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Abstract: Measuring the position of a medical instrument inside the human body can be performed with various 
methods. One option is to measure the phase shift of the signal originating from a transmitter embedded into the tip of 
the medical instrument, determining its displacement with respect to a set of stationary receivers. The phase shift is 
converted into a low frequency voltage with the use of a Phased Locked Loop (PLL). This voltage can subsequently be 
converted into displacement, providing the position of the medical instrument in one (1D), two (2D) and three (3D) 
dimensions using trilateration. The instrument’s displacement can be defined in either the time or frequency domain. 
This paper presents a novel method for constant velocity displacement of the transmitter, using either the Locally 
Weighted Scatter-Plot Smoothing (LOWESS) curve fitting method or a Lomb-Scargle periodogram. The Lomb-Scargle 
periodogram is based on the least-squares power spectrum and can be used instead of waveform smoothing and 
measurement into the time domain, providing more precise and accurate measurement results as compared to LOWESS 
curve fitting method. Copyright © Research Institute for Intelligent Computer Systems, 2015. All rights reserved. 
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1. INTRODUCTION 

Position tracking is a technological field with a 
diverse variety of applications. Among those 
biomedical engineering applications related to 
medical surgery, such as cardiovascular, orthopedic 
and neurosurgical catheterization, the precise 
detection of tumors and biopsy needle insertion. In 
all aforementioned applications, knowing the precise 
position of a medical instrument’s tip is often a 
requirement. The level of accuracy (minimum 
measurement error) and precision (minimum 
deviation across repeated measurements) varies 
among applications, however in most cases 
millimeter level accuracy and precision are more 
than adequate. 

Optical and electromagnetic (EM) based tracking 
solutions nowadays dominate the field of biomedical 
engineering position tracking [1]. Each one of these 
has its advantages and disadvantages.  

Optical tracking is a three dimensional (3D) 
localization technology, which is based on the 
monitoring of a defined distance measurement using 
two or more cameras. Each camera is equipped with 
a series of infrared (IR) LEDs which are periodically 
illuminating the measurement space with IR light. 
Medical instruments that need to be tracked are 
equipped with retro-reflective markers, which reflect 
the incoming IR light back to the cameras. Then, the 
IR reflections are detected by the cameras and are 
processed using geometrical methods in order to 
define the exact medical instrument’s position. NDI 
Polaris family of optical measurement systems is 
one of the dominant on market today [2]. Optical 
tracking systems require clear line-of-sight (LOS) to 
exist between the medical instrument tracked and the 
control device. This prohibits the use of such a 
system in cases where an invasive medical 
instrument is to be tracked.  

 

computing@computingonline.net 
www.computingonline.net 

Print ISSN 1727-6209 
On-line ISSN 2312-5381 

International  Journal  of  Computing 

 



D. A. Fotiadis, K. Papathanasiou, A. Astaras, P. D. Bamidis, A. Kalfas / International Journal of Computing, 14(1) 2015, 22-29 

 

 23

Electromagnetic (EM) tracking systems are based 
on the use of a transmitter, located on the moving 
object being tracked, and a number of receivers 
located a short distance away (generally closer than 
2m). The transmitted signal frequency is low, in the 
order of a few kHz, so as to bypass multipath 
interference problems and attenuation of signal 
strength as it propagates through the human body.  

EM systems generate a series of electromagnetic 
pulses from the field generator or “transmitter”. The 
signals from the transmitter induce a voltage in the 
sensors that are attached to the medical instruments.  

The transmitting and receiving antennae are a set 
of three coils perpendicular to each other, able to 
transmit and receive in three dimensions (X, Y 
and Z). Using triangulation, a method commonly 
used by GPS systems, the exact spatial position of a 
catheter’s tip can be defined with sub-
centimeter accuracy.  

Trackers for EM systems include small sensor 
coils that are attached to or are embedded into the 
medical instrument. Several technology generations 
of trackers are available commercially. These range 
from 1st generation AC electromagnetic 
technology [3], later enhanced by [4, 5]; 2nd 
generation trackers introduced 3rd generation DC 
magnetic technology [6].  

EM based systems are able to operate without 
any requirement for LOS, but the presence of 
metallic objects in the near vicinity of the system [7] 
will interfere with measurement results and 
adversely affect system precision and accuracy.  

Depending on the required level of precision, 
measurement of the position of a moving object may 
require the use of technological and mathematical 
error-analysis methods. An alternative and novel 
method, based on tracking the position of a medical 
instrument inside the human body has been 
presented in [8, 9]. This methodology employed 
phase shift measurement of a high frequency 
electromagnetic transmission originating from the 
medical instrument that was then used to calculate 
its displacement with respect to reference receivers 
outside the human body. The receiver electronics 
was based on a phase-locked loop (PLL) 
implementation and the experimental measurements 
were performed using a plain, low frequency digital 
oscilloscope. The method’s simplicity, relatively 
high precision, small size and low volume 
requirements, as well as a low manufacturing cost 
are considerable advantages compared to 
other solutions.  

The system presented in [8, 9] was based on a 
method where the displacement of a transmitter was 
represented by a low frequency voltage signal output 
at the receiver end of the system. The oscilloscope 
used for the experimental evaluation of a descibed 

system [8, 9] allowed for exporting the voltage –
which represents transmitter displacement – into 
image format data files. These files were 
appropriately processed to provide voltage versus 
time waveforms and time series, further processed to 
yield precision and system accuracy metrics. These 
waveforms were smoothed with the use of the 
LOWESS method [10] and error analysis was 
performed in order to define the system’s capability 
of performing accurate position tracking [9]. 

In this paper we present a novel data processing 
method which may be particularly applicable to 
biomedical engineering field data analysis, since 
measurements from safety critical operations are 
often opportunistic and unevenly sampled across the 
time domain [11]. Our experimental displacement 
data, which is extracted from the oscilloscope image 
format file, was an example of such an unevenly 
sampled data set. The power spectral density 
estimation of such a data set and more specifically 
the Lomb-Scargle periodogram analysis [12-14] 
provides quite interesting results, in a sense of better 
position tracking system accuracy and precision. In 
cases where the invasive medical instrument is 
displaced at constant velocity, which is a common 
operating scenario for surgical catheters, utilization 
of the Lomb-Scargle periodogram provides orders of 
magnitude of improvement in position tracking 
accuracy and precision. The experimental setup is 
described in Section 2. Next, the data processing 
method is analyzed in Section 3. In Section 4, the 
proposed frequency domain data processing method 
is explained. Finally, the conclusions are presented 
in Section 5.  

 

2. EXPERIMENTAL SETUP 

The experimental system setup is similar to the 
one described in [9]. A transmitter located on a 
wheeled platform is displaced at constant velocity 
with respect to a stationary receiver.  

A transmitter embedded in a medical catheter’s 
tip, being displaced with respect to a reference frame 
comprising several stationary receivers, will 
generate pure sinusoid signals at the receivers output 
if moving at constant velocity. Typical Intravascular 
Ultrasound (IVUS) catheters for example are 
moving inside the human body with the assistance of 
a motor driven guide wire and a pull-back velocity 
of the catheter in the order of 0.5 or 1 mm per 
second [15]. 

The transmitter’s displacement is represented by 
a Doppler X-Band receiver intermediate frequency 
(IF) signal. This signal is captured with the use of a 
low frequency digital oscilloscope. The  
captured signal is then exported to a PC with the use 
of a USB interface and an appropriate  
software application.  
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3. DATA PROCESSING 

The file transferred from the oscilloscope to the 
interconnected PC is a raster format (.BMP) screen 
capture. This kind of data file format does not 
provide the capability to process the experimental 
data, thus a data conversion method was used, in 
order to finally obtain an appropriate file format 
with measurable elements.  

This image data file was subsequently converted 
into a vector format image and an x-y data set was 
extracted in the form of a comma separated value 
(.CSV) file format. The x and y axis values represent 
time and voltage respectively. Such a file provides 
the data for amplitude and time normalized graph, 
representing the displacement voltage over a specific 
time period. The major weakness of this conversion 
procedure is that the data series waveform is 
unevenly sampled. 

The displacement equivalent voltage graph is a 
noisy signal, from which it is difficult to obtain the 
necessary information in order to evaluate the 
system’s overall accuracy and precision. A curve 
fitting or regression analysis method was used in 
order to filter noise from the signal and provide the 
capability for a statistical evaluation of our system. 
These methods are typically used to define the 
optimum curve which fits an experimental data 
series. In most cases the curve fitting result is a 
series of equations used to specify various points 
along a curve. In other cases however, this method 
does not provide the aforementioned equation 
definition, but rather a curve which smooth’s data in 
a manner which resembles hardware filtering.  

Existing curve fitting methods can be categorized 
in three primary categories: least squares curve fits, 
nonlinear curve fits and smoothing curve fits. The 
first two methods provide an equation which 
describes the resulting curve. The third method, by 
contrast does not generate an equation since it is 
impossible to always have a single equation 
describing the resulting curve. The smoothing 
method is used in order to have a much more 
uniform curve, actually filtering noise out from the 
initial data waveform.  

The method used was LOWESS (Locally 
Weighted Scatter-Plot Smoothing), a method similar 
to the least squared error smoothing method. 
LOWESS is a non-parametric regression method. 
This method is based on data analysis aiming at the 
creation of a set of points along a curve. This curve 
is described in the form of Cartesian X-Y 
coordinates, the X variable representing time. Since 
the experimental data waveforms captured from the 
oscilloscope have time represented along the X axis 
this method constitutes an improvement with respect 
to the least squares smoothing method.  

In LOWESS method locally weighted linear 
regression is used in order to smooth measured 
signal waveforms [10]. Initially the regression 
weights are computed, for each sampled data point. 
The weights w  for each data point are given by: 

 

33i

i ))
d(x)

x-x
(-1(w =    (1) 

 
where x  is the predictor value associated with the 

response value to be smoothed, ix  are the neighbors 

that are nearest at x  as defined by the span and 

)x(d  is the distance along the abscissa from x  to 

the most distant predictor value within the span.  
Next, a weighted linear least squares regression is 

performed into the data set. The regression employs 
a first degree polynomial. 

Finally, the smoothed value is given by  
the weighted regression at the predictor value  
of interest. 

The LOWESS method is superior for unevenly 
sampled data, whereas the least squares smoothing 
method is not.  

An important parameter concerning the 
LOWESS method is the smoothing factor α . This 

factor is a number between ( ) n1ν +  and 1, with v  

denotes the degree of the local polynomial for 
n number of data points. The value of a  is the 
proportion of data used in each fit. A value of a  in 
the order of 0.25 was used for smoothing the 
measured displacement data series. 

A Zero Intermediate Frequency (ZIF) signal [9] 
measured with a low frequency digital oscilloscope, 
at 4cm/s constant transmitter velocity, together with 
a smoothed ZIF signal is depicted in Fig. 1. 

 

 

Fig. 1 – ZIF oscilloscope captured signal in 
comparison to smoothed with LOWESS algorithm 

signal for 4cm/s constant transmitter velocity. 
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After smoothing the signal, applicable accuracy 
and precision metrics allowed us to qualitatively 
evaluate our system by performing calculations into 
the time domain. 

The Standard Deviation ( )SD of measurements 

or mm653.0σ =  and the typical error is 

mm206.0
n

σ
= , where n  is the number of 

measured waveforms that were smoothed. 
Concerning system precision, in 99.7% of 

measurements, measurement error will be less or 
equal to mm959.1σ3 ±=± . The 95% confidence 

interval bound is calculated as mm4.0±  [16]. 
 

4. FREQUENCY DOMAIN DATA 
PROCESSING 

Keeping in mind that experimental data from a 
medical instrument moving inside the human body is 
most likely noisy and affected by various sources of 
interference, we seek to utilise efficient error 
analysis algorithms, in order to extract as much 
useful information from the data as possible [17]. 
Spectral analysis or frequency domain processing is 
a valuable digital signal processing tool, which was 
used for our experimental data. 

As mentioned earlier, the signal provided from 
the image data file conversion is unevenly sampled. 
Interpolation to resample the signal uniformly is 
commonly used and reported in scientific 
literature [18]. Spectrum analysis methods such as 
Fast Fourier Transform (FFT) are subsequently 
performed, in order to acquire the spectrum content 
of the signal and obtain further valuable information 
from the frequency domain.  

Interpolation of the system ZIF signal was 
initially performed. Afterwards, Fast Fourier 
Transform (FFT) was applied to the evenly sampled 
signal. An initial estimation of the primary 
frequency of the signal in the order of 1.5 Hz was 
obtained from the time domain signal, thus all higher 
frequencies were securely filtered out. Then Inverse 
Fast Fourier Transform (IFFT) is performed, in 
order to acquire a new, noise-filtered reconstruction 
of the signal. FFT, signal filtering and IFFT  
were performed using the MATLAB signal 
processing toolbox.  

As expected, the reconstructed, noise-filtered 
signal associated with a constant transmitter velocity 
of 4 cm/s – as depicted in Fig. 2 – is a close 
approximation of a sinusoidal curve.  

This is the expected initial ZIF graph, since the 
system transmitter is displaced with constant 
velocity away from the receiver. Basic PLL theory 
and previous conducted system simulation proves 
the fact that the system’s output voltage is a 

sinusoidal signal, for constant transmitter velocity 
[9, 19, 20]. Unfortunately the final reconstructed 
signal is not as close an approximation to a 
sinusoidal signal as hoped in order for it to be used 
for qualitative system characterization.  

 

 

Fig. 2 – ZIF signal for 4cm/s constant transmitter 
velocity after FFT – low pass filtering - IFFT Matlab 

processing. 

 
Since traditional spectral estimators need even 

sampling rates, unevenly spaced series need to be 
interpolated and resampled before spectral analysis. 
By contrast, the most common signal spectrum 
analysis method for small amplitude signals with 
periodicity such as is the measurement data for our 
case is the Lomb-Scargle periodogram (often called 
LSSA: Least-Squares Spectral Analysis) [12-14]. It 
is a method which does not require interpolation and 
resampling [21]. A periodogram is actually a graph 
showing frequency power for a specific spectrum of 
frequencies. For time-series of M data points, 

( )
ii tYY =  sampled at time instances it , where 

M,...,2,1i = , with a mean value of Y , the Lomb-

Scargle periodogram is computed from Eq. (2): 
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where τ  is given by Eq. (3): 
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PN is the normalized power as function of 

angular frequency ( )Pπ2ω =  for all the periods 

( )P  which were totally tested. When the term 

“normalized” is mentioned, it actually refers to 2σ , 

which is the total variance of the data ( )
itY  and 

permits the determination of the statistical 
significance of peaks in a periodogram [13]. On the 
other hand, the term t  is used in order to adjust for 
phase shifts caused by unevenly sampled data and 
was first introduced by Lomb [12]. A peak in such a 
periodogram indicates a frequency with significant 
periodicity. Of course, for evenly sampled data sets, 
the results of Lomb-Scargle periodogram are exactly 
the same as for the classical power spectrum [22].  

When the data are unevenly sampled, as is our 
experimental case, there are specific differences 
between the Lomb-Scargle periodogram and FFT 
analysis, such as: a) the Lomb-Scargle periodogram 
method weights data points, while the FFT method 
weights frequency intervals, b) the Lomb Scargle 
periodogram can be used with unevenly sampled 
data, while the FFT cannot c) using the Lomb 
Scargle periodogram method we have no data 
imputation, which is not the case with FFT and d) 
any number of data points can be used in a Lomb 
Scargle periodogram, while the data points in FFT is 
2N and any missing points are zero- padded. 

Utilisation of the Lomb Scargle periodogram for 
the same ZIF signal that was used as input for time 
and frequency domain analysis that was shown 
above provided the Lomb Scargle periodogram 
shown in Fig. 3. 

 

 

Fig. 3 – Lomb-Scargle periodogram of ZIF signal,  
for 4cm/s constant transmitter velocity. 

 
It can be clearly sheen that the primary signal 

frequency has multiple orders of higher amplitude in 
comparison with all other harmonics. Using this 
frequency one can easily assume that the ZIF signal 
is a sinusoid with frequency 1.5771 Hz. This signal 

representation together with an unfiltered, noisy ZIF 
signal is shown in Fig. 4.  

 

 

Fig. 4 – ZIF signal captured with a digital oscilloscope 
together with a 1.5771 Hz frequency sinusoidal signal 

representation, for 4 cm/s constant transmitter 
velocity. 

 
Performing the same frequency extraction for the 

entire set of 100 measurements, the subsequent 
calculation of the standard deviation, typical error, 
95% confidence interval and other statistical metrics 
proves the system’s robustness and increased 
precision. The calculated precision is subsequently 
compared to the data provided by time domain 
analysis using the LOWESS smoothing method. In 
the Lomb Scargle periodogram method case, the 

Standard Deviation ( )SD  or mm2.0σ =  and the 

typical error mm063.0
n

σ
= , where n  is the 

number of measured waveforms that were processed 
using Lomb Scargle periodogram. Concerning 
system precision, in 99.7% of measurements, 
measurement error will be less or equal to 

mm6.0σ3 ±=± . The 95% confidence interval 

bound is calculated to be mm123.0± .  
Table 1 shows the precision statistical results 

from both methods (LOWESS and Lomb Scargle 
periodogram). 

 

Table 1. Processing methods comparison. 

Processing 
method 

( )mmσ  
( )mm

n

σ
 

( )mm

95%CI

 

LOWESS 0.653 0.206  0.4 
Lomb Scargle 
periodogram 

0.2 0.063  0.123 

 
Since our system can only be compared with 

electromagnetic medical tracking systems, due to the 
fact that they are the sole systems that can operate 
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without the transmitter having clear line-of-sight 
(LOS) with the associated receivers, a comparison 
between our implementation and a typical 
electromagnetic medical position tracking system 
can be performed, as far as standard deviation, or 
95% CI concerns. A study performed at Oulu 
University Hospital presenting electromagnetic 
systems characteristics was presented into [23], 
measuring position tracking precision and accuracy, 
in a similar way that was performed for our system. 
The precision of electromagnetic tracking systems 
that were evaluated shows a 0.13 mm standard 
deviation which is comparable with our proposed 
system’s standard deviation when Lomb Scargle 
periodogram method was employed, while the 95% 
CI of the electromagnetic systems was 0.76 mm, 
while our system’s 95% CI was measured  
0.123 mm.  

 
5. CONCLUSIONS 

Both LOWESS and Lomb Scargle periodogram 
methods can be used in order to obtain position 
tracking precise results. It is preferable to employ 
the Lomb Scargle periodogram method in cases 
where the transmitter or the medical instrument is 
being displaced with constant velocity. LOWESS is 
the preferred method in cases where transmitter 
velocity is not constant.  

In cases such as a medical catheter, the 
displacement velocity is guarantied to be constant 
and the Lomb Scargle periodogram method can 
provide optimum precision to the position 
tracking system.  

In cases where the medical instrument is 
displaced manually by a surgeon, without motor 
pullback assistance, the LOWESS method appears to 
be an optimum solution for filtering noise out of the 
displacement measurement. Still, the Lomb Scargle 
periodogram method can also be efficiently used in 
cases where the physician manually displaces the 
catheter at a relatively constant velocity. The 
system’s precision in the latter scenario is yet to be 
experimentally investigated.  
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