU (m)),XT M?}),
or
g(Gm) , (m) UMy = i3
(X QY7 +u(U ) =u(x) fg” () 19

. b(m)(X,Q(m) +UgyU (m)), xT W
and contact conditions:

g(om) (x,U (m)) - g9 (x,U (5)) =_p(m (x,U (m)) +

+® (x, U, xT G™, s>m,sl {2,...M} (20)
] %f (@M () + (@ (¢ (M) 4 %f (@ ()
-G (X, Q(S)) =.pm (X, Q(m)) +p® (X, Q(S)), 1)
xI G™,s>msl {2,..,M}.
or
F(Gm) (x, QM) + F(G9) (x,Q®) =- p(m (x,QM)-
-p® (X, Q(S)), 22)

x1 G™,s>msl {2,..,M}.
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Note that when solving the problem using the IBEM we
have BIES (15), (16), (18), (20), (21), wheretheintegrds on
the boundary from FS (13) are consdered in the Riemann
terms and those from FS (14) are conddered in the Cauchy
tems However, when solving the problem using the
INBEM, we have BIES (15), (17), (19), (20), (22), wheredl
the integrds in the near-boundary domain are consdered in
the Riemann terms[6-8].

4. Deve oping a discrete-continuous model

The analytical integration in BIES (15), (16), (18),
(20), (21) and (15), (17), (19), (20), (22) for applied
problems being practically impossible to perform due to

arbitrariness of the domain W, and functions j (™ (x)

andy ™ (x) , we perform a spatial discretization in the
following way.

The boundaries G, and corresponding near-
boundary domains G, are discretized on V,, of
and near-boundary  elements

boundary Oy s

respectively. Then E:,/ngm\, =0dm; Gy, Gy ae the
ermit dements of the second order which do not cross
each other [3],

EfIm (G, GO =W,

K1m+K2m f1G, GO = TIV\[Z)

~ K _ 3
Ev=mK1m+K2m+1(ﬂva C G) - M ) y

Km* & Virs
- s>m
Ev=Km+1

(TG CC™) =EenG™
Klmev ﬂV\F')

‘K _ 3
g Km +1G}nv_m)!

v=Kim*+Kom

Kim+Kz — a2
B Gy = W,

Km+ & Vins
Ev:Kns;T C_\r/ns = I‘Es>meS! mes Gy, =3,
G, is the boundary of the near-boundary elements
G, It is clear that each boundary element should

completdly belong to one of the areas ﬂ\/\/s)
(s=1,2,3), G™which are discretized into & Kgy, , Vins
m

of the eements, respectively. The elements numbering

begins from the first area and continues on the next ones,

ie Vp=Kn*t & Vis: Ky =Kim+Kom+Kszy. In
s>m

the boundary and near-boundary e ements, the unknown

functions | 9™(x) are approximated by the
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constantsdy™. The domains W, are discretized into

the elements Wy, ¢ (4=1...,Qy)-

After the 3D discretization, operators (11), (12) are
given by

V,
qn
FIM(x,F My = § AIM(x,F (M)ddm,

v=1

(23)

n
b (xFM) =& o FMxxy Mx)dWy,(x) (24)
A=Wy
where AV (x,F) = ¢ F (x,x)dg,"(x) .
%
5. Systems of linear algebraic equations (SLAES)

for finding unknown intendty sources introduced into
boundary and near -boundary elements

The unknown constants d3™ are found from the
SLAEs obtained from BIESes (15), (16), (18), (20), (21)
and (15), (17), (19), (20), (22). The collocation pointsare
chosen in the middle of each boundary element
element)

G =16 GCG", w=1..V,,E Gy = G-
Let us write down the SLAE taking into account
(23), (24):

Vm
w=1

V,

a°i”l A (x™ U (M) ggm = £ D) ()
V=

_ b(m)(XmW,U(m)),

X™T WO w=1,.., Ky,

(25)

V,
2+ & AT, QM g™ = 1D (™
v=1

- b(m)(XmW,Q(m)),

X™T WA w= Ky +1,..., Ky + Ko,
or

(26)

V,
A AT, QM) =
v=1

= féz)(XmW)_ b(m)(xnw,Q(m)),

X™T WA w= Ky +1,..., Ky + Ko,

(27)

v
- %d\,%‘m + én A?m(xm"’,Q(m) +

v=1
Hu (x™U Mg gm = (x™) £ (x™) -
-pm (vav,Q(m) +u(xX™)U (m)),

X™T WS w= Ky, + Ko+, K,

(29)
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or

V,
& ACT(X™ QM 4y (x™)y (Mg =
v=1

=u(x™) & (x™) -

-pm (xX™ QM 4y (xX™)U (m) ),

(29)

X™T WS w= Ky, + Ko +1,.. Ky
and contact conditions:
Vin A
&AM uM)dgm- g AP (™,U)dge] =
v=1l v=1
=p® x™ U (S)) - pm ™ U (m)),

X™MT WS w=Kyp, +1,.., Ky +& oomVirs:s

(30)

1 Y 1
- SAT+ & AT QU+ d -
v=1
VS
- & AP(™,Q)d® = (31)
=1
=p® (XmW,Q(S)) - pm (me,Q(m)),

X™T WS w=K,+1...,Kp + & eomVims
or

v, A
a AT QM) - & ATG™, Q) =
v=l v=l

- b(S)(XfTW,Q(S)) - pm (XmN,Q(m)),

X™T W™ w=K, +1.., Ky + & oomVirs:

Next, let us develop a discrete-continuous model to

(32)

determine the unknown functionq(m)(x) and its

derivative with respect to the normal both a the inner
points of each W, , and on the media interfaces because
after finding the unknown constants d3™ from systems

(25), (26), (28), (30), (31) and (25), (27), (29), (30), (32),
all the domains W,,, are considered as the completely
independent ones. We shall have:

V,

gn
q@M (x™) = & AI"(x™,UM)dd" +

v=l (33)
+o(M (x™ u (M) x™{ z

(gm) (ymzy
ﬂqﬂn(m)((xx) - glAgm(XW,Q(m))dngr (34)
V=
+bm(sz,Q(m)),

'IOm

where Z,, ae the sets of the observation points

X1 Gy EW,,.
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6. Software implementation of the approach
proposed in a piecewise homogeneous half-gpace in
modelling dc pr ogpecting pr oblems

The proposed approach isimplemented in modelling
a dc profiling method in a half-space containing one or
two foreign inclusions chosen in the form of spheres
with aradius R =1, and 2 by 2 by 2 cubes.

If we assume that the surface

M ={(%%, %) - ¥ <X <¥, - ¥ <x, <¥,
X3 =0}
of the half-space

={(X X, X )i - ¥ <X <¥,- ¥ <X, <¥,

- ¥ <x,<0}

is dectrically insulated, the problem is considerably
simplified/ owing to the use of a special fundamental
solution (SFS or Green's function) UM (x,xP) to
Laplace' s equation which satisfies automaticaly a zero
second-kind boundary condition of the second kind:

(%)
‘Hn(l)( X)
Theinclusionswerein ideal eectric contact with the
geoenvironment. The problem was solved by using the
IBEM.
The SLAE included only the eguations which
satisfied contact conditions (5), (6).

=0, xI Jw. (35)

Problem 1. Research into the spatial discretization
of the model.

In case of one inclusion, the SLAE for finding the
unknown sources introduced into the boundary elements
looks like:

\ \
& AT U )AE & AT U )dS =
v=1 v=1

=b*(x",U?)- b(x™Ui),

w=1..V, (36)
& ATO QA - & AT Qe =
v=1 v=1
=b?(x*,Q)- bi(x*,Q"),
XM G, w=1..V, (37)

where V =V,, =V, , x!" isthe mirroring of the point

x1) relative to the half-space boundary.

Since one of the main types of field observations for
the direct current methods is electrical profiling with the
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use of the method of median gradients, with the apparent
resistivity being calculated by the formula bel ow:

Ma (38)

ky
I

a0 ) - g(xM)).
Here, k, istheinstalation coefficient [9] in particular,

e 1 1 1 1 o
ky = Zpg +
Rwm Rav Rev  Renp
coefficient for an ordinary gradient installation;
/2

Rep = g%(xc - xP )23

coordinates of the point C; A and B are the points on
W, a which there were placed real direct current
sources (feeding electrodes) with a power of +1 and -1,
M and N are the mobile observation units (receiving
electrodes) on W, between which the potentia
difference was determined with a measurement step of
0.04, | is the eectric current intensity equal to 1. Using
the coefficient k, one can calculate the value of an

is the

X =(x %5, %) are the

apparent resistivity and plot curves based on the data
resulted from the spatial model observations in the same
way as those based on the field measurements.

To estimate a discretization error occurring when
solving the given problem, we considered a half-space
with the feeding eectrodes a A(-10, 0, 0) and B(10, 0, 0)
with one inclusion of the same conductivity
(s;=s,=1) placed at different depths. Note that

(s;=1/r; is the specific dectrical
resistance) are used here instead of | | ,introduced

before because they are accepted by specialists for dc
prospecting problems.

The graphs given in Fig. 1 provide the possibility to
estimate the error occurring when solving the given
problem. The computational error proved to be between
0.3% (Fig. 1, @) and 5% (Fig. 1, b) when changing the
depth from 1.5 to 1.3, i.e. with the inclusion approaching
the surface, it goes up (It is obvious that the exact result
inthiscaseisadraight line equa to 1).

It is shown that the numerica results of the problem
for the dectrically insulated/ indusion (S2 =0, Fg.2 a)
coindde with the solution to a similar problem for a
homogeneous haf-space containing a void with a
second-kind  condition  (the Neumann boundary
condition) defined on its boundary:

S,,S,

-slﬁqgi ;—OX' TW?, W2 E wW=g,

that is the current density equals zero.
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1.06 Tr)
1.04 |
Sc=(0,0,-1.3)
: s,=1
1.02 |
1 —
Xl
0-98 T ‘ ‘ ‘ ‘ ‘ T ‘
12 8 4 0 4 8 12

b)

Fig. 1. Estimation of a model discretization error (a homogeneous half-space).

The graph in Fig. 1, b shows another extreme
case, whens, =1000000, i.e. the incluson has a

very high conductivity. The curves of the graphs
either upward or downward can be understood as
follows: in case a), the field lines are replaced by a

void (an eectric current cannot flow here). Thisresults

137 Tr(u)
1.2
Sc=(0,0,-1.5)
i s,=0
1.1

a)

in the field concentration close to the surface (that is
more current flows over the surface) that in turn
indicates an increase in the apparent resistivity. In
case b), the field lines are drawn in by an inclusion of
high conductivity (that is a high current flows there),
less current flows over the surface. This demonstrates
a decrease in the apparent resistivity.

127 Tr(u)
1 !
0.8
Sc=(0,0,-1.5)
- $,1000000
0.6
Xl
04 ] \ \ \ B
-12 -8 -4 0 4 8 12

b)

Fig. 2. Estimation of a model discretization error (a —a void with an eectrically insulated boundary
in a homogeneous half-space; b — a high-conductive inclusion).

Problem 2. Research into the influence of
spherical inclusion conductivity on the apparent
resistivity.

There has beeb done a numerial estimate of the
change in the apparent resistivity depending on the
indugon condudivity S, <s; (s1=,5,=0102051,
Fig. 3), and s, >s; (s1=1s,=125,10, Fig. 4)
located at a depth of H=1.5. The feeding electrodes
were at the points A(-10, 0, 0) and B(10, 0, 0). Aswe

can see, as S, grows, the apparent resistivity goes
down: even ats, =10 the results are slightly
different from the limiting case of the
superconducting inclusion s,=10°. The calculations
are performed with the optimal  number
of discretization elements V =52, besause their
doubling does not practically influence the accuracy
but significantly increases the computation time
[10, 11].



Solving 3D Problems of Potential Theory in Piecewi se Homogeneous Media...

T T T T T T T T
'ElectroStaticsOutput Sigmal = 1, Sigma2 = 0.1, Sigma3 = 0.bd' ——
‘ElectroStaticsQutput Sigmai = 1, Sigma2 = 0.2, Sigma3 = 0.bd’
'ElectroStaticsQutput Sigmal = 1, Sigma2 = 0.5, Sigma3 = 0.bd' ——

1.8 -
'ElectroStaticsQutput Sigmal = 1, Sigma2 = 1, Sigma3 = 0.bd' ——
P

16 I\ 4

14~

Triu)

12~

0.8
-10 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 3. Apparent resistivity over the high-ohmic inclusion.

1.25 T T T T T T T
'ElectroStaticsQutput Sigmal = 1, Sigma2 = 1, Sigma3 = 0.bt' ——
12 'ElectroStaticsOutput Sigal = 1, Sigma2 = 2, Sigma3 = 0.bgt' &
'ElectroStaticsOutput/Sigmal = 1, Sigma2 = 5, Sigma3 = 0.bt' ——
‘ElectroStaticsOutput Sigmal = 1, Sigma2 = 10, Sigma3 = 0.4 —— 7
/ \
| \

11 [ \ 1
f \
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105

Triu)

0.95

0.8

Fig. 4. Apparent resigtivity over the conductive inclusion.

As the domain W, is chosen spherical, the
discretization is performed by using a spherical
coordinate system. The sphere is divided into meridians
and parallels. The “caps’ are divided separately into
triangular elements of the second order. The “caps™”
height is chosen so as to obtain the areas of all the
elements approximately equal. The collocation point is
selected in the middle of each element. The features in
the integrals are identified analytically. The required
integrals having been calculated, the Gauss-Jordan
method is used for solving SLAESs (36) and (37).

As is obvious, the inclusion is easier to identify at
S,>s; rather than at s,<s;, because in this case the
curves are characterized by a larger value of the
maximum that is directly proportional to the value of s..

It is interesting to note that the apparent resistivity
deviations from 1 are quite close to the deviations
ats , 3 s, =1 divided by 2, for example

Tr(u) »1.3s,=0,Tr(u) » 04,5, = +¥
DTr(u) » 0.3,s, =0,DTr(u) » 0.6,5, = +¥ |
and also

Tr(u)»1.1s,=05Tr(u)»0.84,s,=2
DTr(u) » 0.14,s, =0.5,DTr(u) » 0.16,5 , = 2.
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Problem 3. Research into the influence of the
inclusion form on the apparent resistivity.

Spherical inclusions with aradius of R=1, and cube-
shaped ones with the length of one side being 2 that are
located at a depth of H=1.5 are considered in a half-
space with the feeding electrods at the points A(-20, 0, 0)
and B(20, 0, 0). There is a numerical estimate of the
change in the apparent resistivity depending on the
electrical conductivity and form of inclusion (s; = 1,
s,=2,5,7,Fig. 5, 6).

Fig. 5. Apparent resigtivity over
the conductive spherical inclusion.

Asillusgtrated in Fig. 4 and 5, the apparent resistivity
of an inclusion with curved boundaries (which is more
common in geoenvironments) is represented by smooth
curves. This confirms the necessity to consider nonplanar,
but curved boundary elements while developing the
discrete models.

4.5 T

T T T T T
'ElectroStaticsPpralelepiped Sigmal = 1, Sigma2 = 2.bt' ——
'ElectroStaticsAarallelepiped Sigmal = 1, Sigma2 = 5.t

4r it 'ElectroStaticsRarallelepiped Sigmal = 1, Sigma2 = 7.b¢' ——— |
35k i IL i i .
s : i ; : .

: i ! :

I\ J;\ : :
4= : Vel : i =l

15 e i 1 L . ; =

L : ; .
1 X W

0.5 d
-20 -15 -10 5 0 5 10 15 20

Triu)

Fig. 6. Apparent resigtivity over the conductive
cube-shaped inclusion.

The practical implementation of the approach above
is considered andyzing the example of an actua
problem of surveying and predicting oil and gas
deposits, as well as ore ones [9]. The former, as arule,
feature the increased (1,5-4,0 times) eectrical resistivity
(the quantity inversely proportiona to the electrica
conductivity) as compared with bearing strata. The latter
have a higher eectrica conductivity as compared with
the bearing strata. For this reason, in the half-space at a
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depth of H, we choose two similar high-omic or
conductive spherical inclusions with a variable distance
d between them as the simplest model of oil and gas
field consisting of two deposits to estimate an el ectrical
profiling resolution by the method of median gradients.
This is quite enough to find out the basic regularities of
complicated graphs, as increasing the number of
inclusions will just cause the appearance of additional
repeatabl e elements.

Problem 4. Influence of a distance between
spherical inclusions on an apparent resstivity.

Two spherical inclusons with a radius of R=1 and
similar conductivity that are located at a depth of H=5
are considered in a half-space with the feeding e ectrodes
at the points A(-20, 0, 0) and B(20, 0, 0).

In case of two inclusions, the SLAE for finding
unknown sources introduced into the boundary elements
is of the following form:

V,+V; v,
& AT U - 8 AU P)d =
v=1 v=1

=b*(x",U?)- b(x™Ui),

XM G, w=1...V,, (39)
B AT U B AT U )0 =
oo b3 (x" U )-V?bll( X" U,
X1 G, w=V,+1,..V, +V,, (40)
AT QA - & AT QP =
(307 :gl(x“”, h),
XM G, w=1...V,, (41)
B ATGM QR )T - & AR Q) =
T b*(x",Q )-Vzl( Q)
X1 G, w=V,+1,..V, +V,, (42)

where Vo=Vyy, V3:V13.

The calculations are performed with the optimum, in
terms of the required accuracy and volume of computing
operations, number of discretization eements
(V; =V, =V, =52), because their doubling does not
influence the accuracy, but significantly increases the
computation time.

There is a numerical estimate of the change in the
apparent resistivity depending on the distance d between
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their centres (d =2,6,10,20) (s;=1s, =s3=0.01,
Fig. 7, S1 =1S, =5, =10, Fig. 8).

It is shown that a d/h=0.25 the graphs of the
apparent resistivity r 5, calculated by formula (38) do not
show any differentiation, and complex heterogeneity is
set shown as one high-ohmic inclusion by the maximum
of agradient ingtallation.
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Fig. 7. Apparent resigtivity over thetwo high-ohmic inclusions
(dependence on the distance between the centres of inclusions).
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Fig. 8. Apparent resigtivity over the two conductive inclusions
(dependence on the distance between the centres of inclusions).

Increasing the relative distance between the spheres
leads to gradua bifurcation of anomalies on the curves
I o, and then to their clear differentiation. So, in simple
sections  (without screening layers), dc eecrtrical
prospecting methods may be successfully used for
contouring and dividing high-ohmic oil and gasfields or
conductive ore deposits.

Problem 5. Influence of a spherical inclusions depth
on the apparent resistivity.

Two spherical inclusions with a radius of R=1 and
similar conductivity that are located at different depths
are considered in a half-space with the feeding e ectrodes
at the points A(-20, 0, 0) and B(20, 0, 0).

There has been peformed a numericad edimate of the
change in the apparent resdivity depending on a depth g7
(H=15,17,2,25 Fg9) and dectricd condudivity
(S;=1s,=s,=05H=1517225 Fg. 10).
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If the inclusions move away from the surface, their
influence wanes.This manifests itself in a quantitative

decrease in the apparent resistivity value for al S». S3.
The centres Of high-ohmic or conductive inclusions are
clearly recorded by the extrema (either maxima or
minima) of a gradient installation, with the depth of a
model’s bed increasing, their value decreases. The
anomalies are also smoothed as the size of a receiving
line MN increasesto be optimal.
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Fig. 9. Apparent resistivity over two high-ohmic
s, =15, = s, = 0.01 indusions (dependence on the depth).
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Fig. 10. Apparent resitivity over two high-ohmic
s, =1s, =s; = 0.5 inclusions (dependence on the depth).

Problem 6. Influence of the incluson form on the
apparent resigtivity.

Two spherical indusons with a radius R=1 and cube-
shaped ones with ddes equa to 2 that are located at a depth
of H=5 with a digance d=10 between ther centres and
different conductivity are conddered in a hdf-space with the
feeding dectrods at the points A(-20, 0, 0) and B(20, O, 0).
There is a numerical estimate of the change in
apparent resigtivity depending on the eectrical ¢
onductivity (S, =S, =S;=1, s, =15,=5,=0.0],
s,=00Ls,=s;=1, s;=001s,=s,=1
Fig. 11, Fig. 12).

As we can see, the description of the inclusion
boundary by using convex surface areas provides
smoother curves of the apparent resitivity which are
closer to thered ones.
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Fig. 11. Apparent resigtivity over two high-ohmic spherical
inclusonswith different electrical conductivity.
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Fig. 12. Apparent resitivity over two hi gh-ohmic cube-shaped
inclusonswith different electrical conductivity.

7. Conclusion

Errors occurring when using numerical methods for
solving such problems are known to be caused by the
approximation of equations, contact and boundary
conditions, numerical operations of differential and
integral calculus. High accurancy of the solutions
obtained by means of the techniques suggested is made
for by the following factors:

1. Initid equations (1) within homogeneous
domainsW,,,, boundary condition (35) are totaly satisfied
on account of the application of a specid fundamental
solution.

2. The conditions of potentid equdity (5) and the
conditions of continuity of current dengty (6) & the media
interface are satisfied in a callocation sense The nonplanar
induson boundaries are approximated by the quadratic or
cubic dements.

3. To achieve the required accuracy, we compare
solutions for the different number of boundary and near-
boundary edements The error of satisfying the idea
contact conditions decreases when the number of
boundary elements or near-boundary € ements increases.
However, the complication of a numerical integration
procedure (using, for example the alocation of unknown
sources within the boundary or near-boundary el ements
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as continuous functions, but not constant) would
significantly reduce the computational errors even with a
less number of elements. It should be also noted that the
advantages of both approaches consist in the fact that
they do not require differentiation of numerical values.

The data above are of fragmentary character, but certain
methodical conclusionsmay be drawn from them.

The results of mathematical modeling and
numerical experiments indicate that information on a
potential field obtained on the boundary surface and
within the object can be used to identify inclusions and
determine their conductivity, size and location. The
approaches lead to minor erors if the inclusions are
located at a distance of not less than 1.5 characterigtic
dimensions of a receiving source. They can be used to
solve direct and inverse problems in different branches
of applied mahematics. geophysics, technical
diagnostics and testing of materials, in particular when
we need to know the distribution of a potential field in
objects composed of materials with different
characterigtics.

Such approaches can become the basis for solving
the inverse problems of geophysics and technical
diagnogtics, in particular to develop methods for the
detection of foreign inclusons, and determination of
their conductivity, size and location.

The genera favourable conditions for the detection
and investigation of foreign inclusons with the
conductivity either higher or lower than the
geoenvironment, should be considered to be a
commensurate with lateral /horizontal dimensions (or
smaller) depth of their occurrence.
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PO3B’ SI3YBAHHSI 3AJJAY TEOPI|
MOTEHIIAJIY Y TPUBUMIPHAX
KYCKOBO-OJJHOPLTHUX
CEPEJOBMIIAX HENPSIMAMU
METOJAMHU T'PAHUYHUX I
MMPUTPAHUYHUX EJJEMEHTIB

JIro6oB XKypasuak, Onena Kpyx

3anporoHoBaHO e()eKTHBHI YHCITOBO-aHAIITUYHI METOIN JUIST
PO3B’sI3aHHS MPSAMOI 3aj1adi €JIEKTPOPO3BIAKHM UL CEPEIOBUIL 3
BpaxyBaHHAMH JIOBUIBHOI ()OPMH 1 HOCTIHHMMH €NEKTPHYHUMH
XapaKTepuCTHKaMU. BOHM OCHOBaHI Ha mOe€IHaHHI (yHIa-
MEHTAJIBHOTO pOo3B’A3KYy piBHAHHSA Jlaruiaca 3 OCHOBHUMH iiesIMU
METO/IiB IPaHUYHUX IHTErPaJIbHIX PIBHSHB 1 KOJIOKALLII.

3 BHUKOPHUCTaHHAM HENPAMHUX METOMIB TPAHUYHHUX 1
NPUIPAaHUYHUX EJICMEHTIB PO3BHUHYTO YMCIIOBO-aHAJITHYHI
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X0 JI0 PO3B’SI3aHHS 3a/1a4 TeOpil MOTEHI[aly B MPOCTO-
POBHX KYCKOBO-OIHOPIIHMX 00’ €KTax 3a YMOB i[€aJIbHOrO
KOHTAaKTy MiX IXHIMH CKJIaJ0BHUMH. [IUCKPETHO-KOHTHUHYaJIbHI
MOZeIN Ul 3HAXOKEHHs IHTEHCUBHOCTI HEBIOMHUX JDKeped,
YBEJICHUX Ha Mexi abo y 30BHIIHIA NpuMexoBiil obnacti i
aIlpOKCMMOBAHUX KOHCTAHTaMH, 3BEJICHI 0 CUCTEM JIHIHHUX
anreOpailyHuX piBHAHb. BOHM yTBOPIOIOTBCS BHACIIZIOK
3a/I0BOJICHHSI B KOJIOKAlliHHOMY CEHCl KpaiiOBUX YMOB Ta YMOB
171eaNbHOr0 KOHTAKTY.

3nificHeHO TIpOrpaMHy pealli3aliilo 3aIpOIOHOBAHUX ITiJIXO-
IIB B IBIIPOCTOPI 3 BpaxyBaHHAMM pi3HOI (opmu it enexrpo-
MPOBIZHOCTI U METOLY €JICKTPUYHOro NpodiaroBaHHA B
3a7adi  eNeKTPOpO3BiAKM TOCTIHHUM crpymoM IIpoBeneHi
JIOCTIJDKEHHST W OTpHMaHI YHCIOBI PO3B'SI3KM HU3KH MaTe-
MAaTUYHUX MOJENel IMIOCTPYOTh BHCOKY TOYHICTB 1
MOTEHIIHI MOMJIMBOCTI 3alpOIIOHOBAaHUX MeTomiB. Po3po-
OJIeHI IrOpUTMH Al0Th 3MOTY pO3paxyBaTH IOTEHLial i
HAIIPYKEHICTh €JIEKTPUYHOrO IOJs B HEOIHOPIJHUX Cepelo-
BUINAX, IO XapaKTEPU3YIOThCS HEIUIOCKMMH MEXaMH BKIIIO-
YeHb 1 JOBIJIBHUMH 33 TJIMOWHOIO 1 JIATEPAJUIIO PO3IOALTIAMH
CTaI[IOHAPHUX JIKEPEN CTPYMY.

JlocmipKeHO BIUIMB TPOBIIHOCTI Ta TJIMOMHH BKIIIOYEHB,
ixHpoi  (opmu,  BijcTaHi JIBOMa  C(epUUHUMHU
BKJIIOUCHHSIMH Ha TIO3ipHUH omip, 0OUMCIeHHH 32 3HAYCHHIMU
pi3HMLI TMOTEHLialdy, BUMIPSHOI Ha IIOBEPXHI MiBIPOCTOPY.
[lokazano, mo iHdopMmamlilo MpPo MOTEHI[ATbHE
oJleprKaHy Ha MOBEPXHi 00’ €KTa MOXKHA BUKOPHUCTOBYBATH VIS

MIK

oje,

BUSIBJICHHS B HbOMY JIOKJIbHHUX YY)KOPIZHHX BKJIFOUCHb.

3anporoHoBaHi  MiAXOAM MOXKYTh CTaTH OCHOBOIO  JUIS
pO3B'si3yBaHHS OOEpHEHMX 3a7ad Teo(i3MKHM W TEeXHIYHOL
JUArHOCTUKY JUISL CTBOPSHHSI METOMIB PO3ITi3HABAHHS Yy)KOPITHHX
BKJIIOYCHb, TIOPOJKHHH 1 Je()eKTiB, BU3HAYCHHS IXHBOI €JIeKTPO-
IIPOBIHOCT], PO3MIpIB Ta MiCLIA PO3TAIyBaHHSL.
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