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1. INTRODUCTION 

Importance of contemporary computer-based 
measurement systems steadily increases with their 
new applications. Currently, industry and society-
oriented installations (healthcare, power plants or 
water distribution) widely use computer devices to 
monitor and control processes of critical importance 
for large groups of citizens. The Distributed 
Measuring System (DMS) may become the target 
for terrorists to maximize casualties among civilians 
by, for example, damaging the nuclear plant or 
poisoning the water supply. Therefore creating 
reliable and safe systems becomes more important 
[1]. This includes protecting data in conditions  
of the possible unauthorized access to the 
infrastructure [2]. 

Software methods of increasing safety for the 
transmitted data are authentication and authorization 
of users, imposed by the operating system and 
cryptographic protocols. The latter are widely 
investigated. New algorithms of encrypting and 
decrypting data are developed. For the needs of 
DMS, integrated programming environments, such 
as LabVIEW or Lab Windows/CVI are used. The 
challenge of ensuring security in DMS is its 
versatility. It contains desktop computers or 
workstations (processing nodes) and small units 
(measurement or execution nodes), such as sensory 
networks or embedded systems. This requires 
implementing cryptographic algorithms separately 
for each node. Attempts to adjust the encryption 

system to the multi-core server have been made [3]. 
It is important to verify the ability to secure the data 
in small, measurement nodes. 

The paper presents the implementation of such an 
algorithm in LabVIEW to the industrial module 
responsible for measurements and control actions on 
monitored objects [4]. It must be adjusted to the 
node with small computational power and limited 
power supply. In section II, the structure of the 
secure DMS is presented, stressing the role of 
embedded systems in measurements processing. 
Cryptographic methods for ensuring security are 
presented here. Section III describes the 
implementation of the Advanced Encryption System 
(AES) to the embedded platform. Section IV 
presents the laboratory test stand, in which 
verification and testing of the algorithms were 
performed. In Section V experimental results are 
described. Section VI contains conclusions and 
future prospects. 

 

2. STRUCTURE OF DMS 

To ensure security in the DMS, the first step may 
be to isolate it from the outside world. This can be 
achieved by separating the transmission medium 
used in the system, either physically, or by the 
firewall. If the system consists of multiple 
geographically distant nodes, this may be not 
enough. The intruder can infiltrate the DMS and 
connect to the medium (the wireless communication 
makes it even easier). Then, he would be able to 
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intercept messages between the nodes to find out the 
syntax of communication protocols or discover 
values of measured parameters. Another attack 
would consist in pretending to be the supervisory 
node, sending control messages not intended by the 
DMS designer or legitimate operator.  

Standards (such as the SSL protocol) used in the 
computer networks allow for automated security 
mechanisms. Unfortunately, in the DMS there are 
specialized devices, which do not have the 
embedded encryption and decryption methods. It is 
true for sensory networks and small nodes 
(microcontrollers), where the limited power supply 
(such as battery) imposes the minimum processor 
usage. In such systems cryptographic schemes were 
omitted, as they increase the load of computing 
units. Specialized protocols used in communication 
between such nodes are also often deprived of 
required security mechanisms. It is then justified to 
develop and implement efficient secure algorithms 
for such devices [5].  

Contemporary DMS are inexpensive as most of 
their modules are computer-based devices running 
the flexible software installed. Security challenges of 
the DMS depend on its structure. As in the 
traditional computer network, the intruder may 
attempt to intercept data transmitted between nodes, 
or take control over them. When specialized devices 
are used, there is the need to implement 
cryptographic algorithms in hardware (such as 
FPGA) or in the specific unit (intelligent sensor). 
The FPGA structures are currently the fastest 
solutions available [3]. Because of small 
dimensions, they can be used in the embedded 
system. The traditional method of configuring the 
FPGA system is to design it using VHDL. As this is 
the time-consuming process, compilers are 
developed to generate the logical gates configuration 
from the code of the higher level language. The 
example of such an approach is the FPGA module 
for LabVIEW, aimed at configuring gates in the 
CompactRIO platform. It is flexible industrial 
computer equipped with the embedded processor 
and the FPGA array. The advantage of the 
compilation technique is the short design time. The 
disadvantage is the size and speed of the resulting 
configuration, depending on the LabVIEW 
FPGA compiler. 

The main problem of the measurement server [3] 
is processing large amount of information, coming 
from various sources simultaneously. It decrypts the 
measurement data from distant nodes and encrypts 
commands for them. The problem of measurement 
nodes is the limited processing capability required to 
encrypt the data and decrypt commands online. 
While the server is equipped with multi-core 
processors, the embedded system contains the small 

single-core unit. It is close to the monitored object 
and must work in the Real-Time mode to analyze 
and interact with the environment on-line. The 
module is required to work under the Real-Time 
Operating System (RTOS) to ensure timely 
execution of particular measurement tasks. In the 
presented research the National Instruments 
CompactRIO 9073 was selected (see section IV), 
which fulfills these requirements. 

The main drawback of measurement nodes is 
their limited processor speed and flexibility. 
Introducing additional (cryptographic) task for such 
small computers is difficult. While large computers 
are equipped with powerful processors (such  
as Intel Core i7), which have the AES  
algorithm implemented as a set of new instructions, 
executing modules rely on their slow  
processing units or use the external modules 
responsible for data encryption and decryption.  
A good example is the ARM9 microcontroller,  
with the hardware AES implementation, which can 
be used in the sensory networks, also using the 
wireless computer network. The CompactRIO 
platform is flexible enough to run the additional 
algorithm using the onboard computer, as presented 
in the paper.  

 
3. IMPLEMENTATION OF THE AES IN 

THE COMPACTRIO PLATFORM 

The AES is the most popular and secure 
symmetric system used in the professional industrial 
applications. Therefore it was selected to provide the 
security in DMS from the execution modules 
perspective. There are multiple alternatives for this 
solution, such as Blowfish, DES [6], IDEA or 
Twofish. Most of these standards are currently of 
limited use. Their disadvantages include: 
 too short encryption/decryption keys, which, 

because of the increasing computational power, 
are easy to break. These are 56 bits for DES or 
128 bits for IDEA, while currently required 
symmetric key lengths are 192b, 256b, or more.  

 too small amount of data to be processed during 
one algorithm execution. This requires a greater 
amount of iterations to encrypt or decrypt the 
same vector. This is the problem of DES (and its 
successor 3DES), Blowfish and IDEA, where 64-
bit plaintexts are processed. 

 existence of so-called “weak keys” (the bit 
combinations especially easy to break) [7], and 
existing types of attacks, which decrease the 
usefulness of IDEA, Blowfish and DES. 
The strongest option is Twofish algorithm [8], 

comparable to AES. As it was not selected for 
standardisation, AES was selected for experiments 
presented in the paper. 
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The following section describes the general AES 
working scheme and details of its implementation in 
the LabVIEW code run on the CompactRIO module. 

AES Description 
The AES algorithm is currently the dominant 

symmetric block cipher, approved by the National 
Institute of Standards and Technology in 2001 [9]. 
The cipher replaced its less secure predecessor, Data 
Encryption Standard (DES). The encryption scheme 
of AES takes 128-bit data blocks and 128-, 192- or 
256-bit key at the input. It produces 128-bit 
cryptogram on the output. The decryption scheme 
takes 128-bit cryptogram and the key presented 
above as the input and produces 128-bit plaintext on 
the output. Its hardware and software requirements 
are relatively small, so AES can be used in all nodes 
of the considered DMS. In the measurement nodes 
encryption of data blocks and decryption of 
commands from the server are done simultaneously. 
Therefore all devices in the DMS must be able to 
execute cryptographic schemes fast enough. The 
implementation of the algorithm is based on the 
substitution-permutation network. The detailed 
description of the system is beyond the scope of this 
paper. Only the general structure of the algorithm 
will be presented; the full presentation of the system 
is in [9]. 

Both encryption and decryption procedures 
contain analogous operations, but in different order. 
The encryption operates on the state matrix (which 
is firstly filled with the input vector), performing 
SubBytes, ShiftRows, MixColumns and 
AddRoundKey operations repeatedly in a loop (the 
number of its iterations depends on the length of the 
key K and can be 10, 12 or 14). The transformation 
of the state matrix is done using a constant array s-
box, shifting rows of the matrix, performing matrix 
multiplication and performing XOR operation. The 
last iteration is different than previous ones (as it 
does not contain the MixColumns operation). After 
the last iteration the state matrix is copied to the 
output. The decryption uses operations 
InvShiftRows, InvSubBytes, AddRoundKey and 
InvMixColumns, also executed in a loop [9].  

Before the data (which for encryption are 
measurements taken by the embedded system and 
for decryption it is the cipher coming from the server 
or control module) are processed, the expanded key 
W must be generated from K [6]. The procedure 
consists in performing operations on four input bytes 
using s-box and permutation.  

3.1. IMPLEMENTATION OF AES IN 
LABVIEW FOR THE COMPACTRIO 

Currently, cryptographic operations are not the 
part of the LabVIEW environment, therefore there is 
the need to create them using the G language, or 
exploit the existing libraries. One of the latter is the 
Crypto-G library [10]. It does not cover multiple 
algorithms (for instance, asymmetric systems) and 
cannot be used under the RTOS. Therefore there was 
the need to design the proper version of the 
algorithm for such a system. The structure of the 
CompactRIO includes the controller (an industrial 
computer) the FPGA subsystem and I/O modules 
(Fig. 1). The latter are controlled by the FPGA, 
which ensures the high speed of operation. Existence 
of the computer and the FPGA makes possible AES 
implementation in two ways. The first one includes 
the code run on the processor of the computer 
system, which is the slower version of the typical 
general-purpose processing unit. Its programming 
technique should be the same as for the PC run 
under RTOS [11], considering limited abilities of the 
embedded system. The second approach involves 
design of the logical gates configuration to execute 
the encryption and decryption by the hardware. Such 
a solution promises better efficiency, as the fastest 
AES implementations to date are created using 
FPGA or other hardware-based solutions [12,13]. In 
CompactRIO this may cause a problem, as FPGA, 
controls I/O modules in the first place. Therefore 
adding another function to the gates may result in 
the speed decrease. Also, for too small hardware 
arrays, the simultaneous implementation of the 
cryptographic algorithm and I/O operations may be 
impossible (not enough gates to implement both 
measurement and cryptographic tasks). 

Implementation of the embedded computer-
targeted version of the algorithm required 
preparation of the LabVIEW code correctly 
executable under RTOS (as the Crypto-G functions 
cannot be used there). The structure of the code 
required modifications, mainly consisting in 
calculating the key string lengths, which are used to 
select the number of algorithm rounds. Functions 
calculating the length of the string gave wrong 
results and had to be corrected in order to execute 
the key expansion procedure (modified LabVIEW 
“Expand” function in Fig. 2a and original in Fig. 
2b). Modifications increased complexity of the code, 
but made it usable under RTOS. 
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Fig. 1 – Structure of the CompactRIO platform. 

 

Fig. 2 – Comparison of the RTOS-executable (a) and original (b) code. 
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Another version of the algorithm prepared to be 
executed in the computer of the embedded system 
was the multithreaded AES, where each s-box 
processing operation was divided into four parallel 
suboperations, finally assembled to obtain the result. 
The theoretical assessment of the concurrent 
algorithm suggests that dividing the data stream into 
parallel substreams should increase speed of 
operation. Disassembling data structures into simple 
elements also requires time, which might be long 
enough to make the whole approach inefficient. This 

solution was successful in the multicore server 
system [11,12], where each processor’s core was 
able to process its data block concurrently. Although 
there were two versions of this code, i.e. implicitly 
and explicitly assigning threads to the particular 
core, only the first one was useful in the embedded 
system. The second version was unable to correctly 
encrypt and decrypt the data (as the deterministic 
loops did not work with the hardware). The 
efficiency of this solution (Fig. 3) on the simple 
computer was verified. 

 

 

Fig. 3 – Exemplary code of the parallel AES operation. 

The FPGA implementation of the AES for the 
CompactRIO platform was more difficult. The 
programming library for this system is limited and 
multiple functions available in general version of 
LabVIEW are not executable on FPGA. Therefore 
most functions had to be redesigned to meet the 
system’s requirements. The main limitations and 
modifications of the implemented code are: 
 Inability to use the string variables and constants. 

The LabVIEW implementation of AES works on 
the character chains, which are internally 
converted into the byte array. Therefore the 
conversion of the string or number into the byte 
array must be done before the data are sent to the 
FPGA system. This imposes design of the two-

part code. The first one is run on the 
CompactRIO computer, where data are prepared 
for processing and encryption/decryption results 
are converted to the required form. The second is 
the FPGA code processing the plaintext or the 
cipher. Communication between both systems is 
assured using FIFO variables or by specialized 
functions – see Fig. 4. The conversion is not 
required when only numerical data (here 
unsigned integers) are transmitted  

 Usage of only one-dimensional data. As AES 
operation is based on the s-boxes processing, 
which are two-dimensional arrays, the 
modification of the code changed arrays into 
vectors. This complicated the structure of the 



Wiesław Winiecki, Piotr Bilski / International Journal of Computing, 14(2) 2015, 66-76 

 

 71

operation, including addressing of the particular 
array elements and modifying matrix structures 
(for instance, transpositions also had to be 
eliminated). Instead, only vector operations were 
implemented.  

 Inability to use the dynamic structures. The 
number of iterations in the for loop has to be 
explicitly declared in the code and cannot depend 
on the currently processed data size. All vectors 
incoming from the computer system must be of 
fixed length. Because AES works with three key 
lengths, three different versions of the encryption 
and decryption functions had to be prepared, 
differing in the size of data structures (key and 

expanded key lengths) and the number of AES 
rounds (10, 12, or 14, respectively). 

 Usage of the floating point numbers is not 
allowed. Therefore any functions producing float 
or double values must be exchanged into the 
fixed point counterparts. This is especially 
important for the division operations. 

 Multiplication of array elements using one 
operation only is not allowed. Therefore such 
operations must be done using “for” loops. 
The example of the code for the FPGA system is 

in Fig. 5. 

 

 

Fig. 4 – Architecture of the system implementing AES in the FPGA array. 

 

Fig. 5 – The fragment of the AES code for the FPGA implementation. 
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The additional problem is the selection of the 
coding mode. As AES is the block cipher, there is 
the need to ensure that the repeated sequences of the 
encrypted data will not produce repeated 
cryptograms, which might compromise the system. 
In practical applications, extensions to the basic 
Electronic Code Book (ECB) code have to be 

verified, including Cipher Block Chaining  
(CBC), Cipher Feedback (CFB) and other  
modes [14]. Implementing them increases  
security of the system, although is an  
additional task for the processor. Description of 
experiments using coding modes is beyond the scope 
of this paper.  

 

 

Fig. 6 – Code for the AES efficiency measurement under embedded processor. 

4. LABORATORY TEST STAND 

The following equipment was used to create the 
AES-capable embedded system: 
 National Instruments CompactRIO 9073 modular 

instrument. It is equipped with PowerPC 266 
MHz processor and FPGA module. The latter can 
be used to control the modules installed in the 
chassis, for example initiate the samples 
generation or acquisition. The module placed in 
the chassis was NI 9205 DAQ, able to acquire 
250kS/s. The whole system works under RTOS: 
Wind River VxWorks [15]. 

 Personal computer with LabVIEW installed, 
acting as the design platform of the software. It 
was equipped with Intel T2300 processor and 2.5 
GB of RAM. This machine also worked as the 
server obtaining samples from the measurement 
node. The computer works under Windows XP. 

 The Agilent 32210A function generator, able to 
generate sinusoidal waveform up to 20 MHz, 
which is enough to test the abilities of the 
CompactRIO module. 

 Both computers were connected using the 
100Mb/s Ethernet network, ensured by the simple 
switch. The planned experiments included: 

 encryption and decryption of the single 16-byte 
block using single- and multi-core versions of the 
algorithm. This is the simulation of the real 
situation when the subsequent samples are put 
into the block and then encrypted. The decryption 
of the incoming instructions is also simulated. As 
both operations have analogous structure (see 
Section IV), it is assumed that both have similar 
computational complexity. 

 encryption of the samples acquired by the DAQ 
module of the Compact RIO instrument. The 
FPGA-driven acquisition obtains new samples 
with the constant speed, determined by the 
abilities of the hardware. The embedded system 
encrypts them on-the-fly and sends to the server. 
This experiment verifies the practical speed of the 
Compact RIO module, as duration of sending 
samples through the network depends not only on 
the encryption speed, but also DAQ efficiency. 
The software created for the embedded system 

cooperates with the analogous software of the 
measurement server (described in [11]). As the 
decryption and decryption are asynchronous (i.e. are 
executed only when the new samples are acquired or 
when the new command is sent from the server), 
they must be placed in separate threads of the code. 
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The fragment of the prepared G-language diagram 
with two independent data streams is in Fig. 6. 

 

5. EXPERIMENTAL RESULTS 

Experiments described in section IV were 
performed using all three lengths of keys. The time 
of each operation was taken using the “TickCount” 

function with the µs precision (which is currently the 
greatest resolution of the RTOS) – see Fig. 6 and 7. 
It allows to measure duration of the single 
encryption and decryption, so no additional loops 
are required, as in [16]. The code for the FPGA 
version measurement included functions invoking 
the VHDL code (Fig. 7). 

 

 

Fig. 7 – Code for the AES efficiency measurement under FPGA. 

 

5.1. EXPERIMENTS DESCRIPTION 

The first experiment was measuring the 
simulated samples, i.e. the single 16-byte block, 
consisting of the following sequence: 
“00112233445566778899aabbccddeeff” (where 
each element is a hexadecimal digit). As the duration 
of the single encryption and decryption depends on 
the state of the RTOS, both operations were repeated 
1000 times to see, what is their average duration and 
standard deviation. Results of the single sweep of 
the single-core encryption are in Fig. 8, while the 
average durations for different keys are in Tab. 1. 
Results confirm that both operations require similar 
amount of time to complete. Note that the maximum 
rate of sending encrypted samples is about four 
samples per second (for the 32-bit representation of 
the real number), which strongly limits the DAQ 
module efficiency. Results of the multi-core 
operations show that the multi-threaded code is not a 

good solution here, as it slows down the whole 
operation. Although the concurrent s-box 
transformation execution should speed up the whole 
process, the data transfer connected to division of 
the initial array into subarrays requires too much 
time. The multithreaded operation is slower and as 
long as only one processor with a single core is 
installed in the device, imposing parallel 
computations is not recommended. 

Additional observation from Fig. 8 is that most 
iterations of the cryptographic operation have 
similar duration, which is never longer (sometimes, 
if RTOS has free resources - shorter) than the 
particular value (as requires Hard Real-Time mode). 
The standard deviation is also small – in the case of 
Fig. 8, it is only 30.89 ms. This phenomenon is 
present only in systems under RTOS, GPOS, such as 
MS Windows produce much greater spread of 
durations [16].  

 

 

Fig. 8 – Execution of the single-core encryption operation for the 256-bit key. 
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Table 1. Results of the Single String Encryption and 
Decryption Efficiency Using the Computer-

Implemented AES 

Key 
length 

Encryption time 
[ms] 

Decryption time 
[ms] 

 
Single-
thread 

Multi-
thread 

Single-
thread 

Multi-
thread 

128 bit 226.16 295.13 230.01 289.04 
192 bit 518.06 590.21 504.35 588.73 
256 bit 625.97 653.47 612.85 647.38 

 
Experiments including the FPGA version of the 

algorithm were performed in the similar fashion. 
The FPGA code was invoked 100 times to encrypt 
or decrypt the predefined vectors. Such an 
experiment was repeated 100 times to verify the 
repeatability of results. To ensure that the functions 
work properly, during each experiment, the input 
vector was changed so the algorithm had to work 
with various content. The decryption or encryption 
results were immediately visible on the front panel 
to check if the operation is executed correctly. Then 
average durations were calculated. Results for the 
FPGA module are in Table 2. Duration of the 
encryption and decryption is also similar here and 
depends on the key length (which determines the 
number of rounds to be executed). 

 

Table 2. Results of the Single String Encryption and 
Decryption Efficiency Using the FPGA-Implemented 

AES 

Key 
length 

Encryption time 
[ms] 

Decryption time 
[ms] 

128 bit 8.68 8.67 
192 bit 11.65 11.74 
256 bit 15,98 16,04 

The second experiment consisted in acquiring the 
whole waveform from the analog input module. 
After the predefined number of samples is gathered, 
they are encrypted and sent through the network to 
another node (for instance, measurement server). 
The analog signals measured the I/O modules in the 
CompactRIO platform are represented as unsigned 
integers and depending on their length, their various 
number can fit into one input block for the AES 
procedure. Therefore processing the whole 
waveform is much longer. Results for the 1024 32-
bit samples waveform encryption and decryption 
using the microprocessor are in Table 3. In this case 
the data are only numerical, so the conversion 
between various types is not necessary here. 
Therefore the versatile implementation of the 
algorithm works only on numbers and conversion 
functions should be implemented in the outside 
code. Again, multi-threaded version of the scheme is 
slower than its simpler counterpart. 

Table 3. Results of the 1024-Samples Waveform 
Encryption and Decryption Efficiency Using the 

Computer-Implemented AES 

Key 
length 

Encryption time [s] 
Decryption time 

[ms] 

 
Single-
thread 

Multi-
thread 

Single-
thread 

Multi-
thread 

128 bit 51.07 57,46.13 50.03 57.97 
192 bit 134.02 152.96 134.84 151.82 
256 bit 160.41 167.59 159.22 168.31 

 

5.2. DISCUSSION 

The FPGA implementation of the AES 
encryption and decryption is faster than the 
processor version and can be used to immediately 
process the acquired samples from the I/O modules. 
Comparing results with the multi-core server, it 
shows the superiority of the FPGA module, which is 
even 5 times faster than the Core2Quad Q6600 
processor (2,4 GHz). However, the encrypted data 
must be sent to the embedded computer (see Fig. 4), 
which will be able to transfer them further. It is 
difficult to assess the time of transmission between 
the FPGA and the computer, although it is much 
shorter than the AES execution duration. The main 
problem with this implementation is that the gate 
array is responsible for the communication with 
hardware modules and it might be not enough for 
some applications, where multiple operations must 
be executed by FPGA. This depends on the 
particular embedded system and application. Also 
the disadvantage of the FPGA version of any 
algorithm is that the programming functions 
available for this hardware platform are strictly 
limited, imposing much greater amount of work 
from the programmer to obtain the same result. The 
final problem is the efficiency of the LabVIEW 
VHDL compiler. It is currently extremely slow, 
requiring 12 to 48 hours to complete the logical 
gates configuration (depending on the complexity of 
the code and the speed of the computer executing the 
task). The future implementations of this tool are 
expected to be much faster. 

The efficiency of the presented secure system is 
influenced by the application of the algorithm to the 
particular data. As it works with the data blocks of 
the constant size, it is reasonable to use the so-called 
burst mode, which will encrypt as many samples as 
possible. If the whole waveforms are gathered, the 
samples should be inserted into 128-bit blocks and 
then processed. When the scalar values are obtained, 
the system should wait until the whole block is full 
before performing encryption. The number of 
samples encrypted at the same time depends on their 
size. For instance, four 32-bit samples can be 
processed with a single algorithm execution. The 
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decryption should be executed immediately after the 
data are obtained.  

The work regime of the CompactRIO platform 
and its application suggest the optimal structure of 
the code implemented both in the microprocessor 
and FPGA subsystems. Because the encrypted 
instructions from the supervisory modes arrive 
through the network to the computer which 
interprets and executes them, they should be 
decrypted as soon as possible. Therefore the 
decryption scheme should be executed by the 
processor. The measurement data are obtained by 
the DAQ hardware, therefore they can be encrypted 
by FPGA. Such a solution balances the 
computational load within the CompactRIO module 
between all its elements. 

 
6. CONCLUSIONS 

The AES algorithm [17] presented in the paper 
can be used to create a secure distributed 
measurement system. However, depending on the 
type of the node considered, various problems arise. 
The measurement server must process multiple data 
from different sources. The embedded system must 
be fast enough to send the acquired samples on-line. 
As limitations of such a computer are numerous, the 
designer of the system must evaluate abilities of the 
equipment and select the models suiting the 
particular computational needs. Also, the 
multithreaded version of the implemented algorithm 
doesn’t work well on the single core processor. As 
the block ciphers are successfully implemented 
using FPGA technology, the latter could be also 
used to create the algorithm implementation for the 
Compact RIO module.  

Although the presented research was focused on 
the CompactRIO platform, the conclusions and 
recommendations are valid also for other, similar 
equipment. It is apparent that hardware 
implementations of the algorithm are much faster 
than its versions for the microprocessor. The latter is 
more flexible and can be used when the former is 
not available (because of, for instance, supporting 
data acquisition). However, combining both 
solutions can bring a novel quality in the DMS and 
should be investigated in the future. 
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