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Abstract: Support Vector Machine (SVM) is one of the latest statistical models for machine learning. The key problem 
of SVM training is an optimization problem (mainly Quadratic Programming). Interior Point Method (IPM) is one of 
mainstream methods to solve Quadratic Programming problem. However, when large-scale dataset is used in IPM-
based SVM training, computational complexity happens because of computationally expensive matrix operations. 
Preconditioner, such as Cholesky factorization (CF), incomplete Cholesky factorization and Kronecker factorization, is 
an effective approach to decrease time complexity of IPM-based SVM training. In this paper, we reform SVM training 
into the saddle point problem. By parallel GMRES and recently developed preconditioner Hermitian/Skew-Hermitian 
Separation (HSS), we develop a fast solver HSS-pGMRES-IPM for the saddle point problem from SVM training. 
Computational results show that, the fast solver HSS-pGMRES-IPM significantly increases the solution speed for the 
saddle point problem from SVM training than the conventional solver CF. Copyright © Research Institute for 
Intelligent Computer Systems, 2014. All rights reserved. 
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1. INTRODUCTION 

Support Vector Machine (SVM) is one of the 
latest statistical models for machine learning [1-6]. 
SVM is invented by Vladimir N. Vapnik of 
Columbia University, and soft margin SVM is 
published in 1995. The key problem of SVM 
training is an optimization problem [7, 8]  
which includes Linear Programming and  
Quadratic Programming. 

While Linear Programming can be highly 
efficiently solved by methods such as Interior Point 
Method (IPM), active set and Simplex method, 
Quadratic Programming can be solved by multiple 
existing methods such as IPM, active set, augmented 
Lagrangian and Conjugate Gradient. In these 
methods, IPM is one of mainstream methods to 
solve Quadratic Programming from SVM training. 

However, when large dataset is trained by IPM 
based SVM, computational difficulty happens 
because of computationally expensive matrix 
operations. Decreasing the time complexity of IPM 
based SVM training can be realized by methods 
such as chunking, decomposition, sequential 
minimal optimization and factorization. 

IPM calculates the best solution by searching the 
interior of the optimization space [9-13] in Linear 

Programming [14] and Quadratic Programming [9]. 
IPM can be implemented by multiple algorithms, 
and Mehrotra predictor–corrector algorithm is the 
most popular one among them [15-20]. The main 
idea of Mehrotra predictor-corrector algorithm is to 
firstly calculate a search direction by the first-order 
predictor term, then to calculate the second-order 
corrector term, and finally to combine the predictor 
term and the corrector term into the complete  
search direction. 

The most time-consuming part of IPM based 
SVM training is to solve the linear systems. In 
Mehrotra predictor-corrector algorithm, solving the 
linear systems happens twice in every iteration. 
Directly solving the linear systems by the non-
factorization solver Gauss Jordan Elimination (GJE) 
is expensive, which needs the time complexity of 
O(n3) [21-25]. 

Factorization can be applied to decrease the time 
complexity of IPM based SVM training. 
Theoretically, factorizations such as LU 
factorization, LDU factorization, full rank 
factorization, QR factorization, LDL factorization, 
Cholesky factorization (CF) and Kronecker 
factorization can be apply to IPM [26-28]. For IPM 
based SVM training, since the kernel matrix Q is 
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positive semi-definite matrix, CF is the conventional 
method to factorize the kernel matrix. The time 

complexity of CF is � �
�

�
�� + 2� ��. 

Hermitian/Skew-Hermitian Separation (HSS) is a 
newly developed method for matrix factorization. 
Can HSS accelerate IPM based SVM training? In 
this paper, we reform SVM training into the saddle 
point problem, we develop a fast solver HSS-
pGMRES-IPM for the saddle point problem from 
SVM training, and theoretical analysis and 
computational results are also provided. 

 
2. METHODS 

In this section, we briefly introduce HSS-
pGMRES for the saddle point problem, we reform 
SVM training into the saddle point problem, and we 
develop a quick solver, HSS-pGMRES-IPM,  
for solving the saddle point problem from  
SVM training. 

 
2.1. HERMITIAN/SKEW–HERMITIAN 
SEPARATION–PARALLEL GMRES FOR 
SADDLE POINT PROBLEM 

Saddle point problem is a linear system with  
the form: 
 

�� ��

� −�
� �

��
��

� = �
��

��
�,               (1) 

 
where F and E are usually symmetric matrices [29], 
du and dp are unknown variables, and Rd and rd are 
right-hand-sides. Saddle point problems appear with 
high-frequency in scientific and engineering 
applications. Golub reviewed solution methods for 
saddle point problem in [29], and his solution 
methods for saddle point problem include Schur 
complement reduction, null space methods, coupled 
direct solvers, stationary iterations, Krylov  
subspace methods, preconditioner and multilevel 
methods [29]. 

Newly developed matrix splitting based methods 
such as HSS provide an efficient way to solve saddle 
point problems [30-32]. Golub et al. developed HSS 
in [33], parameter optimization for HSS is proposed 
in [34], and preconditioned HSS is studied  
in [35-40]. 

To efficiently solve a linear system with the 
structure of saddle point problem of in equation (1) 
with the symmetric part H and the skew-symmetric 
part S, we firstly solve an uncoupled linear system: 
 

(� + �� �) ∙ ����
�

� = ���
� ,               (2.1) 

(� + �� �) ∙ ����
�

� = ���
� .             (2.2) 

where α is a parameter, and fuc
k and guc

k are right-
hand-side. Then we solve a coupled linear system: 
 

(��� + � ) ∙ ����� + � � ∙ ����� = ��
� ,   (3.1) 

−� ∙ ����� + �� ��� = ��
�.         (3.2) 

 
where α is a parameter, and fk and gk are right-hand-
side. By Schur complement reduction, we obtain: 
 

[�(�� + � ���)���� + � ���] ∙ ����� 

= �(�� + � ���)���� + �� �.             (4) 
 

Since the coefficient matrix [D(In + α−1S)−1DT + 
α2Im] of equations (4) is a large and sparse matrix, 

GMRES is suitable to solve �����. After ����� is 

solved, then we obtain �����. The details of HSS is 
described in Algorithm 1: 
 

Algorithm 1:  The Hermitian/Skew-Hermitian 
Separation 

 Initialization of HSS 
 while R < tolHSS 

 Solve the coupled system equations (2) 
 Solve the uncoupled system equations (3) 
 end while 

 

From Algorithm 1, we can see that the 
Hermitian/Skew-Hermitian Separation is built by a 
single loop, while the number of iteration is 
controlled by the tolerance R < tolHSS. In every 
iteration, two linear systems are solved: the coupled 
system of equation (2) and the uncouple system of 
equation (3). 

Convergence analysis of HSS (Algorithm 1) is 
analyzed in [35], the number of iterations can be 
found in [29, 32-37, 39, 41, 42], and the 
convergence speed of HSS (Algorithm 1) is decided 
by tolHSS. However, the linear systems are 
unnecessary to be solved exactly, and the tolerance 
of the iterative solver for the linear systems can be 
loosened to increase the solution speed, which 
results in inexact HSS. 

As we discussed, the uncoupled system of 
equations (4) in HSS (Algorithm 1) can be solved by 
sparse solvers such as GMRES, and the speed of the 
sparse solver decides the efficiency of HSS. We 
have developed a parallel Gram-Schmidt process 
based GMRES to simultaneously calculate vector 
projection in Gram-Schmidt process of GMRES. 

Parallel Gram-Schmidt process based GMRES 
(pGMRES) is applied to HSS (Algorithm 1) to 
construct a fast solver HSS-pGMRES for saddle 
point problem. HSS-pGMRES consists of two loops: 
the outer loop for HSS and the inner loop for 
pGMRES, and the details of HSS-pGMRES are 
described in Algorithm 2: 
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Algorithm 2:  Hermitian/Skew-Hermitian 
Separation−pGMRES 

 Initialization of HSS 
 while R < tolHSS 

 Solve the couple system equation (2) 
 Solve the uncouple system equation (3) 
  Initialization of pGMRES 
  while Rk < tolGMRES 

   ��
��� = � ∙ ��  

   Calculate ����
��� by parallel 

Gram-Schmidt Process 
   Calculate yk 
  end while 

  �� = �� + ����  
 end while 

 
From Algorithm 2, we can see that HSS-

pGMRES is built by a double loop: the outer loop of 
HSS and the inner loop of pGMRES. The number of 
outer iterations is controlled by the tolerance R < 
tolHSS., and the number of outer iterations is 
controlled by the tolerance Rk < tolGMRES. The inner 
loop pGMRES is responsible for solving the 
uncoupled linear system of equation (3), and every 
iteration of the outer loop HSS is responsible for 
solving the coupled linear system of equation (2). 

In the conventional GMRES, we need k times 
computation of vector projection in k iteration of the 
inner loop GMRES and n iteration of the outer loop 
HSS (Algorithm 1). Therefore, we need total 
�(���)�

�
 computation of vector projection with time 

complexity O(m²n) to build all orthogonal sets.  
In HSS-pGMRES (Algorithm 2), we calculate 

the vector projection simultaneously in k iteration of 
the inner loop GMRES and n iteration of the outer 
loop HSS (Algorithm 1) in Fig. 1. 

 

 

Fig. 1 – Parallel Grad-Schmidt process based 
pGMRES. 

 
As Fig. 1 is showing, we only need mn 

computation of vector projection with time 
complexity O(mn) to build the orthogonal set u. 

 

2.2. SADDLE POINT EQUATION FROM 
IPM-SVM TRAINING 

The primal form of SVM training can be 
represented by Quadratic Programming 
problem [43]: 

 

min�
�

�
���� − ���, 

�� = 0, 

0 ≤ � ≤ �, 
 

where x is the array of the Lagrange multipliers, a is 
the diagonal matrix of labels, and C is a parameter. 

After Lagrange multiplier transformation, we 
obtain KKT conditions [44]. For details of algebra 
process from primal-dual problem to KKT 
conditions, the reader is referred to [9]. 

 

�� = ��� 
(� − �)� = ��� 

��� = 0 

−�� + �� + � − � = −�  

0 ≤ � ≤ �, � ≥ 0, � ≥ 0 
 
By Mehrotra predictor-corrector algorithm 

[9, 45], we obtain the linear system in both the 
predictor step and the corrector step: 
 

�

−� �

�� 0

� −�
0 0

� 0
−� 0

� 0
0 (� − �)

� �

∆�
∆�
∆�
∆�

� = �

��

��
��

��

�,   (5) 

 
where rc, rb, rs and rz are the right-hand-side. 
Eliminating Δs and Δz from the linear systems [43], 
we obtain the augmented linear system: 

 

�−(� + � ) ��

� 0
� �

∆�
∆�

� = �
��

��
�. 

 
Also, the stop condition must be carefully 

selected for efficient convergence. For details of 
IPM implementation is comprehensively discussed 
in [9]. 

 
2.3 HSS-PGMRES-IPM  
FOR SVM TRAINING 

In this subsection we apply HSS-pGMRES to 
solve the saddle point problem of equation (1) from 
IPM based SVM training. To efficiently solve a 
linear system with the structure of saddle point 
problem of equation (1) with the symmetric part 

– � −
�

�
� −

�

�
��  and the skew-symmetric part 

P(0,v1) P(0,v1) P(0,v1) P(0,vM) 

P(u1,v2) P(0,v2) P(0,v2) P(0,vM) 

P(u1,vM) P(u2,vM) P(u3,vM) P(uM−1,vM

) 

…… 
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−
�

�
� +

�

�
�� , we firstly solve an uncoupled  

linear system: 
 

�−� −
�

�
� −

�

�
�� + �� �� ∙ ����

�

� = ���
� ,  (6.1) 

� ∙ ����
�

� = ���
� .                  (6.2) 

 
where α is a parameter, and fuc

k and guc
k are right-

hand-side. Then we solve a coupled linear system: 
 

���� −
�

�
� +

�

�
��� ∙ ����� + � � ∙ ����� = ��

� (7.1) 

−� ∙ ����� + �� ��� = ��
�.             (7.2) 

 
where α is a parameter, and fk and gk are right-hand-
side. By Schur complement reduction, we obtain: 

 

�� ��� −
1

2�
� +

1

2�
���

��

�� + � ���� ∙ ����� 

= � ��� −
�

��
� +

�

��
���

��

�� + �� �.   (8) 

 
Since the coefficient matrix [a(In + α−1S)−1aT + 

α2Im] of equation (4) is large and sparse matrix, 

GMRES is suitable to solve �����. After ����� is 

solved, then we obtain �����. The details of HSS-
pGMRES-IPM is described in Algorithm 3: 

 
Algorithm 3:  HSS-pGMRES-IPM for SVM 

Training 

 Initial IPM: calculate (��, ��, ��, ��) which 
satisfy the constraints 

 while Rt < tolIPM 

 Solve (∆����, ∆����, ∆����, ∆����) 
from equation (1) by HSS-pGMRES 
(Algorithm 2) 

 Calculate the step size α which satisfy  
the constraints 

 Solve (∆����, ∆����, ∆����, ∆����) 
from equation (1) by HSS-pGMRES 
(Algorithm 2) 

 Update the search direction by  
the formula: 

 
(∆�, ∆�, ∆�, ∆�) 

= (∆����, ∆����, ∆����, ∆����) 
+ (∆���� , ∆����, ∆����, ∆����) 

 
 Update the optimization variable: 

 

���� = �� + �∆� � , 

�����, ����, ����� 

= ���, ��, ��� + � �∆��, ∆��, ∆���, 
 
 end 

From Algorithm 3 we can see, HSS-pGMRES-
IPM is built by triple loops: the outer loop of IPM, 
the middle loop of HSS and the inner loop of 
pGMRES. The number of outer iterations is 
controlled by the IPM tolerance Rt < tolIPM, the 
number of middle iterations is controlled by the 
tolerance R < tolHSS, and the number of outer 
iterations is controlled by the tolerance Rk < tolGMRES. 
The inner loop and the middle loop HSS-pGMRES 
are responsible for solving the predictor linear 
system of equation (1) and the corrector linear 
system of equation (1), and every iteration of the 
outer loop IPM is responsible for calculating the 

forward step (∆�, ∆�, ∆�, ∆�). 
 

2.4 CONVERGENCE  
OF HSS-PGMRES-IPM 

As we discussed previously, the fast solver HSS-
pGMRES-IPM (Algorithm 3) consists of triple 
loops: the outer loop IPM and the middle and inner 
loop HSS-pGMRES. The general convergence 
theory of the outer loop IPM is described in [9], and 
the convergence analysis of the middle and inner 
loop HSS-pGMRES can be found in [35, 41, 42]. 

In the implementation of the fast solver HSS-
pGMRES-IPM (Algorithm 3), three separated 
tolerances for every loop exist: the tolerance for the 
outer loop tolIPM, the tolerance for the middle loop 
tolHSS and the tolerance for the inner loop tolGMRES. 
The three tolerances are unnecessary to be treated 
equally. The tolerance for the outer loop tolIPM is 
often replaced by the number of total iterations k < 
K. The tolerance for the middle loop tolHSS can be 
loosed, which is inexact HSS. 

 
3. COMPUTATIONAL RESULTS 

In this section, the performance of HSS-
pGMRES-IPM (Algorithm 3) is illustrated by an 
example of SVM training problem. 

 
3.1. The Problem 

The dataset, “Classification of Human Lung 
Carcinomas by mRNA Expression Profiling Reveals 
Distinct Adenocarcinoma Sub-classes”, comes from 
the cancer datasets of the Broad Institute of MIT 
[46]. The dataset includes 203 samples with 12600 
genes in each sample. Kernel function is set as: 

�(�, �) = �〈��, ��〉 − ���〈��, ��〉�. We develop 

the SVM code on MATLAB, and we develop the 
code of the fast solver HSS-pGMRES-IPM 
(Algorithm 3) for SVM training, and existing codes 
are referenced [14, 47]. The workstation is Intel  
i5-2310 at 2.90GHz with 4GB memory. 
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3.2. THE PERFORMANCE  
OF HSS-PGMRES-IPM 

To comparing time cost of the non-factorization 
solver GJE, the conventional factorization solver  
CF and the fast solver HSS-pGMRES-IPM 
(Algorithm 3) for SVM training, we set all 
conditions exactly the same except the solution 
method for the predictor linear system and the 
corrector linear system of equation (1). The time 
cost is plotted in Fig. 2. 

 

 

Fig. 2 – Time cost of SVM training with the non-
factorization solver GJE (the left column), the 

conventional factorization solver CF (the middle 
column) and the fast solver HSS-pGMRES-IPM (the 

right column). 

 

From Fig. 2 we can see, with maintaining the 
training accuracy of 90 ± 5%, the non-factorization 
solver GJE spends 1121.9 ± 25.4 seconds, the 
conventional factorization solver CF costs  
292.9 ± 3.0 seconds, and the fast solver HSS-
pGMRES-IPM (Algorithm 3) needs only  
19.7 ± 0.0 seconds.  

To quantitatively comparing the solution speed 
among these solvers, we define the acceleration rate 
among two solvers as the following: 

 

���� =
��

��
, 

 

where ti is the time cost of the first solver, ti is the 
time cost of the second solver, and rate is the 
calculated acceleration rate. The calculated 
acceleration rates for the three solvers: the non-
factorization solver GJE, the conventional 
factorization solver CF and the fast solver HSS-
pGMRES-IPM (Algorithm 3) are listed in Table 1. 

From Table 1 we can see, the fast solver HSS-
pGMRES-IPM (Algorithm 3) is approximately 
56.95 times faster than the non-factorization solver 
GJE, and the fast solver HSS-pGMRES-IPM 
(Algorithm 3) is about 14.87 times faster than the 
conventional solver CF. From Fig. 2 and Table 1 we 
can see, the fast solver HSS-pGMRES-IPM 
(Algorithm 3) significantly accelerates the solution 

speed of saddle point problem from IPM based  
SVM training. 

 

Table 1. Calculated acceleration rate among the three 
solvers: the non-factorization solver GJE, the 

conventional factorization solver CF and the fast 
solver HSS-pGMRES-IPM. 

 GJE CF HSS-
pGMRES-

IPM 
GJE 1.00 3.83 56.95 
CF − 1.00 14.87 

HSS-
pGMRES-

IPM 
− − 1.00 

 

3.3. THE SCALABILITY OF HSS-
PGMRES-IPM BASED SVM TRAINING 

To evaluate the scalability of three solvers the 
non-factorization solver GJE, the conventional 
factorization solver CF and the fast solver HSS-
pGMRES-IPM (Algorithm 3) on small datasets, 
250 genes are selected from the original dataset but 
keeping the number of sample of 203. The 
computational results of SVM training accuracy are 
plotted in Fig. 3. 

 

 

Fig. 3 – The accuracy of the three solvers the non-
factorization solver GJE, the conventional 

factorization CF and the fast solver HSS-pGMRES-
IPM on SVM training accuracy. 

 
From Fig. 3 we can see, the difference among 

SVM training accuracy from the three solvers the 
non-factorization solver GJE, the conventional 
factorization CF and the fast solver HSS-pGMRES-
IPM (Algorithm 3) are insignificant. The accuracy 
of the fast solver HSS-pGMRES-IPM (Algorithm 3) 
slightly decreases while the non-factorization solver 
GJE and the conventional factorization solver CF 
keep stable. 

When training the small dataset by SVM, the 
time cost of the three solvers the non-factorization 
solver GJE, the conventional factorization solver CF 
and the fast solver HSS-pGMRES-IPM 
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(Algorithm 3) are measured. The computational 
experiments are repeated for three times, the average 
and the standard deviation are calculated. The 
calculated average time cost and the standard 
deviation are plotted in Fig. 4. 

 

 

Fig. 4 – Effect of the parameter C of the fast solver 
HSS-pGMRES-IPM based SVM on time cost. 

 
Comparing Fig. 2 with Fig. 4, no significant 

difference is presented between the time cost of the 
non-factorization solver GJE in Fig. 2 and that of in 
Fig. 4, of the conventional factorization solver CF 
and of the fast solver HSS-pGMRES-IPM 
(Algorithm 3). 

The time cost of the solvers is decided by the size 
of the kernel matrix Q, and the size of the kernel 
matrix Q is decided by the number of samples. From 
Fig. 2 to Fig. 4, although the number of genes 
decreases, the number of samples keeps the same. 
Therefore, the size of the kernel matrix Q in Fig. 2 
and Fig. 4 is the same, which leads to identical time 
cost between Fig. 2 and Fig. 4. 

 

3.4. THE EFFECT OF PARAMETER  
C ON ACCURACY 

How to select Parameter C of SVM is an long-
term but important problem. We test the 
performance of HSS-pGMRES-IPM (Algorithm 3) 
with different selection of Parameter C. Results are 
listed in Fig. 5, which is similar to our former 
research results. 

 

 

Fig. 5 – Effect of Parameter C of HSS-pGMRES-IPM 
based SVM on training accuracy. 

From Fig. 5 we can see, different selection of 
Parameter C significantly affects the performance of 
HSS-pGMRES-IPM (Algorithm 3) based SVM, and 
parameter C should be selected at middle of the 
value range. 

We also calculate the time cost of HSS-
pGMRES-IPM (Algorithm 3) based SVM with 
different selection of Parameter C. The values of 
Parameter C are selected from 101 to 107, the tests 
are repeated for three times, and the average and the 
standard deviation are calculated, and the results are 
plotted in Fig. 6. 

 

 

Fig. 6 – Effect of Parameter C of HSS-pGMRES-IPM 
based SVM on Time Cost. 

 
From Fig. 6 we can see, different selection of 

parameter C does not affect the time cost of HSS-
pGMRES-IPM (Algorithm 3) based SVM. The 
standard deviation of every selection from different 
Parameter C is small, which also proves that the 
time cost of HSS-pGMRES-IPM (Algorithm 3) 
based SVM is not significantly affected by 
Parameter C. 

 

4. DISCUSSION 

In this paper, by taking advantages of saddle 
point reformulation, we developed a fast solver, 
HSS-pGMRES-IPM, for SVM training problem. 
However, as discussed in [29], multiple other 
approaches exist for solving saddle point problem. 
However, HSS presents higher efficiency than the 
conventional approaches [32-36, 39, 41, 42], and 
similar acceleration is reported in this paper. 

Since the linear systems from IPM are involved 
by HSS-pGRMES, and the fast solver applies to 
SVM, two problems should be considered: one is 
condition number of kernel matrix Q, and the other 
is the round off error in the solution of IPM with 
HSS-pGMRES. 

Although no further mathematical explanation or 
proof, [48] describes that, if ill conditioning of Q in 
infeasible IPM for LP, there is in a serious loss of 
accuracy when solving the Newton equations. 
Unfortunately, kernel matrix Q is a matrix coming 
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from the dataset, measures to change it are limited. 
[43] provides suggestion to ameliorate the problem: 
to change the kernel function. 

Scaling dataset provides no help to decrease 

condition number. Let’s try �(� > 0) scaled dataset 

� = ����� and dot product 〈��, ��〉 as kernel 

function as example. Firstly, let scale the dataset: 

�� = ������. Secondly, let compute dot product 

〈���, ���〉 = ��〈��, ��〉. That is, before scaling the 

kernel matrix Q, after scaling the kernel matrix is 

���. Finally, let’s compute condition number. 
 

‖�‖� = �∑ ∑ �����
��

���
�
��� �

�

�. 

 
Since the kernel matrix Q is non-negative, 

����� = ���. Then, 

 

‖�‖� = �∑ ∑ �����
��

���
�
��� �

�

�. 

 
By definition of norm, 
 

‖���‖ ∙ ‖(���)��‖ = ‖���‖ �
���

��
�. 

 
According to the definition of matrix norm [49], 
 

‖���‖ ∙ �
���

��
� 

= ��‖�‖ ∙
1

��
‖���‖ 

= ‖�‖ ∙ ‖���‖. 
 

That is, scaling does not really help to change 
condition number of the kernel matrix. 

HSS-pGMRES-IPM (Algorithm 3) is a fast 
solver for SVM training. However, more theoretical 
study of HSS-pGMRES-IPM (Algorithm 3) for 
SVM training is needed to investigate the stability 
conditions for different datasets. Also, the linear 
systems in gene expression dataset are not huge, 
which is in size of mn, where m is a constant less 
than 10, and n the number of sample of dataset. 

 
5. CONCLUSIONS 

In this paper, we reformed SVM training into the 
saddle point equation, and we developed the fast 
solver, named HSS-pGMRES-IPM (Algorithm 3), 
for SVM training. Computational results show that 
the fast solver HSS-pGMRES-IPM (Algorithm 3) 
based SVM is significantly faster than the 
conventional factorization CF based SVM. 
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