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Abstract: Effective numerical-analytical approaches 
for solving the direct problem of electrical prospecting 
for the media with inclusions of arbitrary shape and 
constant electrical characteristics are suggested. They are 
based on the combination of a fundamental solution of 
Laplase’s equation and principal ideas of the method of 
boundary integral equations and that of collocation. 

Using the indirect boundary and near-boundary 
element methods, numerical-analytical approaches for 
solving the problems of potential theory in spatial piecewise 
homogeneous objects under conditions of an ideal contact 
between their components are developed. Discrete-
continuous models for finding the intensities of unknown 
sources introduced into the boundary and near-boundary 
elements, and approximated by constants are reduced to the 
systems of linear algebraic equations resulted from the 
satisfaction, in a collocation sense, of the boundary 
conditions and those of an ideal interface contact.  

The software implementation of the approaches 
proposed in a half-space with inclusions of various 
shapes and electrical conductivity for the electrical 
profiling method in a 3D problem of dc electrical 
prospecting is done. The numerical analysis performed 
for some mathematical models illustrates high accuracy 
and potential abilities of the methods suggested. The 
developed algorithms make it possible to calculate the 
potential and intensity of an electric field in 
inhomogeneous media which are characterized by 
nonplanar boundaries and arbitrary, by depth and lateral 
distribution, stationary current sources.  

An influence of conductivity and depths of 
inclusions, their shapes, a distance between two 
spherical inclusions on the apparent resistivity calculated 
by the difference of potentials measured on a half-space 
surface is investigated. It is shown that information on a 
potential field obtained on the surface of the object can 
be used to identify local foreign inclusions. 

The proposed approaches could be the basis for 
solving inverse problems of geophysics and technical 
diagnostics in developing methods for the identification 
of foreign inclusions, voids and defects, and determining 
their conductivity, dimentions, and location.  

Key words: indirect boundary element method, indirect 
near-boundary element method, piecewise homogeneous 
medium, electrical profiling method, 3D problems of 
potential theory. 

1. Introduction 
Considering as many physical properties of 

inhomogeneous continuous media and potential fields 
acting in the media as possible allows the researchers to 
study their structure in the best possible way. 
Mathematical models for the distribution of stationary 
fields of various physical nature (thermal, diffusion, 
direct current) in three-dimensional piecewise 
homogeneous media are based on solving boundary 
problems for the systems of elliptic equations. The 
development of effective numerical-analytical approaches 
to solving these problems is of  considerable applied 
interest both for engineering and for various 
applications, in particular in geophysics, as this enables 
us to estimate the intensity of these fields quantitatively,  
and  consider their interaction. 

At every stage of the prospecting investigation, from 
desining and choosing rational observation systems to 
interpreting field data, the possibility of mathematical 
modelling of real situations is of particular importance. 
Under the existing conditions, solving the direct and 
inverse problems of prospecting often employs a 
theoretical analysis of an electric field in complex 
geoelectric sections by means of mathematical modelling 
and computer facilities. Analytical solutions to such 
problems for inhomogeneous media were obtained by 
using Green’s functions only for particular cases when 
the inclusions are of canonic form. The application of the 
method of finite differences and the one of finite 
elements to study electric fields is complicated by 
inaccuracy of the models’ description, especially in the 
case of infinite or half-infinite objects. 

In this connection, for inhomogeneous media we 
find it expedient to use the ideas and schemes of 
systhesis of a new effective numerical-analytical 
technique [1] based on the principles of decomposition 
and composition, and take into account the advantages of 
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different methods. We propose a technique of numerical 
solution of a 3D direct problem of electrical prospecting 
by a direct current in complex geoelectric sections with 
arbitrary, in particular nonplanar, media interfaces. It is 
based on the simultaneous application of the method of 
boundary integral equations [2–5], which facilitates the  
description of a half-infinite domain, and the near-
boundary element method [1] in which the integral 
equations are written in the outer near-boundary zone of 
the solution domain (unlike the boundary element method 
with integral equations on the domain boundary). 

2. Developing a mathematical model 
Consider an object 3Ω ⊂ R  consisting of M domains: 

1( )M
m m m=Ω = ∪ Ω ∪ Γ where mΓ  is the boundary of the 

domain mΩ  in the Cartesian coordinate system x1, x2, x3. 
Assume that the unknown variable (temperature, electric 

or magnetic field potencial) ( ) ( )m xθ  ( 1,...,m M= ) satisfies 
the equation  

( ) ( ) ( ) ( )
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and the conditions of an ideal contact at the media interface: 

( ) ( )( ) ( ), ,m s msx x x= ∈ Γθ θ  , {2,..., }s m s M> ∈ ,        (5) 

( ) ( )
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Here mΩ  is the homogeneous domain with a/ 

constant characteristic 0mλ ; ( ) ( )m xψ  is the intensity of 

the determined inner sources in the domain mΩ ; 
( ) ( ) ( )( )
1 2 3( ) ( ( ), ( ), ( ))m m mm x x x x=n n n n  is the vector of an 

outer uniquely determined normal to mΩ∂ ; 
ms

m sΓ = ∂Ω ∩ ∂Ω  is the media interface of mΩ  and 

sΩ ; ( )xυ  is the coefficient, which characterizes the object 

surface; ( ) ( )jf xΓ  are the known functions. 

3. Integral representations of solutions to equations, 
and boundary integral equation system (BIES)  

To develop an algorithm for solving problem (1)−(6), 
let us now consider the set 3 ( )MR that is composed of 

the spaces 3
mR  and owns the following properties [1]: 

3 3 3 3

3 3

, ,

( ) .

ms
m m m m s

M

∩ = Ω ∪ Γ ∩ = Γ

∩ = Ω ∪ Γ

R R R R

R R
         (7) 

According to the indirect near-boundary element 
method (INBEM) [1, 6-8, 10], let us introduce the outer 
near-boundary domains \m m mG B= Ω  

( 3
m m mBΩ ⊂ ⊂ R , m mBΓ ∩ ∂ = ∅ , mB∂  is the domain 

boundary of Вm) with the unknown functions 
( ) ( )Gm xϕ which describe the distribution of  fictitious 

sources. Similarly, according to the indirect boundary 
element method (IBEM) [2], on the boundaries of mΓ , let 

us introduce the unknown functions ( ) ( )m xΓϕ . The 

domain of defining the functions ( ) ( )m xθ having been 

extended for the whole 3
mR , from (1), we obtain 

( ) ( ) ( )( ) 3
0 ( ( )) ( ) ( ) , ,m m mm

m m mx x x x= − − ∈P Rγγ
γθ ϕ χ ψ χ

 (8) 

where { , }G∈ Γγ , ,m mγχ χ  are the characteristic 

functions of ,m mΩ γ equal to one within these domains and 
to zero on and outside their boundaries. 

As for the operator ( ) ( )
0 ( ( ))m m xP θ  there exists a 

known fundamental solution ( ) ( , )mU x ξ , then the integral 
representations of the unknown potentials as the solutions to 
equation system (8) and their derivatives with respect to the 
normal are of the following form [1, 2]: 

( ) ( )( ) ( ) ( )( ) ( , ) ( , ),m mm m mx x U b x U= +F γγθ  (9) 
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x x Q b x Q
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− = +
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F
n
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λ ,  (10) 

where  

( ) ( )( ) ( )( , ) ( , ) ( ) ( )
m

m mm m
mx x dΦ = Φ∫F γ γ

γ
ξ ϕ ξ γ ξ , (11) 

( ) ( )( ) ( )( , ) ( , ) ( ) ( )
m

m mm m
mb x x d

Ω
Φ = Φ Ω∫ ξ ψ ξ ξ , (12) 

( ) ( )( , )m mU x ξ  is the fundamental solution (FS) to the 
Laplace operator which  exactly satisfies equation 
(8) in mΩ : 
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( ) ( ) ( )( ) 3
1 2 3( , , )m m mm

m= ∈ Rξ ξ ξ ξ . 

Directing x from the middle of the domain mΩ  to the 
boundary mΓ , instead of (9) we obtain a BIES which 

links the unknown functions ( ) ( )mγϕ ξ  with the known 

ones ( ) ( )mψ ξ , and (1) ( )f xΓ , (2) ( )f xΓ , (3) ( )f xΓ  in order to 

satisfy boundary conditions (2)-(4): 
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and contact conditions: 
( ) ( ) ( )( ) ( ) ( )( , ) ( , ) ( , )m s mm s mx U x U b x U− = − +F Fγ γ  
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( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

1 1( ) ( , ) ( )
2 2

( , ) ( , ) ( , ),

, , {2,..., }.

mm m m

s m ss m s

ms

x x Q x

x Q b x Q b x Q

x s m s M

ΓΓ Γ

Γ

− + +

− = − +

∈Γ > ∈

F

F

φ φ

   (21) 

or  
( ) ( ) ( )( ) ( ) ( )

( ) ( )

( , ) ( , ) ( , )

( , ),

, , {2,..., }.

Gm Gs mm s m

s s

ms

x Q x Q b x Q

b x Q

x s m s M

+ = − −

−

∈Γ > ∈

F F

  (22) 

Note that when solving the problem using the IBEM we 
have BIES (15), (16), (18), (20), (21), where the integrals on 
the boundary from FS (13) are considered in the Riemann 
terms, and those from FS (14) are considered in the Cauchy 
terms. However, when solving the problem using the 
INBEM, we have BIES (15), (17), (19), (20), (22), where all 
the integrals in the near-boundary domain are considered in 
the Riemann terms [6–8]. 

4. Developing a discrete-continuous model 
The analytical integration in BIES (15), (16), (18), 

(20), (21) and (15), (17), (19), (20), (22) for applied 
problems being practically impossible to perform due to 

arbitrariness of the domain Ω , and functions ( ) ( )mϕ ξ  

and ( ) ( )mψ ξ , we perform a spatial discretization in the 

following way. 
The boundaries mΓ  and corresponding near-

boundary domains mG  are discretized on mV  of 
boundary and near-boundary elements mvγ , 

respectively. Then 1
mV

mv mv=∪ =γ γ ; mvΓ , mvG  are the 
ermit elements of the second order which do not cross 
each other [3],  
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, 3mvmes G = ,  

mvG∂  is the boundary of the near-boundary elements 
Gтv. It is clear that each boundary element should 

completely belong to one of the areas ( )sΩ∂  

( 1, 2,3s = ), msΓ which are discretized into sm
m

K∑ , Vms 

of the elements, respectively. The elements numbering 
begins from the first area and continues on the next ones, 
i.e.  m m ms

s m
V K V

>
= + ∑ , 1 2 3m m m mK K K K= + + . In 

the boundary and near-boundary elements, the unknown 
functions ( ) ( )m

v xγϕ  are approximated by the 
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constants m
vdγ . The domains mΩ ψ  are discretized into 

the elements m qΩ ψ  ( 1,..., )mq Q= .  

After the 3D discretization, operators (11), (12) are 
given by 

( ) ( )

1
( , ) ( , )

mV
m m m m m

v v
v

x A x d
=

Φ = Φ∑Fγ γ γ ,            (23) 
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where ( , ) ( , ) ( )
m
v
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v vA x x dΦ = Φ∫γ

γ

ξ γ ξ . 

5. Systems of linear algebraic equations (SLAEs) 
for finding unknown intensity sources introduced into 
boundary and near-boundary elements 

The unknown constants m
vdγ  are found from the 

SLAEs obtained from BIESes (15), (16), (18), (20), (21) 
and (15), (17), (19), (20), (22). The collocation points are 
chosen in the middle of each boundary element 
element)

1, 1,..., , mVm
mw mw m mw mwG w V =Γ = ∩ Γ = ∪ Γ = Γ∂ . 

Let us write down the SLAE taking into account 
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and contact conditions: 
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Next, let us develop a discrete-continuous model to 

determine the unknown function ( ) ( )m xθ  and its 

derivative with respect to the normal both at the inner 
points of each mΩ , and on the media interfaces because 

after finding the unknown constants m
vdγ  from systems 

(25), (26), (28), (30), (31) and (25), (27), (29), (30), (32), 
all the domains mΩ  are considered as the completely 
independent ones. We shall have: 
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1
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where mZ  are the sets of the observation points 
z

m mx ∈ Γ ∪ Ω . 
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6. Software implementation of the approach 
proposed in a piecewise homogeneous half-space in 
modelling dc prospecting problems 

The proposed approach is implemented in modelling 
a dc profiling method  in a half-space containing one or 
two foreign inclusions chosen in the form of spheres 
with a radius 1=R , and 2 by 2 by 2 cubes.  
If we assume that the surface 

,x:)x,x,x{( ∞<<∞−=∂ 1321Ω ,x ∞<<∞− 2  

}x 03 =  
of the half-space 

,x,x:)x,x,x{( ∞<<∞−∞<<∞−=−
21321

3R
}x 03 <<∞−  

is electrically insulated, the problem is considerably 
simplified/ owing to the use of a special fundamental 

solution (SFS or Green’s function) ),x(U )()(
h

11 ξ  to 
Laplace’s equation which satisfies automatically a zero 
second-kind boundary condition of the second kind: 

Ω
θ

∂∈=
∂
∂

x,
)x(n
)x(

)(

)(

01

1

.                 (35) 

The inclusions were in ideal electric contact with the 
geoenvironment. The problem was solved by using the 
IBEM.  

The SLAE included only the equations which 
satisfied contact conditions (5), (6).  
 

Problem 1. Research into the spatial discretization 
of the model.  

In case of one inclusion, the SLAE for finding the 
unknown sources introduced into the boundary elements 
looks like: 
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where 212 VVV == , ')(1ξ  is the mirroring of the point 
)(1ξ  relative to the half-space boundary.  
Since one of the main types of field observations for 

the direct current methods is electrical profiling with the 

use of the method of median gradients, with the apparent 
resistivity being calculated by the formula below: 

)x()x(
I

k NMu
a θθρ −= .                 (38) 

Here, uk  is the installation coefficient [9], in particular, 
1

11112
−



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


+−−π=

RNBMANAM
u RRRR

k  is the 

coefficient for an ordinary gradient installation;  
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2
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D
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C
iCD xxR 






 −= ∑

=
; )x,x,x(x CCCC

321=  are the 

coordinates of the point C; A and B are the points on 
Ω∂ , at which there were placed real direct current 

sources (feeding electrodes) with a power of +1 and -1; 
M and N are the mobile observation units (receiving 
electrodes) on ∂Ω,  between which the potential 
difference was determined with a measurement step of  
0.04, I is the electric current intensity equal to 1. Using 
the coefficient uk  one can calculate the value of an 
apparent resistivity and plot curves based on the data 
resulted from the spatial model observations in the same 
way as those based on the field measurements. 

To estimate a discretization error occurring when 
solving the given problem, we considered a half-space 
with the feeding electrodes at A(-10, 0, 0) and B(10, 0, 0) 
with one inclusion of the same conductivity 
( 121 == σσ ) placed at different depths. Note that 

21 σσ ,  ( ii / ρσ 1= , iρ  is the specific electrical 

resistance) are used here  instead of  21 λλ , introduced 
before because they are accepted by specialists for dc 
prospecting problems.  

The graphs given in Fig. 1 provide the possibility to 
estimate the error occurring when solving the given 
problem. The computational error proved to be between 
0.3 % (Fig. 1, а) and 5% (Fig. 1, b) when changing the 
depth from 1.5 to 1.3, i.e. with the inclusion approaching 
the surface, it goes up (It is obvious that the exact result 
in this case is a straight line equal to 1).  

It is shown that the numerical results of the problem 
for the electrically insulated/ inclusion ( 02 =σ , Fig. 2, а) 
coincide with the solution to a similar problem for a 
homogeneous half-space containing a void with a 
second-kind condition (the Neumann boundary 
condition) defined on its boundary: 

)(
)(

)(

x,
)x(
)x( 2

1

1

1 0 Ω
θ

σ ∂∈=
∂
∂

−
n

, 1
2 ΓΩΩ =∂∪∂ )( , 

that is the current density equals zero. 
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a)                                                                                                                   b) 

Fig. 1. Estimation of a model discretization error (a homogeneous half-space). 
 

The graph in Fig. 1, b shows another extreme 
case, when 10000002 =σ , i.e. the inclusion has a 
very high conductivity. The curves of the graphs 
either upward or downward can be understood as 
follows: in case a), the field lines are replaced by a 
void (an electric current cannot flow here). This results 

in the field concentration close to the surface (that is 
more current flows over the surface) that in turn 
indicates an increase in the apparent resistivity.  In 
case b), the field lines are drawn in by an inclusion of 
high conductivity (that is a high current flows there), 
less current flows over the surface. This demonstrates 
a decrease in the apparent resistivity. 
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a)                                                                                                                  b) 

Fig. 2. Estimation of a model discretization error (а – a void with an electrically insulated boundary  
in a homogeneous half-space; b – a high-conductive inclusion). 

 
Problem 2. Research into the influence of 

spherical inclusion conductivity on the apparent 
resistivity.  

There has beeb done a numerial estimate of the 
change in the apparent resistivity depending on the 
inclusion conductivity 12 σ<σ  ( 1,5.0,2.0,1.0,1 21 =σ=σ , 
Fig. 3), and 12 σ>σ  ( 10,5,2,1,1 21 =σ=σ , Fig. 4) 
located at a depth of Н=1.5. The feeding electrodes 
were at the points A(-10, 0, 0) and B(10, 0, 0). As we 

can see, as 2σ  grows, the apparent resistivity goes 
down: even at 102 =σ  the results are slightly 
different from the limiting case of the 
superconducting inclusion σ2=106. The calculations 
are performed with the optimal number  
of discretization elements 52=V , besause their 
doubling does not practically influence the accuracy 
but significantly increases the computation time 
[10, 11]. 
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Fig. 3. Apparent resistivity over the high-ohmic inclusion. 

 

 
Fig. 4. Apparent resistivity over the conductive inclusion. 

 
As the domain Ω2 is chosen spherical, the 

discretization is performed by using a spherical 
coordinate system. The sphere is divided into meridians 
and parallels. The “caps” are divided separately into 
triangular elements of the second order. The “caps’" 
height is chosen so as to obtain the areas of all the 
elements approximately equal. The collocation point is 
selected in the middle of each element. The features in 
the integrals are identified analytically. The required 
integrals having been calculated, the Gauss-Jordan 
method is used for solving SLAEs (36) and (37). 

As is obvious, the inclusion is easier to identify at 
σ2>σ1 rather than at σ2<σ1, because in this case the 
curves are characterized by a larger value of the 
maximum that is directly proportional to the value of σ2. 

It is interesting to note that the apparent resistivity 
deviations from 1 are quite close to the deviations 
at 2 1 1σ σ≥ =  divided by 2, for example 

2 2

2 2

( ) 1.3, 0, ( ) 0.4,
( ) 0.3, 0, ( ) 0.6,

Tr u Tr u
Tr u Tr u

σ σ
σ σ

≈ = ≈ = +∞
∆ ≈ = ∆ ≈ = +∞ ,

 

and also 

2 2

2 2

( ) 1.1, 0.5, ( ) 0.84, 2
( ) 0.1, 0.5, ( ) 0.16, 2

Tr u Tr u
Tr u Tr u

σ σ
σ σ

≈ = ≈ =
∆ ≈ = ∆ ≈ = .

 

Problem 3. Research into the influence of the 
inclusion form on the apparent resistivity.  

Spherical inclusions with a radius of R=1, and cube-
shaped ones with the length of one side being 2 that are 
located at a depth of H=1.5 are considered in a half-
space with the feeding electrods at the points A(-20, 0, 0) 
and B(20, 0, 0). There is a numerical estimate of the 
change in the apparent resistivity depending on the 
electrical conductivity and form of inclusion (σ1 = 1,  
σ2 = 2, 5, 7, Fig. 5, 6). 

 

 
Fig. 5. Apparent resistivity over  

the conductive spherical inclusion. 
 

As illustrated in Fig. 4 and 5, the apparent resistivity 
of an inclusion with curved boundaries (which is more 
common in geoenvironments) is represented by smooth 
curves. This confirms the necessity to consider nonplanar, 
but curved boundary elements while developing the 
discrete models. 

Fig. 6. Apparent resistivity over the conductive  
cube-shaped inclusion. 

 
The practical implementation of the approach above 

is  considered analyzing the example of an actual 
problem of surveying and predicting oil and gas 
deposits, as well as ore ones [9]. The former, as a rule, 
feature the increased (1,5–4,0 times) electrical resistivity 
(the quantity inversely proportional to the electrical 
conductivity) as compared with bearing strata. The latter 
have a higher electrical conductivity as compared with 
the bearing strata. For this reason, in the half-space at a 
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depth of Н, we choose two similar high-omic or 
conductive spherical inclusions with a variable distance 
d between them as the simplest model of oil and gas 
field consisting of two deposits to estimate an electrical 
profiling resolution by the method of median gradients. 
This is quite enough to find out the basic regularities of 
complicated graphs, as increasing the number of 
inclusions will just cause the appearance of additional 
repeatable elements. 

 
Problem 4. Influence of a distance between 

spherical inclusions on an apparent resistivity.  
Two spherical inclusions with a radius of R = 1 and 

similar conductivity that are located at a depth of H = 5 
are considered in a half-space with the feeding electrodes 
at the points A(-20, 0, 0) and B(20, 0, 0). 

In case of two inclusions, the SLAE for finding 
unknown sources introduced into the boundary elements 
is of the following form: 
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where V2=V12, V3=V13. 
The calculations are performed with the optimum, in 

terms of the required accuracy and volume of computing 
operations, number of discretization elements 
( 52321 === VVV ), because their doubling does not 
influence the accuracy, but significantly increases the 
computation time. 

There is a numerical estimate of the change in the 
apparent resistivity depending on the  distance d between 

their centres ( 20,10,6,2=d ) ( 01.0,1 321 =σ=σ=σ , 

Fig. 7; 101 321 === σσσ , , Fig. 8). 
It is shown that at d/h=0.25 the graphs of the 

apparent resistivity ρa, calculated by formula (38) do not 
show any differentiation, and  complex heterogeneity is 
set shown as one high-ohmic inclusion by the maximum 
of a gradient installation. 

 

 
Fig. 7. Apparent resistivity over the two high-ohmic inclusions 
(dependence on the distance between the centres of inclusions). 

 

 
Fig. 8. Apparent resistivity over the two conductive inclusions 

(dependence on the distance between the centres of inclusions). 
 

Increasing the relative distance between the spheres 
leads to gradual bifurcation of anomalies on the curves 
ρa , and then to their clear differentiation. So, in simple 
sections (without screening layers), dc elecrtrical 
prospecting methods may be successfully used for 
contouring and dividing high-ohmic oil and gas fields or 
conductive ore deposits.  

 
Problem 5. Influence of a spherical inclusions depth 

on the apparent resistivity.  
Two spherical inclusions with a radius of R=1 and 

similar conductivity that are located at different depths 
are considered in a half-space with the feeding electrodes 
at the points A(-20, 0, 0) and B(20, 0, 0).  

There has been performed a numerical estimate of the 
change in the apparent resistivity depending on a depth Н 
(H=1.5, 1.7, 2, 2.5, Fig. 9) and electrical conductivity 

( 1 2 31, 0.5, 1.5,1.7, 2, 2.5Hσ = σ = σ = = , Fig. 10). 
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If the inclusions move away from the surface, their 
influence wanes.This manifests itself in a quantitative 

decrease in the apparent resistivity value for all 2σ , 3σ . 
The centres of high-ohmic or conductive inclusions are 
clearly recorded by the extrema (either maxima or 
minima) of a gradient installation, with the depth of a 
model’s bed increasing, their value decreases. The 
anomalies are also smoothed as the size of a receiving 
line MN increases to be optimal.  

 
Fig. 9. Apparent resistivity over two high-ohmic 

0101 321 ., === σσσ  inclusions (dependence on the depth). 

 
Fig. 10. Apparent resistivity over two high-ohmic 

501 321 ., === σσσ  inclusions (dependence on the depth). 

 
Problem 6. Influence of the inclusion form on the 

apparent resistivity.  
Two spherical inclusions with a radius R=1 and cube-

shaped ones with sides equal to 2 that are located at a depth 
of H=5 with a distance d=10 between their centres and 
different conductivity are considered in a half-space with the 
feeding electrods at the points A(-20, 0, 0) and B(20, 0, 0). 
There is a numerical estimate of the change in  
apparent resistivity depending on the electrical c 
onductivity ( ,1321 === σσσ  ,., 0101 321 === σσσ  

,,. 1010 312 === σσσ  ,,. 1010 213 === σσσ  
Fig. 11, Fig. 12). 

As we can see, the description of the inclusion 
boundary by using convex surface areas provides 
smoother curves of the apparent resistivity which are 
closer to the real ones.  

 
Fig. 11. Apparent resistivity over two high-ohmic spherical 

inclusions with different electrical conductivity. 
 

 
Fig. 12. Apparent resistivity over two high-ohmic cube-shaped 

inclusions with different electrical conductivity. 
 

7. Conclusion 
Errors occurring when using numerical methods for 

solving such problems are known to be caused by the 
approximation of equations, contact and boundary 
conditions, numerical operations of differential and 
integral calculus. High accurancy of the solutions 
obtained by means of the techniques suggested is made 
for by the following factors: 

1. Initial equations (1) within homogeneous 
domains mΩ , boundary condition (35) are totally satisfied 
on account of the application of a special fundamental 
solution. 

2. The conditions of potential equality (5) and the 
conditions of continuity of current density (6) at the media 
interface are satisfied in a collocation sense. The nonplanar 
inclusion boundaries are approximated by the quadratic or 
cubic elements.  

3. To achieve the required accuracy, we compare 
solutions for the different number of boundary and near-
boundary elements. The error of satisfying the ideal 
contact conditions decreases when the number of 
boundary elements or near-boundary elements increases. 
However, the complication of a numerical integration 
procedure (using, for example the allocation of unknown 
sources within the boundary or near-boundary elements 
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as continuous functions, but not constant) would 
significantly reduce the computational errors even with a 
less number of elements. It should be also noted that the 
advantages of both approaches consist in the fact that 
they do not require differentiation of numerical values. 

The data above are of fragmentary character, but certain 
methodical conclusions may be drawn from them. 

The results of mathematical modelling and 
numerical experiments indicate that information on a 
potential field obtained on the boundary surface and 
within the object can be used to identify inclusions and 
determine their conductivity, size and location. The 
approaches lead to minor errors if the inclusions are 
located at a distance of not less than 1.5 characteristic 
dimensions of a receiving source. They can be used to 
solve direct and inverse problems in different branches 
of applied mathematics: geophysics, technical 
diagnostics and testing of materials, in particular when 
we need to know the distribution of a potential field in 
objects composed of materials with different 
characteristics. 

Such approaches can become the basis for solving 
the inverse problems of geophysics and technical 
diagnostics, in particular to develop methods for the 
detection of foreign inclusions, and determination of 
their conductivity, size and location. 

The general favourable conditions for the detection 
and investigation of foreign inclusions with the 
conductivity either higher or lower than the 
geoenvironment, should be considered to be a 
commensurate with lateral /horizontal dimensions (or 
smaller) depth of their occurrence. 
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РОЗВ’ЯЗУВАННЯ ЗАДАЧ ТЕОРІЇ 
ПОТЕНЦІАЛУ У ТРИВИМІРНИХ 

КУСКОВО-ОДНОРІДНИХ 
СЕРЕДОВИЩАХ НЕПРЯМИМИ 
МЕТОДАМИ ГРАНИЧНИХ І 

ПРИГРАНИЧНИХ ЕЛЕМЕНТІВ  
Любов Журавчак, Олена Крук  

Запропоновано ефективні числово-аналітичні методи для 
розв’язання прямої задачі електророзвідки для середовищ з 
врахуваннями довільної форми і постійними електричними 
характеристиками. Вони основані на поєднанні фунда-
ментального розв’язку рівняння Лапласа з основними ідеями 
методів граничних інтегральних рівнянь і колокації. 

З використанням непрямих методів граничних і 
приграничних елементів розвинуто числово-аналітичні 
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підходи до розв’язання задач теорії потенціалу в просто-
рових кусково-однорідних об’єктах за умов ідеального 
контакту між їхніми складовими. Дискретно-континуальні 
моделі для знаходження інтенсивності невідомих джерел, 
уведених на межі або у зовнішній примежовій області і 
апроксимованих константами, зведені до систем лінійних 
алгебраїчних рівнянь. Вони утворюються внаслідок 
задоволення в колокаційному сенсі крайових умов та умов 
ідеального контакту. 

Здійснено програмну реалізацію запропонованих підхо-
дів в півпросторі з врахуваннями різної форми й електро-
провідності для методу електричного профілювання в 
задачі електророзвідки постійним струмом Проведені 
дослідження й отримані числові розв’язки низки мате-
матичних моделей ілюструють високу точність і 
потенційні можливості запропонованих методів. Розро-
блені алгоритми дають змогу розрахувати потенціал і 
напруженість електричного поля в неоднорідних середо-
вищах, що характеризуються неплоскими межами вклю-
чень і довільними за глибиною і латераллю розподілами 
стаціонарних джерел струму. 

Досліджено вплив провідності та глибини включень, 
їхньої форми, відстані між двома сферичними 
включеннями на позірний опір, обчислений за значеннями 
різниці потенціалу, виміряної на поверхні півпростору. 
Показано, що інформацію про потенціальне поле, 
одержану на поверхні об’єкта можна використовувати для 
виявлення в ньому локальних чужорідних включень.  

Запропоновані підходи можуть стати основою для 
розв’язування обернених задач геофізики й технічної 
діагностики для створення методів розпізнавання чужорідних 
включень, порожнин і дефектів, визначення їхньої електро-
провідності, розмірів та місця розташування.  
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