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Abstract: This document shows a possible way how to deal with insecurities in the time schedule of a project plan. It 
shows that Program Evaluation and Review Technique (PERT), the most popular approach to handle this, bears some 
severe disadvantages. Furthermore it offers an alternative to overcome them by using Monte Carlo simulation. Finally it 
can be claimed that a complete change of paradigm is necessary: If you have any insecurities as inputs, everything 
becomes insecure. This might on the first sight convey the impression that the whole situation converts more complex, 
but we should rather accept this as the opportunity to apply all the well-known instruments from statistics. Copyright © 
Research Institute for Intelligent Computer Systems, 2014. All rights reserved. 
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1. INTRODUCTION 

In every project there is the need to implement 
some kind of risk management (c.f. [1, 2]), which 
normally contains the following cyclic phases:  

 (1) risk management planning 
 (2) risk identification 
 (3) qualitative risk analysis,  
 (4) quantitative risk analysis,  
 (5) risk response planning, and  
 (6) risk monitoring and control.  
Especially in the steps (3) and (4) some 

analytical/statistical methods are needed because 
you have to deal with uncertainties/insecurities and 
therefore with densities and distributions.  

Risks in projects can occur in different 
dimensions, such as time, costs, quality etc. A risky 
event that may happen is normally characterized by 
two aspects: The probability of occurrence and the 
impact that is a consequence of this event. Both will 
have some probability distributions that need to be 
estimated in advance. 

In this contribution we will only consider 
uncertainties related to time. A commonly used 
approach to deal with this is PERT (c.f. [3, 4]), 
which has been developed 50 years ago. But there 
are some weaknesses, disadvantages, errors, and 
inaccuracies in using this method. We will discuss 
them and show how to overcome them by using 
Monte Carlo simulation (c.f. [5, 6]). It will be 
performed by analyzing an example of a concrete 
but fictitious project plan. 

2. THE PERT APPROACH 

Let us look at the following example of a 
network plan and consider uncertainties in time. We 
assume that these uncertainties are already 
characterized in the steps (2) and (3) by estimating 
optimistic (OD), most likely (MD), and pessimistic 
(PD) durations (3-point-estimates) see Table 1. 

Table 1. Project Plan. 

Activity Predecessors OD MD PD 
A - 2 3 4 
B - 3 6 9 
C - 2 5 10 
D - 4 6 9 
E A, B, C 3 7 10 
F C, D 2 7 9 
G E 2 3 4 
H E, F 3 6 8 
I F 3 5 9 
J F 2 7 10 
K G, H, I 2 6 8 
L I, J 3 5 8 

 
First of all we will solve the problem by using the 

well-known standard PERT method. PERT was 
developed by the United States Navy together with 
the OR department of Booz, Allen and Hamilton in 
the 1950s. Purpose of this development was to 
support the deployment of the Polaris-Submarine 
weapon system (c.f. [7]). 

PERT uses beta-distributions with the density fb 
given by (1) 
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with B being the beta-function 
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and Γ being the well-known gamma-function: 
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In order to fit a beta distribution in the way that 

min = OD, max = PD, and mode = MD, estimates 
for the expected duration (ED) and the standard 
deviation (STD) of the beta distribution are needed. 
They can be obtained by 
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which leads to the transformations 
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Fig. 1 shows three examples of beta distributions 

with different combinations of values for OD, MD, 
and PD (1/3/20, 1/8/15, and 2/18/20). These 
distributions are quite intuitive and similar to 
triangular distributions, but smoother than these. 

Although its mathematical description is more 
complicated than that of triangular distributions, it 
has some very useful and simple properties 
(e.g. (4)). 

Most of the mathematical background is 
primarily necessary to generate the individual 
distributions in the Monte Carlo simulation and for 
the understanding of the whole approach, but not for 
the application of PERT. The original PERT 
approach only uses the formulas (4) and then creates 
the critical path based on the EDs of the individual 
activities. Table 2 shows the given means (EDs) and 
variances. By this PERT has the advantage of a 
sophisticated mathematical background, but a very 
simple application. Fig. 2 shows the critical path that 
follows. 

 

 

Fig. 1 – Different beta distributions. 

 

Table 2. Project Plan with expected durations and 
variances assuming Beta distributions. 

Activity Predecessors ED VAR 
A - 3.000 0.111 
B - 6.000 1.000 
C - 5.333 1.778 
D - 6.167 0.694 
E A, B, C 6.833 1.361 
F C, D 6.500 1.361 
G E 3.000 0.111 
H E, F 5.833 0.694 
I F 5.333 1.000 
J F 6.667 1.778 
K G, H, I 5.667 1.000 
L I, J 5.167 0.694 

 
 

 

Fig. 2 – Critical path (bold arrows) of the project. 
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In the first row of each task we see the values of 
the early start time (EST), the label, and the early 
finish time (EFT) of each activity, whereas the 
second row shows the late start time (LST), the 
duration, and the late finish time (LFT). So we get 
the indicated critical path (bold arrows) with a total 
length of 24.5 days.  

Then the cumulated distribution (convolution) 
along the critical path (D-F-J-L) is observed. 
Because all the distributions are assumed to be 
independent, due to the Central Limit Theorem, the 
result tends to a normal distribution with mean and 
variance equal to the sum of the individual values on 
the critical path. In our example we get a mean of 
24.5 and a standard deviation of 2.128. The resulting 
density is shown on the left side in Fig. 3. 

 

 

Fig. 3 – Results of MC simulation with beta 
distributions versus PERT results. 

 
Although this approach has been widely used in 

the last 50 years, Harvey Maylorsays(c.f. [8]): 
“Moreover, many of the traditional methods of 
project planning such as PERT […] have never been 
the subject of any evaluation – not least because, 
until recently, there was no alternative.” But today, 
there is a powerful alternative: Monte Carlo 
simulation (c.f. [9, 10]). 
 

3. MONTE CARLO SIMULATION 

As it is commonly known, the Monte Carlo 
simulation is a method that relies on repeated 
random sampling from given distributions (c.f. 
[6]).Because of their reliance on repeated 
computations and random or pseudo-random 
numbers, Monte Carlo methods are most suited to 
calculations by computers. The main idea in 
applying Monte Carlo methods lies in the fact that 
one has to model the problem just for one instance 
and can then create as much instances as you like by 
creating a loop. In our case we create 10,000 
instances and the result is shown in the graph on the 
right hand side of Fig. 3. All the assumed beta 

distributions for the durations of the individual 
activities are exactly the same in both approaches 
(PERT and Monte Carlo simulation) and therefore 
the tworesultsarefully comparable. 

The continuous line is the already mentioned 
normal distribution that resulted out of the original 
PERT approach with a mean of 24.5 and a standard 
deviation of 2.128. The dotted line shows the 
distribution of the results of the Monte Carlo 
simulation with a mean of 26.2 and a standard 
deviation of 1.636. It is obvious that the Monte 
Carlo simulation leads to an average that is almost 2 
units higher than those of the original PERT 
approach, but with a smaller dispersion. The 
background for this will be shown in the following 
simple illustrative example.  

 

4.THE EFFECT OF THE SHIFTING  
THE DISTRIBUTION 

To illustrate the above effect shown in Fig. 3 we 
create a very simple example: Let us assume that we 
only have two parallel and independent tasks with 
estimated durations that are normally distributed 
with a mean of 20 and a standard deviation of 4 for 
both tasks. The distribution function of that normal 
distribution shall be denoted by Φ, the 
corresponding density by φ. Then the PERT 
approach would lead to two parallel critical paths 
with both having a normal distribution with the 
given parameters and therefore to a distribution for 
the whole project that is again Φ. Since in fact the 
duration of the whole project is nothing else than the 
maximum of the two independent tasks, the real 
distribution function is Φ2, with the corresponding 
density function [Φ2]’ = 2 .Φ .φ. In Fig. 4 the two 
distributions are compared and the similarity to 
Fig. 3 is quite obvious. 

 

 

Fig. 4 – PERT and theoretical result. 

 

Since in the analytic determination of the critical 
path there is always the necessity to calculate 
maximums, this will lead to the use of order 
statistics. Therefore if only distributions for the 
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durations are known, this will not lead to only one 
unique critical path, but to different parallel critical 
paths that occur with some probability. And as the 
maximum characterizes the real final end of the 
project, this will be in general later than that of the 
PERT approach. This shifts the whole distribution to 
the right. On the other hand the upper extremes of 
the final end (the right tail of the distribution) will be 
almost the same in the PERT and the theoretical 
approach. Therefore the variance is reduced. In the 
simple example, the mean of the theoretical 
distribution rises to about 22 and the standard 
deviation reduces to about 3.2. The increase of the 
mean and the reduction of the variance obviously 
depend on the individual structure of the given 
project plan. But it is quite evident that the PERT 
approach systematically underestimates the real risk.  

 

5.THE CRITICAL FIELD 

As seen in the simple example before, when 
moving from the PERT result to the “real” 
distribution created by Monte Carlo simulation, we 
get the same effect with a higher mean and a lower 
standard deviation. This relies in the fact that 
thePERT approach is a little inconsequential: 
Although it is a stochastic approach, it uses the 
deterministic assumption for the construction of the 

critical path (cf. Fig. 5). But as soon as you move 
from the stochastic approach to the deterministic 
one, there is only little chance to get a valid result.  

The main reason for this can be seen in the 
simple example: There is no longer one unique 
critical path – we have two parallel critical paths. 
And we have the same in our main example: We 
will get critical paths that vary from case to case. 
Fig. 6 shows in how many of the 10,000 cases the 
individual tasks belong to the critical path. 

 

 

Fig. 5 – Stochastic versus deterministic approach. 

 
In Fig. 6 the shading indicates the probability of 

a task to be critical: The darker the shading, the 
higher is the probability that the activity belongs to 
the critical path.  

 

 

Fig.6 – How often is an activity critical in the main example? 

 
It can be seen that we have tasks that are never 

critical (like A and G), some are sometimes critical 
(like B, C, E, I, J, and L) and some are quite often 
critical (like D, F, H, and K). But a comparison with 
Fig. 2 shows that the latter are not identical with the 
critical path of the deterministic approach that was 
used by PERT. Therefore in the stochastic approach 
it is no longer reasonable to use the term “critical 
path” – we always have critical fields. 

 

6. BETTER UNDERSTANDING  
OF BUFFERS 

Since we only have distributions for the durations 
and not just one unique critical path, we also do not 

have deterministic buffers. Apart from the special 
case that an activity will be critical with a 
probability of 100% (which does not occur in the 
given example), we will only get distributions for 
the buffers. 

But of course, for buffer allocation in the 
practical operation of a project, we should get deeper 
insight into these distributions. Using Monte Carlo 
simulation these underlying distributions can be  
easily generated.  

A few examples for these distributions are 
presented in Fig. 7 – 9. G is an example for an 
activity that is never critical and therefore the 
probability of a buffer with size 0 is zero (c.f. 

A G
0 0

E K
B 3611 H 5951

2564 4980
Start End

C I
2835 F 1395 L

6389 4049
D J

4601 3625
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Fig. 7). The most probable buffer size for activity G 
is 4. 

 

 

Fig. 7 – Distribution of buffers of activity G. 

 

 

Fig. 8 – Distributions of buffers of activities B and C. 

 
Fig. 8 shows the distributions of activities B and 

C, two activities that are medium critical with 
probabilities of 25-30%. The buffer distributions of 
these two activities are quite different: For activity B 
the probability slowly decreases and buffers of 7, 8, 
or even 9 can occur with a positive probability, 
whereas for activity C the probability for buffers of 
1 to 3 is quite high but then decreases quite fast. 
Therefore the distributions of the buffers really offer 
additional information than only the probability of 
being critical.  

Fig. 9 shows the buffer distribution of activity K, 
an activity that is critical by 60%. But we can see 
that there is a chance to get buffers up to 4. 
Additionally one can analyze these buffer 
distributions in many ways. For example one can 
look at the different moments of these distributions 
(c.f. Table 3), to detect that all the distributions are 
(right) skewed. This is something that frequently 
occurs in distributions that are derived in the context 
of risk management (c.f. [11]). 

 

 

Fig. 9 – Distribution of buffers of activity K. 

 

Table 3. Moments of buffers. 

activity 

buffers 

mean 
standard 
deviation skewness 

A 5.35 1.79 0.77 
B 0.25 2.01 0.83 
C 1.57 1.35 0.50 
D 1.11 1.36 1.24 
E 1.80 1.88 0.99 
F 0.71 1.18 1.75 
G 4.80 1.76 0.81 
H 1.07 1.36 1.25 
I 2.32 1.58 0.45 
J 1.69 1.81 1.06 
K 0.83 1.23 1.54 
L 1.45 1.67 1.19 

 
7. CONSEQUENCES FOR THE 

CONTROL PROCESS 

In practice the critical path is most often the 
common guideline for the controlling process. But if 
you understand that in the case of uncertainties there 
exists no unique critical path, you need a total 
change in paradigm. It is easy to show that different 
realizations within the ongoing process lead to 
different changes in the critical path. Moreover 
because of the back and forth calculation of the 
critical path, it is also possible that a single uncertain 
event at the end of the project may change the whole 
critical path, even in the very beginning of the 
project. (Here some analogies can be found to the 
Wagner-Whitin approach in dynamic lot sizing.)   

To show this in our example, let us assume that 
we observed exactly the realizations that led to the 
critical path shown in Fig. 2 apart from the fact that 
in activity K a duration of 8 was realized. This will 
lead to a critical path that is shown in Fig. 10. As it 
is clearly visible, this single change leads to a totally 
different critical path: Some activities even at the 
start of the project that were formerly critical are no 
longer critical and the other way around. 
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Fig. 10 – Net and critical path – now with a duration of 8 in activity K. 

 

It is also interesting to look what happens in the 
case of different realizations in the starting phase. As 
we have already seen (Fig. 6), activity A will never 
be critical, even if we get here the worst/longest 
realization that is possible. On the other hand even a 
realization of a relatively short duration in activity 
B, C, or D may lead to the fact that this activity 
becomes critical. You always have to keep in mind 
that the fact of being critical is determined within the 
whole timeframe, not only by the realized duration 
of an activity itself or coincident or past activities: 
also possible durations in the future determine 
whether an activity is critical or not. The total 
retrograde calculation of the whole project from start 
to end is necessary, especially if you have to face 
uncertainties in the realizations. Therefore 
simulations with a Monte Carlo model can deliver 
interesting results that may prevent project managers 
from a misinterpretation of the current situation.  
 

8. CONCLUSION AND REMARKS 

If one accepts uncertainties in a project this has in 
most cases consequences for the whole planning, 
monitoring, and controlling process. But as projects 
are usually characterized by items like “uniqueness” 
or “complexity”, it makes little sense to ignore 
uncertainties. The allowance of stochastic influences 
leads to the situation that everything in your project 
can only be described by densities and distributions: 
start and end of the individual activities, length of 
the buffers, critical paths etc. Although this seems to 
be in some way more complicated, it offers the 
opportunity to apply the whole spectrum of 
statistical tools, especially multivariate methods.  

If one understands the monitoring and controlling 
process within a project mainly as the comparison 
between the nominal/target/planned values and the 
actual/performance values – as it is often seen – this 
leads to a new situation: There are no fixed target 
values, but rather distributions. Therefore this is in 
some way a change of paradigm and can no longer 
be handled by further acting as having mainly a 
deterministic approach and just adding some “risk 
features”, as it is done for instance in PERT. 
Therefore this leads necessarily to totally different 
techniques to apply. Let us just mention here project 

management in specific applications like software 
engineering (c.f. [12]) or R&D (c.f. [13, 14]), where 
the use of uncertainties is inevitable.  

But the approach of using Monte Carlo 
simulation models and exclusively densities and 
distributions, offers the possibility of a high 
flexibility. You can frame conditions, dependencies, 
and requirements for the parameters of the model by 
using the capabilities of the syntax of the underlying 
programming language. Also different scenarios can 
easily be analyzed or sensitivity analyses for the 
involved parameters can be performed.  

This method can also be expanded to project 
portfolios. If you want to solve problems where 
usually techniques like the Critical Chain approach 
were applied, the use of Monte Carlo simulation 
models and exclusively assuming distributions for 
the parameters may offer new and deeper insights 
into the dynamics within the project portfolio. 
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