
Di Zhao / International Journal of Computing, 13(2) 2014, 116-124

 116

FAST SOLVER FOR INTERIOR POINT METHOD OF SVM TRAINING
BY PARALLEL GMRES AND HSS

Di Zhao

Center for Cognitive and Brain Science, The Ohio State University
College of Medicine, The Ohio State University

e-mail: zhao.1029@osu.edu
Web address (URL): https://cog.osu.edu/people/zhao

Abstract: Support Vector Machine (SVM) is one of the latest statistical models for machine learning. The key problem
of SVM training is an optimization problem (mainly Quadratic Programming). Interior Point Method (IPM) is one of
mainstream methods to solve Quadratic Programming problem. However, when large-scale dataset is used in IPM-
based SVM training, computational complexity happens because of computationally expensive matrix operations.
Preconditioner, such as Cholesky factorization (CF), incomplete Cholesky factorization and Kronecker factorization, is
an effective approach to decrease time complexity of IPM-based SVM training. In this paper, we reform SVM training
into the saddle point problem. By parallel GMRES and recently developed preconditioner Hermitian/Skew-Hermitian
Separation (HSS), we develop a fast solver HSS-pGMRES-IPM for the saddle point problem from SVM training.
Computational results show that, the fast solver HSS-pGMRES-IPM significantly increases the solution speed for the
saddle point problem from SVM training than the conventional solver CF. Copyright © Research Institute for
Intelligent Computer Systems, 2014. All rights reserved.

Keywords: Interior Point Method, fast solver, parallel GMRES, Hermitian/Skew-Hermitian Separation, Support Vector
Machine, Quadratic Programming.

1. INTRODUCTION

Support Vector Machine (SVM) is one of the
latest statistical models for machine learning [1-6].
SVM is invented by Vladimir N. Vapnik of
Columbia University, and soft margin SVM is
published in 1995. The key problem of SVM
training is an optimization problem [7, 8]
which includes Linear Programming and
Quadratic Programming.

While Linear Programming can be highly
efficiently solved by methods such as Interior Point
Method (IPM), active set and Simplex method,
Quadratic Programming can be solved by multiple
existing methods such as IPM, active set, augmented
Lagrangian and Conjugate Gradient. In these
methods, IPM is one of mainstream methods to
solve Quadratic Programming from SVM training.

However, when large dataset is trained by IPM
based SVM, computational difficulty happens
because of computationally expensive matrix
operations. Decreasing the time complexity of IPM
based SVM training can be realized by methods
such as chunking, decomposition, sequential
minimal optimization and factorization.

IPM calculates the best solution by searching the
interior of the optimization space [9-13] in Linear

Programming [14] and Quadratic Programming [9].
IPM can be implemented by multiple algorithms,
and Mehrotra predictor–corrector algorithm is the
most popular one among them [15-20]. The main
idea of Mehrotra predictor-corrector algorithm is to
firstly calculate a search direction by the first-order
predictor term, then to calculate the second-order
corrector term, and finally to combine the predictor
term and the corrector term into the complete
search direction.

The most time-consuming part of IPM based
SVM training is to solve the linear systems. In
Mehrotra predictor-corrector algorithm, solving the
linear systems happens twice in every iteration.
Directly solving the linear systems by the non-
factorization solver Gauss Jordan Elimination (GJE)
is expensive, which needs the time complexity of
O(n3) [21-25].

Factorization can be applied to decrease the time
complexity of IPM based SVM training.
Theoretically, factorizations such as LU
factorization, LDU factorization, full rank
factorization, QR factorization, LDL factorization,
Cholesky factorization (CF) and Kronecker
factorization can be apply to IPM [26-28]. For IPM
based SVM training, since the kernel matrix Q is

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Di Zhao / International Journal of Computing, 13(2) 2014, 116-124

 117

positive semi-definite matrix, CF is the conventional
method to factorize the kernel matrix. The time

complexity of CF is � �
�

�
�� + 2� ��.

Hermitian/Skew-Hermitian Separation (HSS) is a
newly developed method for matrix factorization.
Can HSS accelerate IPM based SVM training? In
this paper, we reform SVM training into the saddle
point problem, we develop a fast solver HSS-
pGMRES-IPM for the saddle point problem from
SVM training, and theoretical analysis and
computational results are also provided.

2. METHODS

In this section, we briefly introduce HSS-
pGMRES for the saddle point problem, we reform
SVM training into the saddle point problem, and we
develop a quick solver, HSS-pGMRES-IPM,
for solving the saddle point problem from
SVM training.

2.1. HERMITIAN/SKEW–HERMITIAN
SEPARATION–PARALLEL GMRES FOR
SADDLE POINT PROBLEM

Saddle point problem is a linear system with
the form:

�� ��

� −�
� �

��
��

� = �
��

��
�, (1)

where F and E are usually symmetric matrices [29],
du and dp are unknown variables, and Rd and rd are
right-hand-sides. Saddle point problems appear with
high-frequency in scientific and engineering
applications. Golub reviewed solution methods for
saddle point problem in [29], and his solution
methods for saddle point problem include Schur
complement reduction, null space methods, coupled
direct solvers, stationary iterations, Krylov
subspace methods, preconditioner and multilevel
methods [29].

Newly developed matrix splitting based methods
such as HSS provide an efficient way to solve saddle
point problems [30-32]. Golub et al. developed HSS
in [33], parameter optimization for HSS is proposed
in [34], and preconditioned HSS is studied
in [35-40].

To efficiently solve a linear system with the
structure of saddle point problem of in equation (1)
with the symmetric part H and the skew-symmetric
part S, we firstly solve an uncoupled linear system:

(� + �� �) ∙ ����
�

� = ���
� , (2.1)

(� + �� �) ∙ ����
�

� = ���
� . (2.2)

where α is a parameter, and fuc
k and guc

k are right-
hand-side. Then we solve a coupled linear system:

(��� + �) ∙ ����� + � � ∙ ����� = ��
� , (3.1)

−� ∙ ����� + �� ��� = ��
�. (3.2)

where α is a parameter, and fk and gk are right-hand-
side. By Schur complement reduction, we obtain:

[�(�� + � ���)���� + � ���] ∙ �����

= �(�� + � ���)���� + �� �. (4)

Since the coefficient matrix [D(In + α−1S)−1DT +
α2Im] of equations (4) is a large and sparse matrix,

GMRES is suitable to solve �����. After ����� is

solved, then we obtain �����. The details of HSS is
described in Algorithm 1:

Algorithm 1: The Hermitian/Skew-Hermitian
Separation

 Initialization of HSS
 while R < tolHSS

 Solve the coupled system equations (2)
 Solve the uncoupled system equations (3)
 end while

From Algorithm 1, we can see that the
Hermitian/Skew-Hermitian Separation is built by a
single loop, while the number of iteration is
controlled by the tolerance R < tolHSS. In every
iteration, two linear systems are solved: the coupled
system of equation (2) and the uncouple system of
equation (3).

Convergence analysis of HSS (Algorithm 1) is
analyzed in [35], the number of iterations can be
found in [29, 32-37, 39, 41, 42], and the
convergence speed of HSS (Algorithm 1) is decided
by tolHSS. However, the linear systems are
unnecessary to be solved exactly, and the tolerance
of the iterative solver for the linear systems can be
loosened to increase the solution speed, which
results in inexact HSS.

As we discussed, the uncoupled system of
equations (4) in HSS (Algorithm 1) can be solved by
sparse solvers such as GMRES, and the speed of the
sparse solver decides the efficiency of HSS. We
have developed a parallel Gram-Schmidt process
based GMRES to simultaneously calculate vector
projection in Gram-Schmidt process of GMRES.

Parallel Gram-Schmidt process based GMRES
(pGMRES) is applied to HSS (Algorithm 1) to
construct a fast solver HSS-pGMRES for saddle
point problem. HSS-pGMRES consists of two loops:
the outer loop for HSS and the inner loop for
pGMRES, and the details of HSS-pGMRES are
described in Algorithm 2:

Di Zhao / International Journal of Computing, 13(2) 2014, 116-124

 118

Algorithm 2: Hermitian/Skew-Hermitian
Separation−pGMRES

 Initialization of HSS
 while R < tolHSS

 Solve the couple system equation (2)
 Solve the uncouple system equation (3)
 Initialization of pGMRES
 while Rk < tolGMRES

 ��
��� = � ∙ ��

 Calculate ����
��� by parallel

Gram-Schmidt Process
 Calculate yk
 end while

 �� = �� + ����
 end while

From Algorithm 2, we can see that HSS-

pGMRES is built by a double loop: the outer loop of
HSS and the inner loop of pGMRES. The number of
outer iterations is controlled by the tolerance R <
tolHSS., and the number of outer iterations is
controlled by the tolerance Rk < tolGMRES. The inner
loop pGMRES is responsible for solving the
uncoupled linear system of equation (3), and every
iteration of the outer loop HSS is responsible for
solving the coupled linear system of equation (2).

In the conventional GMRES, we need k times
computation of vector projection in k iteration of the
inner loop GMRES and n iteration of the outer loop
HSS (Algorithm 1). Therefore, we need total
�(���)�

�
 computation of vector projection with time

complexity O(m²n) to build all orthogonal sets.
In HSS-pGMRES (Algorithm 2), we calculate

the vector projection simultaneously in k iteration of
the inner loop GMRES and n iteration of the outer
loop HSS (Algorithm 1) in Fig. 1.

Fig. 1 – Parallel Grad-Schmidt process based
pGMRES.

As Fig. 1 is showing, we only need mn

computation of vector projection with time
complexity O(mn) to build the orthogonal set u.

2.2. SADDLE POINT EQUATION FROM
IPM-SVM TRAINING

The primal form of SVM training can be
represented by Quadratic Programming
problem [43]:

min�
�

�
���� − ���,

�� = 0,

0 ≤ � ≤ �,

where x is the array of the Lagrange multipliers, a is
the diagonal matrix of labels, and C is a parameter.

After Lagrange multiplier transformation, we
obtain KKT conditions [44]. For details of algebra
process from primal-dual problem to KKT
conditions, the reader is referred to [9].

�� = ���
(� − �)� = ���

��� = 0

−�� + �� + � − � = −�

0 ≤ � ≤ �, � ≥ 0, � ≥ 0

By Mehrotra predictor-corrector algorithm

[9, 45], we obtain the linear system in both the
predictor step and the corrector step:

�

−� �

�� 0

� −�
0 0

� 0
−� 0

� 0
0 (� − �)

� �

∆�
∆�
∆�
∆�

� = �

��

��
��

��

�, (5)

where rc, rb, rs and rz are the right-hand-side.
Eliminating Δs and Δz from the linear systems [43],
we obtain the augmented linear system:

�−(� + �) ��

� 0
� �

∆�
∆�

� = �
��

��
�.

Also, the stop condition must be carefully

selected for efficient convergence. For details of
IPM implementation is comprehensively discussed
in [9].

2.3 HSS-PGMRES-IPM
FOR SVM TRAINING

In this subsection we apply HSS-pGMRES to
solve the saddle point problem of equation (1) from
IPM based SVM training. To efficiently solve a
linear system with the structure of saddle point
problem of equation (1) with the symmetric part

– � −
�

�
� −

�

�
�� and the skew-symmetric part

P(0,v1) P(0,v1) P(0,v1) P(0,vM)

P(u1,v2) P(0,v2) P(0,v2) P(0,vM)

P(u1,vM) P(u2,vM) P(u3,vM) P(uM−1,vM

)

……

Di Zhao / International Journal of Computing, 13(2) 2014, 116-124

 119

−
�

�
� +

�

�
�� , we firstly solve an uncoupled

linear system:

�−� −
�

�
� −

�

�
�� + �� �� ∙ ����

�

� = ���
� , (6.1)

� ∙ ����
�

� = ���
� . (6.2)

where α is a parameter, and fuc

k and guc
k are right-

hand-side. Then we solve a coupled linear system:

���� −
�

�
� +

�

�
��� ∙ ����� + � � ∙ ����� = ��

� (7.1)

−� ∙ ����� + �� ��� = ��
�. (7.2)

where α is a parameter, and fk and gk are right-hand-
side. By Schur complement reduction, we obtain:

�� ��� −
1

2�
� +

1

2�
���

��

�� + � ���� ∙ �����

= � ��� −
�

��
� +

�

��
���

��

�� + �� �. (8)

Since the coefficient matrix [a(In + α−1S)−1aT +

α2Im] of equation (4) is large and sparse matrix,

GMRES is suitable to solve �����. After ����� is

solved, then we obtain �����. The details of HSS-
pGMRES-IPM is described in Algorithm 3:

Algorithm 3: HSS-pGMRES-IPM for SVM

Training

 Initial IPM: calculate (��, ��, ��, ��) which
satisfy the constraints

 while Rt < tolIPM

 Solve (∆����, ∆����, ∆����, ∆����)
from equation (1) by HSS-pGMRES
(Algorithm 2)

 Calculate the step size α which satisfy
the constraints

 Solve (∆����, ∆����, ∆����, ∆����)
from equation (1) by HSS-pGMRES
(Algorithm 2)

 Update the search direction by
the formula:

(∆�, ∆�, ∆�, ∆�)

= (∆����, ∆����, ∆����, ∆����)
+ (∆���� , ∆����, ∆����, ∆����)

 Update the optimization variable:

���� = �� + �∆� � ,

�����, ����, �����

= ���, ��, ��� + � �∆��, ∆��, ∆���,

 end

From Algorithm 3 we can see, HSS-pGMRES-
IPM is built by triple loops: the outer loop of IPM,
the middle loop of HSS and the inner loop of
pGMRES. The number of outer iterations is
controlled by the IPM tolerance Rt < tolIPM, the
number of middle iterations is controlled by the
tolerance R < tolHSS, and the number of outer
iterations is controlled by the tolerance Rk < tolGMRES.
The inner loop and the middle loop HSS-pGMRES
are responsible for solving the predictor linear
system of equation (1) and the corrector linear
system of equation (1), and every iteration of the
outer loop IPM is responsible for calculating the

forward step (∆�, ∆�, ∆�, ∆�).

2.4 CONVERGENCE
OF HSS-PGMRES-IPM

As we discussed previously, the fast solver HSS-
pGMRES-IPM (Algorithm 3) consists of triple
loops: the outer loop IPM and the middle and inner
loop HSS-pGMRES. The general convergence
theory of the outer loop IPM is described in [9], and
the convergence analysis of the middle and inner
loop HSS-pGMRES can be found in [35, 41, 42].

In the implementation of the fast solver HSS-
pGMRES-IPM (Algorithm 3), three separated
tolerances for every loop exist: the tolerance for the
outer loop tolIPM, the tolerance for the middle loop
tolHSS and the tolerance for the inner loop tolGMRES.
The three tolerances are unnecessary to be treated
equally. The tolerance for the outer loop tolIPM is
often replaced by the number of total iterations k <
K. The tolerance for the middle loop tolHSS can be
loosed, which is inexact HSS.

3. COMPUTATIONAL RESULTS

In this section, the performance of HSS-
pGMRES-IPM (Algorithm 3) is illustrated by an
example of SVM training problem.

3.1. The Problem

The dataset, “Classification of Human Lung
Carcinomas by mRNA Expression Profiling Reveals
Distinct Adenocarcinoma Sub-classes”, comes from
the cancer datasets of the Broad Institute of MIT
[46]. The dataset includes 203 samples with 12600
genes in each sample. Kernel function is set as:

�(�, �) = �〈��, ��〉 − ���〈��, ��〉�. We develop

the SVM code on MATLAB, and we develop the
code of the fast solver HSS-pGMRES-IPM
(Algorithm 3) for SVM training, and existing codes
are referenced [14, 47]. The workstation is Intel
i5-2310 at 2.90GHz with 4GB memory.

Di Zhao / International Journal of Computing, 13(2) 2014, 116-124

 120

3.2. THE PERFORMANCE
OF HSS-PGMRES-IPM

To comparing time cost of the non-factorization
solver GJE, the conventional factorization solver
CF and the fast solver HSS-pGMRES-IPM
(Algorithm 3) for SVM training, we set all
conditions exactly the same except the solution
method for the predictor linear system and the
corrector linear system of equation (1). The time
cost is plotted in Fig. 2.

Fig. 2 – Time cost of SVM training with the non-
factorization solver GJE (the left column), the

conventional factorization solver CF (the middle
column) and the fast solver HSS-pGMRES-IPM (the

right column).

From Fig. 2 we can see, with maintaining the
training accuracy of 90 ± 5%, the non-factorization
solver GJE spends 1121.9 ± 25.4 seconds, the
conventional factorization solver CF costs
292.9 ± 3.0 seconds, and the fast solver HSS-
pGMRES-IPM (Algorithm 3) needs only
19.7 ± 0.0 seconds.

To quantitatively comparing the solution speed
among these solvers, we define the acceleration rate
among two solvers as the following:

���� =
��

��
,

where ti is the time cost of the first solver, ti is the
time cost of the second solver, and rate is the
calculated acceleration rate. The calculated
acceleration rates for the three solvers: the non-
factorization solver GJE, the conventional
factorization solver CF and the fast solver HSS-
pGMRES-IPM (Algorithm 3) are listed in Table 1.

From Table 1 we can see, the fast solver HSS-
pGMRES-IPM (Algorithm 3) is approximately
56.95 times faster than the non-factorization solver
GJE, and the fast solver HSS-pGMRES-IPM
(Algorithm 3) is about 14.87 times faster than the
conventional solver CF. From Fig. 2 and Table 1 we
can see, the fast solver HSS-pGMRES-IPM
(Algorithm 3) significantly accelerates the solution

speed of saddle point problem from IPM based
SVM training.

Table 1. Calculated acceleration rate among the three
solvers: the non-factorization solver GJE, the

conventional factorization solver CF and the fast
solver HSS-pGMRES-IPM.

 GJE CF HSS-
pGMRES-

IPM
GJE 1.00 3.83 56.95
CF − 1.00 14.87

HSS-
pGMRES-

IPM
− − 1.00

3.3. THE SCALABILITY OF HSS-
PGMRES-IPM BASED SVM TRAINING

To evaluate the scalability of three solvers the
non-factorization solver GJE, the conventional
factorization solver CF and the fast solver HSS-
pGMRES-IPM (Algorithm 3) on small datasets,
250 genes are selected from the original dataset but
keeping the number of sample of 203. The
computational results of SVM training accuracy are
plotted in Fig. 3.

Fig. 3 – The accuracy of the three solvers the non-
factorization solver GJE, the conventional

factorization CF and the fast solver HSS-pGMRES-
IPM on SVM training accuracy.

From Fig. 3 we can see, the difference among

SVM training accuracy from the three solvers the
non-factorization solver GJE, the conventional
factorization CF and the fast solver HSS-pGMRES-
IPM (Algorithm 3) are insignificant. The accuracy
of the fast solver HSS-pGMRES-IPM (Algorithm 3)
slightly decreases while the non-factorization solver
GJE and the conventional factorization solver CF
keep stable.

When training the small dataset by SVM, the
time cost of the three solvers the non-factorization
solver GJE, the conventional factorization solver CF
and the fast solver HSS-pGMRES-IPM

Di Zhao / International Journal of Computing, 13(2) 2014, 116-124

 121

(Algorithm 3) are measured. The computational
experiments are repeated for three times, the average
and the standard deviation are calculated. The
calculated average time cost and the standard
deviation are plotted in Fig. 4.

Fig. 4 – Effect of the parameter C of the fast solver
HSS-pGMRES-IPM based SVM on time cost.

Comparing Fig. 2 with Fig. 4, no significant

difference is presented between the time cost of the
non-factorization solver GJE in Fig. 2 and that of in
Fig. 4, of the conventional factorization solver CF
and of the fast solver HSS-pGMRES-IPM
(Algorithm 3).

The time cost of the solvers is decided by the size
of the kernel matrix Q, and the size of the kernel
matrix Q is decided by the number of samples. From
Fig. 2 to Fig. 4, although the number of genes
decreases, the number of samples keeps the same.
Therefore, the size of the kernel matrix Q in Fig. 2
and Fig. 4 is the same, which leads to identical time
cost between Fig. 2 and Fig. 4.

3.4. THE EFFECT OF PARAMETER
C ON ACCURACY

How to select Parameter C of SVM is an long-
term but important problem. We test the
performance of HSS-pGMRES-IPM (Algorithm 3)
with different selection of Parameter C. Results are
listed in Fig. 5, which is similar to our former
research results.

Fig. 5 – Effect of Parameter C of HSS-pGMRES-IPM
based SVM on training accuracy.

From Fig. 5 we can see, different selection of
Parameter C significantly affects the performance of
HSS-pGMRES-IPM (Algorithm 3) based SVM, and
parameter C should be selected at middle of the
value range.

We also calculate the time cost of HSS-
pGMRES-IPM (Algorithm 3) based SVM with
different selection of Parameter C. The values of
Parameter C are selected from 101 to 107, the tests
are repeated for three times, and the average and the
standard deviation are calculated, and the results are
plotted in Fig. 6.

Fig. 6 – Effect of Parameter C of HSS-pGMRES-IPM
based SVM on Time Cost.

From Fig. 6 we can see, different selection of

parameter C does not affect the time cost of HSS-
pGMRES-IPM (Algorithm 3) based SVM. The
standard deviation of every selection from different
Parameter C is small, which also proves that the
time cost of HSS-pGMRES-IPM (Algorithm 3)
based SVM is not significantly affected by
Parameter C.

4. DISCUSSION

In this paper, by taking advantages of saddle
point reformulation, we developed a fast solver,
HSS-pGMRES-IPM, for SVM training problem.
However, as discussed in [29], multiple other
approaches exist for solving saddle point problem.
However, HSS presents higher efficiency than the
conventional approaches [32-36, 39, 41, 42], and
similar acceleration is reported in this paper.

Since the linear systems from IPM are involved
by HSS-pGRMES, and the fast solver applies to
SVM, two problems should be considered: one is
condition number of kernel matrix Q, and the other
is the round off error in the solution of IPM with
HSS-pGMRES.

Although no further mathematical explanation or
proof, [48] describes that, if ill conditioning of Q in
infeasible IPM for LP, there is in a serious loss of
accuracy when solving the Newton equations.
Unfortunately, kernel matrix Q is a matrix coming

Di Zhao / International Journal of Computing, 13(2) 2014, 116-124

 122

from the dataset, measures to change it are limited.
[43] provides suggestion to ameliorate the problem:
to change the kernel function.

Scaling dataset provides no help to decrease

condition number. Let’s try �(� > 0) scaled dataset

� = ����� and dot product 〈��, ��〉 as kernel

function as example. Firstly, let scale the dataset:

�� = ������. Secondly, let compute dot product

〈���, ���〉 = ��〈��, ��〉. That is, before scaling the

kernel matrix Q, after scaling the kernel matrix is

���. Finally, let’s compute condition number.

‖�‖� = �∑ ∑ �����
��

���
�
��� �

�

�.

Since the kernel matrix Q is non-negative,

����� = ���. Then,

‖�‖� = �∑ ∑ �����
��

���
�
��� �

�

�.

By definition of norm,

‖���‖ ∙ ‖(���)��‖ = ‖���‖ �
���

��
�.

According to the definition of matrix norm [49],

‖���‖ ∙ �
���

��
�

= ��‖�‖ ∙
1

��
‖���‖

= ‖�‖ ∙ ‖���‖.

That is, scaling does not really help to change
condition number of the kernel matrix.

HSS-pGMRES-IPM (Algorithm 3) is a fast
solver for SVM training. However, more theoretical
study of HSS-pGMRES-IPM (Algorithm 3) for
SVM training is needed to investigate the stability
conditions for different datasets. Also, the linear
systems in gene expression dataset are not huge,
which is in size of mn, where m is a constant less
than 10, and n the number of sample of dataset.

5. CONCLUSIONS

In this paper, we reformed SVM training into the
saddle point equation, and we developed the fast
solver, named HSS-pGMRES-IPM (Algorithm 3),
for SVM training. Computational results show that
the fast solver HSS-pGMRES-IPM (Algorithm 3)
based SVM is significantly faster than the
conventional factorization CF based SVM.

6. REFERENCES

[1] N. Cristianini, and J. Shawe-Taylor, An
Introduction to Support Vector Machines and
other Kernel-based Learning Methods,
Cambridge University Press, 2000.

[2] J. A. K. Suykens, T. Van Gestel, and
J. De Brabanter, Least Squares Support Vector
Machines, World Scientific, 2002.

[3] I. Steinwart, and A. Christmann, Support
Vector Machines, Springer, 2008.

[4] S. Abe, Support Vector Machines for Pattern
Classification, Springer, 2010.

[5] C. Campbell, and Y. Ying, Learning with
Support Vector Machines, Morgan & Claypool
Publishers, 2011.

[6] A. Statnikov, C. F. Aliferis, and D. P. Hardin, A
Gentle Introduction to Support Vector
Machines in Biomedicine: Theory and
Methods, World Scientific, 2011.

[7] V. N. Vapnik, Statistical Learning Theory,
Wiley, 1998.

[8] V. Vapnik, The Nature of Statistical Learning
Theory, Springer, 2000.

[9] S. J. Wright, Primal-Dual Interior-Point
Methods, Society for Industrial and Applied
Mathematics, 1997.

[10] Y. Ye, Interior Point Algorithms: Theory and
Analysis, Wiley, 2011.

[11] J. Renegar, A Mathematical View of Interior-
Point Methods in Convex Optimization, Society
for Industrial and Applied Mathematics, 2001.

[12] C. Roos, T. Terlaky, and J. P. Vial, Interior
Point Methods for Linear Optimization,
Springer, 2006.

[13] T. Terlaky, Interior Point Methods of
Mathematical Programming, Springer, 1996.

[14] Y. Zhang, User's guide to Lipsol linear-
programming interior point solvers V0.4,
Optimization Methods and Software, (11) 1-4
(1999), pp. 385-396.

[15] I. Lustig, R. Marsten, and D. Shanno, On
implementing Mehrotra’s predictor–corrector
interior-point method for linear programming,
SIAM Journal on Optimization, (2) 3 (1992),
pp. 435-449.

[16] R. Tapia, Y. Zhang, M. Saltzman, and
A. Weiser, The Mehrotra predictor-corrector
interior-point method as a perturbed composite
Newton method, SIAM Journal on
Optimization, (6) 1 (1996), pp. 47-56.

[17] Y. Zhang, and D. Zhang, On polynomiality of
the Mehrotra-type predictor-corrector interior-
point algorithms, Mathematical Programming,
(68) 1-3 (1995), pp. 303-318.

[18] T. Carpenter, I. Lusting, J. Mulvey, and
D. Shanno, Higher-order predictor-corrector

Di Zhao / International Journal of Computing, 13(2) 2014, 116-124

 123

interior point methods with application to
quadratic objectives, SIAM Journal on
Optimization, (3) 4 (1993), pp. 696-725.

[19] M. Salahi, J. Peng, and T. Terlaky, On
Mehrotra-type predictor-corrector algorithms,
SIAM Journal on Optimization, (18) 4 (2008),
pp. 1377-1397.

[20] C. Cartis, Some disadvantages of a Mehrotra-
type primal-dual corrector interior point
algorithm for linear programming, Applied
Numerical Mathematics, (59) 5 (2009),
pp. 1110-1119.

[21] J. Hefferon, Linear Algebra, Department of
Mathematics & Applied Mathematics, Virginia
Commonwealth University, 2009.

[22] G. E. Shilov, Linear Algebra, Dover
Publications, 2012.

[23] L. N. Trefethen, and D. Bau, Numerical Linear
Algebra, Society for Industrial and Applied
Mathematics, 1997.

[24] L. Smith, Linear Algebra, Springer, New
York, 1998.

[25] S. Lang, Linear Algebra, Springer, 1987.
[26] G. Wu, Z. Zhang, and E. Chang, Kronecker

factorization for speeding up kernel machines,
Proceedings of the SIAM International
Conference on Data Mining (SDM), 2005.

[27] G. Wu, E. Chang, Y. K. Chen, and C. Hughes,
Incremental approximate matrix factorization
for speeding up support vector machines,
Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining, Philadelphia, PA,
USA, 2006.

[28] D. Wanyu, Z. Kai, and Z. Qinghua, Speed Up
Kernel Projection Vector Machine Using
Kronecker Decomposition, Proceedings of the
6th International Conference on New Trends in
Information Science and Service Science and
Data Mining (ISSDM), 23-25 October 2012,
pp. 722-725.

[29] M. Benzi, G. H. Golub, J. Liesen, Numerical
solution of saddle point problems, Acta
Numerica, (14) (2005), pp. 1-137.

[30] H. C. Elman, Preconditioners for saddle point
problems arising in computational fluid
dynamics, Applied Numerical Mathematics,
(43) 1-2 (2002), pp. 75-89.

[31] H. C. Elman, D. J. Silvester, and A. J. Wathen,
Performance and analysis of saddle point
preconditioners for the discrete steady-state
Navier-Stokes equations, Numer. Math., (90) 4
(2002), pp. 665-688.

[32] M. Benzi, and A. Wathen, Some
Preconditioning Techniques for Saddle Point
Problems, Springer, Berlin Heidelberg, 2008.

[33] Z.-Z. Bai, G. H. Golub, and M. K. Ng,
Hermitian and Skew-Hermitian splitting
methods for non-Hermitian positive definite
linear systems, SIAM J. Matrix Anal. Appl.,
(24) 3 (2002), pp. 603-626.

[34] M. Benzi, M. Gander, and G. Golub,
Optimization of the Hermitian and skew-
Hermitian splitting iteration for saddle-point
problems, BIT Numerical Mathematics, (43) 5
(2003), pp. 881-900.

[35] M. Benzi, and G. Golub, A preconditioner for
generalized saddle point problems, SIAM
Journal on Matrix Analysis and Applications,
(26) 1 (2004), pp. 20-41.

[36] Z.-Z. Bai, G. H. Golub, and J.-Y. Pan,
Preconditioned Hermitian and Skew-Hermitian
splitting methods for non-Hermitian positive
semidefinite linear systems, Numer. Math., (98)
1 (2004), pp. 1-32.

[37] D. Bertaccini, G. H. Golub, S. S. Capizzano,
and C. T. Possio, Preconditioned HSS methods
for the solution of non-Hermitian positive
definite linear systems and applications to the
discrete convection-diffusion equation, Numer.
Math., (99) 3 (2005), pp. 441-484.

[38] G. Golub, C. Greif, and J. Varah, An algebraic
analysis of a block diagonal preconditioner for
saddle point systems, SIAM Journal on Matrix
Analysis and Applications, (27) 3 (2005),
pp. 779-792.

[39] Z.-Z. Bai, G. H. Golub, L.-Z. Lu, and J.-F. Yin,
Block triangular and Skew-Hermitian splitting
methods for positive-definite linear systems,
SIAM J. Sci. Comput., (26) 3 (2005),
pp. 844-863.

[40] M. Botchev, and G. Golub, A class of
nonsymmetric preconditioners for saddle point
problems, SIAM Journal on Matrix
Analysis and Applications, (27) 4 (2006),
pp. 1125-1149.

[41] Z.-Z. Bai, On semi-convergence of Hermitian
and Skew-Hermitian splitting methods for
singular linear systems, Computing, (89) 3-4
(2010), pp. 171-197.

[42] Z.-Z. Bai, G. H. Golub, and C.-K. Li, Optimal
parameter in Hermitian and Skew-Hermitian
splitting method for certain two-by-two block
matrices, SIAM J. Sci. Comput., (28) 2 (2006),
pp. 583-603.

[43] S. Fine, and K. Scheinberg, Efficient SVM
training using low-rank kernel representations,
J. Mach. Learn. Res., (2) (2002), pp. 243-264.

[44] K. Scheinberg, An efficient implementation of
an active set method for SVMs, J. Mach.
Learn. Res., (7) (2006), pp. 2237-2257.

[45] S. Mehrotra, On the implementation of a
primal-dual interior point method, SIAM

Di Zhao / International Journal of Computing, 13(2) 2014, 116-124

 124

Journal on Optimization, (2) 4 (1992),
pp. 575-601.

[46] A. Bhattacharjee, W. G. Richards, J. Staunton,
C. Li, S. Monti, P. Vasa, C. Ladd, J. Beheshti,
R. Bueno, M. Gillette, M. Loda, G. Weber,
E. J. Mark, E. S. Lander, W. Wong,
B. E. Johnson, T. R. Golub, D. J. Sugarbaker,
and M. Meyerson, Classification of human lung
carcinomas by mRNA expression profiling
reveals distinct adenocarcinoma subclasses,
Proceedings of the National Academy of
Sciences, (98) 24 (2001), pp. 13790-13795.

[47] T. R. Kruth, Interior-Point Algorithms for
Quadratic Programming, Technical University
of Denmark, Lyngby, Denmark, 2008.

[48] E. Anderson, J. Gondzio, C. Meszaros, and
X. Xu, Implementation of Interior Point
Methods for Large Scale Linear Programming,
Technical report, Logilab, HEC Geneva,

Section of Management Studies, University of
Geneva, Geneva, Switzerland, January 1996.

[49] G. H. Golub, and C. F. Van Loan, Matrix
Computations, Johns Hopkins University
Press, 2012.

Di Zhao is a postdoctoral
researcher at The Ohio State
University. He received his PhD
of Computational Analysis and
Modeling from Louisiana Tech
University in 2010, and he
worked in Columbia University
as Postdoctoral Research
Scientist from 2010 to 2012. His
research interests are parallel

algorithm and GPU computing

