
Wiesław Winiecki, Piotr Bilski / International Journal of Computing, 14(2) 2015, 66-76

 66

IMPLEMENTATION OF SYMMETRIC CRYPTOGRAPHY IN EMBEDDED
MEASUREMENT SYSTEMS

Wiesław Winiecki 1), Piotr Bilski 1),2)

1) Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland, W.Winiecki@ire.pw.edu.pl

2) Department of Applied Informatics, Warsaw University of Life Sciences, Warsaw, Poland, piotr_bilski@sggw.pl

Abstract: The paper presents the implementation of the symmetric cryptography in the distributed measurement
system. Motivation for increasing the security in such systems is presented. Next, fundamentals of cryptography from
the measuring systems’ point of view are introduced. The role and structure of embedded systems in modern distributed
environments is explained. As the example of presented problems, implementation of the AES algorithm on the
Compact RIO module is presented and tested for both efficiency and accuracy. The paper is supplemented with
conclusions and future prospects of the approach. Copyright © Research Institute for Intelligent Computer Systems,
2015. All rights reserved.

Keywords: measurement, cryptography, embedded systems, distributed measurement systems.

1. INTRODUCTION

Importance of contemporary computer-based
measurement systems steadily increases with their
new applications. Currently, industry and society-
oriented installations (healthcare, power plants or
water distribution) widely use computer devices to
monitor and control processes of critical importance
for large groups of citizens. The Distributed
Measuring System (DMS) may become the target
for terrorists to maximize casualties among civilians
by, for example, damaging the nuclear plant or
poisoning the water supply. Therefore creating
reliable and safe systems becomes more important
[1]. This includes protecting data in conditions
of the possible unauthorized access to the
infrastructure [2].

Software methods of increasing safety for the
transmitted data are authentication and authorization
of users, imposed by the operating system and
cryptographic protocols. The latter are widely
investigated. New algorithms of encrypting and
decrypting data are developed. For the needs of
DMS, integrated programming environments, such
as LabVIEW or Lab Windows/CVI are used. The
challenge of ensuring security in DMS is its
versatility. It contains desktop computers or
workstations (processing nodes) and small units
(measurement or execution nodes), such as sensory
networks or embedded systems. This requires
implementing cryptographic algorithms separately
for each node. Attempts to adjust the encryption

system to the multi-core server have been made [3].
It is important to verify the ability to secure the data
in small, measurement nodes.

The paper presents the implementation of such an
algorithm in LabVIEW to the industrial module
responsible for measurements and control actions on
monitored objects [4]. It must be adjusted to the
node with small computational power and limited
power supply. In section II, the structure of the
secure DMS is presented, stressing the role of
embedded systems in measurements processing.
Cryptographic methods for ensuring security are
presented here. Section III describes the
implementation of the Advanced Encryption System
(AES) to the embedded platform. Section IV
presents the laboratory test stand, in which
verification and testing of the algorithms were
performed. In Section V experimental results are
described. Section VI contains conclusions and
future prospects.

2. STRUCTURE OF DMS

To ensure security in the DMS, the first step may
be to isolate it from the outside world. This can be
achieved by separating the transmission medium
used in the system, either physically, or by the
firewall. If the system consists of multiple
geographically distant nodes, this may be not
enough. The intruder can infiltrate the DMS and
connect to the medium (the wireless communication
makes it even easier). Then, he would be able to

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Wiesław Winiecki, Piotr Bilski / International Journal of Computing, 14(2) 2015, 66-76

 67

intercept messages between the nodes to find out the
syntax of communication protocols or discover
values of measured parameters. Another attack
would consist in pretending to be the supervisory
node, sending control messages not intended by the
DMS designer or legitimate operator.

Standards (such as the SSL protocol) used in the
computer networks allow for automated security
mechanisms. Unfortunately, in the DMS there are
specialized devices, which do not have the
embedded encryption and decryption methods. It is
true for sensory networks and small nodes
(microcontrollers), where the limited power supply
(such as battery) imposes the minimum processor
usage. In such systems cryptographic schemes were
omitted, as they increase the load of computing
units. Specialized protocols used in communication
between such nodes are also often deprived of
required security mechanisms. It is then justified to
develop and implement efficient secure algorithms
for such devices [5].

Contemporary DMS are inexpensive as most of
their modules are computer-based devices running
the flexible software installed. Security challenges of
the DMS depend on its structure. As in the
traditional computer network, the intruder may
attempt to intercept data transmitted between nodes,
or take control over them. When specialized devices
are used, there is the need to implement
cryptographic algorithms in hardware (such as
FPGA) or in the specific unit (intelligent sensor).
The FPGA structures are currently the fastest
solutions available [3]. Because of small
dimensions, they can be used in the embedded
system. The traditional method of configuring the
FPGA system is to design it using VHDL. As this is
the time-consuming process, compilers are
developed to generate the logical gates configuration
from the code of the higher level language. The
example of such an approach is the FPGA module
for LabVIEW, aimed at configuring gates in the
CompactRIO platform. It is flexible industrial
computer equipped with the embedded processor
and the FPGA array. The advantage of the
compilation technique is the short design time. The
disadvantage is the size and speed of the resulting
configuration, depending on the LabVIEW
FPGA compiler.

The main problem of the measurement server [3]
is processing large amount of information, coming
from various sources simultaneously. It decrypts the
measurement data from distant nodes and encrypts
commands for them. The problem of measurement
nodes is the limited processing capability required to
encrypt the data and decrypt commands online.
While the server is equipped with multi-core
processors, the embedded system contains the small

single-core unit. It is close to the monitored object
and must work in the Real-Time mode to analyze
and interact with the environment on-line. The
module is required to work under the Real-Time
Operating System (RTOS) to ensure timely
execution of particular measurement tasks. In the
presented research the National Instruments
CompactRIO 9073 was selected (see section IV),
which fulfills these requirements.

The main drawback of measurement nodes is
their limited processor speed and flexibility.
Introducing additional (cryptographic) task for such
small computers is difficult. While large computers
are equipped with powerful processors (such
as Intel Core i7), which have the AES
algorithm implemented as a set of new instructions,
executing modules rely on their slow
processing units or use the external modules
responsible for data encryption and decryption.
A good example is the ARM9 microcontroller,
with the hardware AES implementation, which can
be used in the sensory networks, also using the
wireless computer network. The CompactRIO
platform is flexible enough to run the additional
algorithm using the onboard computer, as presented
in the paper.

3. IMPLEMENTATION OF THE AES IN

THE COMPACTRIO PLATFORM

The AES is the most popular and secure
symmetric system used in the professional industrial
applications. Therefore it was selected to provide the
security in DMS from the execution modules
perspective. There are multiple alternatives for this
solution, such as Blowfish, DES [6], IDEA or
Twofish. Most of these standards are currently of
limited use. Their disadvantages include:
 too short encryption/decryption keys, which,

because of the increasing computational power,
are easy to break. These are 56 bits for DES or
128 bits for IDEA, while currently required
symmetric key lengths are 192b, 256b, or more.

 too small amount of data to be processed during
one algorithm execution. This requires a greater
amount of iterations to encrypt or decrypt the
same vector. This is the problem of DES (and its
successor 3DES), Blowfish and IDEA, where 64-
bit plaintexts are processed.

 existence of so-called “weak keys” (the bit
combinations especially easy to break) [7], and
existing types of attacks, which decrease the
usefulness of IDEA, Blowfish and DES.
The strongest option is Twofish algorithm [8],

comparable to AES. As it was not selected for
standardisation, AES was selected for experiments
presented in the paper.

Wiesław Winiecki, Piotr Bilski / International Journal of Computing, 14(2) 2015, 66-76

 68

The following section describes the general AES
working scheme and details of its implementation in
the LabVIEW code run on the CompactRIO module.

AES Description
The AES algorithm is currently the dominant

symmetric block cipher, approved by the National
Institute of Standards and Technology in 2001 [9].
The cipher replaced its less secure predecessor, Data
Encryption Standard (DES). The encryption scheme
of AES takes 128-bit data blocks and 128-, 192- or
256-bit key at the input. It produces 128-bit
cryptogram on the output. The decryption scheme
takes 128-bit cryptogram and the key presented
above as the input and produces 128-bit plaintext on
the output. Its hardware and software requirements
are relatively small, so AES can be used in all nodes
of the considered DMS. In the measurement nodes
encryption of data blocks and decryption of
commands from the server are done simultaneously.
Therefore all devices in the DMS must be able to
execute cryptographic schemes fast enough. The
implementation of the algorithm is based on the
substitution-permutation network. The detailed
description of the system is beyond the scope of this
paper. Only the general structure of the algorithm
will be presented; the full presentation of the system
is in [9].

Both encryption and decryption procedures
contain analogous operations, but in different order.
The encryption operates on the state matrix (which
is firstly filled with the input vector), performing
SubBytes, ShiftRows, MixColumns and
AddRoundKey operations repeatedly in a loop (the
number of its iterations depends on the length of the
key K and can be 10, 12 or 14). The transformation
of the state matrix is done using a constant array s-
box, shifting rows of the matrix, performing matrix
multiplication and performing XOR operation. The
last iteration is different than previous ones (as it
does not contain the MixColumns operation). After
the last iteration the state matrix is copied to the
output. The decryption uses operations
InvShiftRows, InvSubBytes, AddRoundKey and
InvMixColumns, also executed in a loop [9].

Before the data (which for encryption are
measurements taken by the embedded system and
for decryption it is the cipher coming from the server
or control module) are processed, the expanded key
W must be generated from K [6]. The procedure
consists in performing operations on four input bytes
using s-box and permutation.

3.1. IMPLEMENTATION OF AES IN
LABVIEW FOR THE COMPACTRIO

Currently, cryptographic operations are not the
part of the LabVIEW environment, therefore there is
the need to create them using the G language, or
exploit the existing libraries. One of the latter is the
Crypto-G library [10]. It does not cover multiple
algorithms (for instance, asymmetric systems) and
cannot be used under the RTOS. Therefore there was
the need to design the proper version of the
algorithm for such a system. The structure of the
CompactRIO includes the controller (an industrial
computer) the FPGA subsystem and I/O modules
(Fig. 1). The latter are controlled by the FPGA,
which ensures the high speed of operation. Existence
of the computer and the FPGA makes possible AES
implementation in two ways. The first one includes
the code run on the processor of the computer
system, which is the slower version of the typical
general-purpose processing unit. Its programming
technique should be the same as for the PC run
under RTOS [11], considering limited abilities of the
embedded system. The second approach involves
design of the logical gates configuration to execute
the encryption and decryption by the hardware. Such
a solution promises better efficiency, as the fastest
AES implementations to date are created using
FPGA or other hardware-based solutions [12,13]. In
CompactRIO this may cause a problem, as FPGA,
controls I/O modules in the first place. Therefore
adding another function to the gates may result in
the speed decrease. Also, for too small hardware
arrays, the simultaneous implementation of the
cryptographic algorithm and I/O operations may be
impossible (not enough gates to implement both
measurement and cryptographic tasks).

Implementation of the embedded computer-
targeted version of the algorithm required
preparation of the LabVIEW code correctly
executable under RTOS (as the Crypto-G functions
cannot be used there). The structure of the code
required modifications, mainly consisting in
calculating the key string lengths, which are used to
select the number of algorithm rounds. Functions
calculating the length of the string gave wrong
results and had to be corrected in order to execute
the key expansion procedure (modified LabVIEW
“Expand” function in Fig. 2a and original in Fig.
2b). Modifications increased complexity of the code,
but made it usable under RTOS.

Wiesław Winiecki, Piotr Bilski / International Journal of Computing, 14(2) 2015, 66-76

 69

Fig. 1 – Structure of the CompactRIO platform.

Fig. 2 – Comparison of the RTOS-executable (a) and original (b) code.

Wiesław Winiecki, Piotr Bilski / International Journal of Computing, 14(2) 2015, 66-76

 70

Another version of the algorithm prepared to be
executed in the computer of the embedded system
was the multithreaded AES, where each s-box
processing operation was divided into four parallel
suboperations, finally assembled to obtain the result.
The theoretical assessment of the concurrent
algorithm suggests that dividing the data stream into
parallel substreams should increase speed of
operation. Disassembling data structures into simple
elements also requires time, which might be long
enough to make the whole approach inefficient. This

solution was successful in the multicore server
system [11,12], where each processor’s core was
able to process its data block concurrently. Although
there were two versions of this code, i.e. implicitly
and explicitly assigning threads to the particular
core, only the first one was useful in the embedded
system. The second version was unable to correctly
encrypt and decrypt the data (as the deterministic
loops did not work with the hardware). The
efficiency of this solution (Fig. 3) on the simple
computer was verified.

Fig. 3 – Exemplary code of the parallel AES operation.

The FPGA implementation of the AES for the
CompactRIO platform was more difficult. The
programming library for this system is limited and
multiple functions available in general version of
LabVIEW are not executable on FPGA. Therefore
most functions had to be redesigned to meet the
system’s requirements. The main limitations and
modifications of the implemented code are:
 Inability to use the string variables and constants.

The LabVIEW implementation of AES works on
the character chains, which are internally
converted into the byte array. Therefore the
conversion of the string or number into the byte
array must be done before the data are sent to the
FPGA system. This imposes design of the two-

part code. The first one is run on the
CompactRIO computer, where data are prepared
for processing and encryption/decryption results
are converted to the required form. The second is
the FPGA code processing the plaintext or the
cipher. Communication between both systems is
assured using FIFO variables or by specialized
functions – see Fig. 4. The conversion is not
required when only numerical data (here
unsigned integers) are transmitted

 Usage of only one-dimensional data. As AES
operation is based on the s-boxes processing,
which are two-dimensional arrays, the
modification of the code changed arrays into
vectors. This complicated the structure of the

Wiesław Winiecki, Piotr Bilski / International Journal of Computing, 14(2) 2015, 66-76

 71

operation, including addressing of the particular
array elements and modifying matrix structures
(for instance, transpositions also had to be
eliminated). Instead, only vector operations were
implemented.

 Inability to use the dynamic structures. The
number of iterations in the for loop has to be
explicitly declared in the code and cannot depend
on the currently processed data size. All vectors
incoming from the computer system must be of
fixed length. Because AES works with three key
lengths, three different versions of the encryption
and decryption functions had to be prepared,
differing in the size of data structures (key and

expanded key lengths) and the number of AES
rounds (10, 12, or 14, respectively).

 Usage of the floating point numbers is not
allowed. Therefore any functions producing float
or double values must be exchanged into the
fixed point counterparts. This is especially
important for the division operations.

 Multiplication of array elements using one
operation only is not allowed. Therefore such
operations must be done using “for” loops.
The example of the code for the FPGA system is

in Fig. 5.

Fig. 4 – Architecture of the system implementing AES in the FPGA array.

Fig. 5 – The fragment of the AES code for the FPGA implementation.

Wiesław Winiecki, Piotr Bilski / International Journal of Computing, 14(2) 2015, 66-76

 72

The additional problem is the selection of the
coding mode. As AES is the block cipher, there is
the need to ensure that the repeated sequences of the
encrypted data will not produce repeated
cryptograms, which might compromise the system.
In practical applications, extensions to the basic
Electronic Code Book (ECB) code have to be

verified, including Cipher Block Chaining
(CBC), Cipher Feedback (CFB) and other
modes [14]. Implementing them increases
security of the system, although is an
additional task for the processor. Description of
experiments using coding modes is beyond the scope
of this paper.

Fig. 6 – Code for the AES efficiency measurement under embedded processor.

4. LABORATORY TEST STAND

The following equipment was used to create the
AES-capable embedded system:
 National Instruments CompactRIO 9073 modular

instrument. It is equipped with PowerPC 266
MHz processor and FPGA module. The latter can
be used to control the modules installed in the
chassis, for example initiate the samples
generation or acquisition. The module placed in
the chassis was NI 9205 DAQ, able to acquire
250kS/s. The whole system works under RTOS:
Wind River VxWorks [15].

 Personal computer with LabVIEW installed,
acting as the design platform of the software. It
was equipped with Intel T2300 processor and 2.5
GB of RAM. This machine also worked as the
server obtaining samples from the measurement
node. The computer works under Windows XP.

 The Agilent 32210A function generator, able to
generate sinusoidal waveform up to 20 MHz,
which is enough to test the abilities of the
CompactRIO module.

 Both computers were connected using the
100Mb/s Ethernet network, ensured by the simple
switch. The planned experiments included:

 encryption and decryption of the single 16-byte
block using single- and multi-core versions of the
algorithm. This is the simulation of the real
situation when the subsequent samples are put
into the block and then encrypted. The decryption
of the incoming instructions is also simulated. As
both operations have analogous structure (see
Section IV), it is assumed that both have similar
computational complexity.

 encryption of the samples acquired by the DAQ
module of the Compact RIO instrument. The
FPGA-driven acquisition obtains new samples
with the constant speed, determined by the
abilities of the hardware. The embedded system
encrypts them on-the-fly and sends to the server.
This experiment verifies the practical speed of the
Compact RIO module, as duration of sending
samples through the network depends not only on
the encryption speed, but also DAQ efficiency.
The software created for the embedded system

cooperates with the analogous software of the
measurement server (described in [11]). As the
decryption and decryption are asynchronous (i.e. are
executed only when the new samples are acquired or
when the new command is sent from the server),
they must be placed in separate threads of the code.

Wiesław Winiecki, Piotr Bilski / International Journal of Computing, 14(2) 2015, 66-76

 73

The fragment of the prepared G-language diagram
with two independent data streams is in Fig. 6.

5. EXPERIMENTAL RESULTS

Experiments described in section IV were
performed using all three lengths of keys. The time
of each operation was taken using the “TickCount”

function with the µs precision (which is currently the
greatest resolution of the RTOS) – see Fig. 6 and 7.
It allows to measure duration of the single
encryption and decryption, so no additional loops
are required, as in [16]. The code for the FPGA
version measurement included functions invoking
the VHDL code (Fig. 7).

Fig. 7 – Code for the AES efficiency measurement under FPGA.

5.1. EXPERIMENTS DESCRIPTION

The first experiment was measuring the
simulated samples, i.e. the single 16-byte block,
consisting of the following sequence:
“00112233445566778899aabbccddeeff” (where
each element is a hexadecimal digit). As the duration
of the single encryption and decryption depends on
the state of the RTOS, both operations were repeated
1000 times to see, what is their average duration and
standard deviation. Results of the single sweep of
the single-core encryption are in Fig. 8, while the
average durations for different keys are in Tab. 1.
Results confirm that both operations require similar
amount of time to complete. Note that the maximum
rate of sending encrypted samples is about four
samples per second (for the 32-bit representation of
the real number), which strongly limits the DAQ
module efficiency. Results of the multi-core
operations show that the multi-threaded code is not a

good solution here, as it slows down the whole
operation. Although the concurrent s-box
transformation execution should speed up the whole
process, the data transfer connected to division of
the initial array into subarrays requires too much
time. The multithreaded operation is slower and as
long as only one processor with a single core is
installed in the device, imposing parallel
computations is not recommended.

Additional observation from Fig. 8 is that most
iterations of the cryptographic operation have
similar duration, which is never longer (sometimes,
if RTOS has free resources - shorter) than the
particular value (as requires Hard Real-Time mode).
The standard deviation is also small – in the case of
Fig. 8, it is only 30.89 ms. This phenomenon is
present only in systems under RTOS, GPOS, such as
MS Windows produce much greater spread of
durations [16].

Fig. 8 – Execution of the single-core encryption operation for the 256-bit key.

Wiesław Winiecki, Piotr Bilski / International Journal of Computing, 14(2) 2015, 66-76

 74

Table 1. Results of the Single String Encryption and
Decryption Efficiency Using the Computer-

Implemented AES

Key
length

Encryption time
[ms]

Decryption time
[ms]

Single-
thread

Multi-
thread

Single-
thread

Multi-
thread

128 bit 226.16 295.13 230.01 289.04
192 bit 518.06 590.21 504.35 588.73
256 bit 625.97 653.47 612.85 647.38

Experiments including the FPGA version of the

algorithm were performed in the similar fashion.
The FPGA code was invoked 100 times to encrypt
or decrypt the predefined vectors. Such an
experiment was repeated 100 times to verify the
repeatability of results. To ensure that the functions
work properly, during each experiment, the input
vector was changed so the algorithm had to work
with various content. The decryption or encryption
results were immediately visible on the front panel
to check if the operation is executed correctly. Then
average durations were calculated. Results for the
FPGA module are in Table 2. Duration of the
encryption and decryption is also similar here and
depends on the key length (which determines the
number of rounds to be executed).

Table 2. Results of the Single String Encryption and
Decryption Efficiency Using the FPGA-Implemented

AES

Key
length

Encryption time
[ms]

Decryption time
[ms]

128 bit 8.68 8.67
192 bit 11.65 11.74
256 bit 15,98 16,04

The second experiment consisted in acquiring the
whole waveform from the analog input module.
After the predefined number of samples is gathered,
they are encrypted and sent through the network to
another node (for instance, measurement server).
The analog signals measured the I/O modules in the
CompactRIO platform are represented as unsigned
integers and depending on their length, their various
number can fit into one input block for the AES
procedure. Therefore processing the whole
waveform is much longer. Results for the 1024 32-
bit samples waveform encryption and decryption
using the microprocessor are in Table 3. In this case
the data are only numerical, so the conversion
between various types is not necessary here.
Therefore the versatile implementation of the
algorithm works only on numbers and conversion
functions should be implemented in the outside
code. Again, multi-threaded version of the scheme is
slower than its simpler counterpart.

Table 3. Results of the 1024-Samples Waveform
Encryption and Decryption Efficiency Using the

Computer-Implemented AES

Key
length

Encryption time [s]
Decryption time

[ms]

Single-
thread

Multi-
thread

Single-
thread

Multi-
thread

128 bit 51.07 57,46.13 50.03 57.97
192 bit 134.02 152.96 134.84 151.82
256 bit 160.41 167.59 159.22 168.31

5.2. DISCUSSION

The FPGA implementation of the AES
encryption and decryption is faster than the
processor version and can be used to immediately
process the acquired samples from the I/O modules.
Comparing results with the multi-core server, it
shows the superiority of the FPGA module, which is
even 5 times faster than the Core2Quad Q6600
processor (2,4 GHz). However, the encrypted data
must be sent to the embedded computer (see Fig. 4),
which will be able to transfer them further. It is
difficult to assess the time of transmission between
the FPGA and the computer, although it is much
shorter than the AES execution duration. The main
problem with this implementation is that the gate
array is responsible for the communication with
hardware modules and it might be not enough for
some applications, where multiple operations must
be executed by FPGA. This depends on the
particular embedded system and application. Also
the disadvantage of the FPGA version of any
algorithm is that the programming functions
available for this hardware platform are strictly
limited, imposing much greater amount of work
from the programmer to obtain the same result. The
final problem is the efficiency of the LabVIEW
VHDL compiler. It is currently extremely slow,
requiring 12 to 48 hours to complete the logical
gates configuration (depending on the complexity of
the code and the speed of the computer executing the
task). The future implementations of this tool are
expected to be much faster.

The efficiency of the presented secure system is
influenced by the application of the algorithm to the
particular data. As it works with the data blocks of
the constant size, it is reasonable to use the so-called
burst mode, which will encrypt as many samples as
possible. If the whole waveforms are gathered, the
samples should be inserted into 128-bit blocks and
then processed. When the scalar values are obtained,
the system should wait until the whole block is full
before performing encryption. The number of
samples encrypted at the same time depends on their
size. For instance, four 32-bit samples can be
processed with a single algorithm execution. The

Wiesław Winiecki, Piotr Bilski / International Journal of Computing, 14(2) 2015, 66-76

 75

decryption should be executed immediately after the
data are obtained.

The work regime of the CompactRIO platform
and its application suggest the optimal structure of
the code implemented both in the microprocessor
and FPGA subsystems. Because the encrypted
instructions from the supervisory modes arrive
through the network to the computer which
interprets and executes them, they should be
decrypted as soon as possible. Therefore the
decryption scheme should be executed by the
processor. The measurement data are obtained by
the DAQ hardware, therefore they can be encrypted
by FPGA. Such a solution balances the
computational load within the CompactRIO module
between all its elements.

6. CONCLUSIONS

The AES algorithm [17] presented in the paper
can be used to create a secure distributed
measurement system. However, depending on the
type of the node considered, various problems arise.
The measurement server must process multiple data
from different sources. The embedded system must
be fast enough to send the acquired samples on-line.
As limitations of such a computer are numerous, the
designer of the system must evaluate abilities of the
equipment and select the models suiting the
particular computational needs. Also, the
multithreaded version of the implemented algorithm
doesn’t work well on the single core processor. As
the block ciphers are successfully implemented
using FPGA technology, the latter could be also
used to create the algorithm implementation for the
Compact RIO module.

Although the presented research was focused on
the CompactRIO platform, the conclusions and
recommendations are valid also for other, similar
equipment. It is apparent that hardware
implementations of the algorithm are much faster
than its versions for the microprocessor. The latter is
more flexible and can be used when the former is
not available (because of, for instance, supporting
data acquisition). However, combining both
solutions can bring a novel quality in the DMS and
should be investigated in the future.

7. REFERENCES

[1] W. Winiecki, T. Adamski, P. Bobiński,
R. Łukaszewski, Security of distributed
measurement and control systems, Przegląd
Elektrotechniczny (Electrical Review),
(LXXXIV) 5 (2008), pp. 220-227. (in Polish).

[2] A. Guruprasad, P. Pandey, B. Prashant,
Security features in Ethernet switches for
access networks, Proceedings of the

Conference on Convergent Technologies for
Asia-Pacific Region TENCON 2003, October
15-17, 2003, Vol. 3, pp. 1211–1214.

[3] D. Cheng-Hua, J. Jun, W. Xing-Ming, X. Wen-
Yuan, Fast S-box substitution instructions and
their hardware implementation for accelerating
symmetric cryptographic processing, in
Proceeding of the International Conference on
E-Business and Information System Security,
EBISS'09, 23-24 May 2009.

[4] P. Bilski, W. Winiecki, T. Adamski,
Implementation of symmetric cryptography in
embedded systems for secure measurement
systems, in Proceedings of the I2MTC 2011,
Hangzhou, China, 9-12, May 2011, pp. 1288-
1293.

[5] A. Biedermann, G. H. Molter, Design
methodologies for secure embedded systems,
Lecture Notes in Electrical Engineering,
Springer, (78) (2011).

[6] F.-X. Standaert, G. Rouvroy, J.-J. Quisquater,
FPGA implementations of the DES and Triple-
DES masked against power analysis attacks, in
Proceedings of the Field Programmable Logic
and Applications Conference, Madrid, Spain,
Aug. 28-30, 2006.

[7] J. Daemen, R. Govaerts, J. Vandewalle, Weak
keys for IDEA, in Proceeding of the Advances
in Cryptology, CRYPTO 93, 1993, pp. 224–
231.

[8] B. Schneier, J. Kelsey, D. Whiting, D. Wagner,
C. Hall, and N. Ferguson, The Twofish
Encryption Algorithm: A 128-Bit Block Cipher,
John Wiley & Sons, New York, 1999.

[9] Announcing the Advanced Encryption
Standard (AES), Available: www.nist.gov.

[10] Vartor Crypto-G library, available at
http://www.vartortech.com/cryptog.html.

[11] P. Bilski, W. Winiecki, Multi-core
implementation of the symmetric cryptography
algorithms in the measurement system,
Measurement, (43) (2010), pp. 1049-1060.

[12] O. Gervasi, D. Russo, F. Vella, The AES
implantation based on OpenCL for multi/many
core architecture, in Proceedings of the
International Conference on Computational
Science and its Applications, 2010, pp.129-134.

[13] T. Good, M. Benaissa, AES on FPGA from the
fastest to the smallest, CHES 2005, Lecture
Notes in Computer Science, (3659) (2005),
pp. 427-440.

[14] R. Doomun, J. Doma, S. Tengur, AES-CBC
software execution optimization, in
Proceedings International Symposium on
Information Technology, ITSim’2008, 26-28
August 2008, Kuala Lumpur, pp. 1-8.

Wiesław Winiecki, Piotr Bilski / International Journal of Computing, 14(2) 2015, 66-76

 76

[15] Build reliable and optimized embedded systems
with the world's most widely adopted RTOS,
available at: http://www.windriver.com/
products/vxworks/

[16] W. Winiecki, P. Bilski, Analysis of the time
efficiency assessment in the virtual
measurement systems, in Proceedings of the
IEEE International Conference on Intelligent
Data Acquisition and Advanced Computing
Systems: Technology and Applications
IDAACS’09, September 21-23, 2009, Rende
(Consenza), Italy, pp. 179-184.

[17] J. Daemen, V. Rijmen, The Design of Rijndael,
Springer Verlag, 2002.

Prof. Wiesław Winiecki,
M. Sc. ('75), Ph. D. ('86),
D. Sc. ('03); Prof. Title ('11),
Professor of Measurement
Science at the Institute of
Radioelectronics, Warsaw Uni-
versity of Technology, has
fourty-year research experien-
ce in the field of measurement
and control systems, including

the development and implementation of various
kinds of measurement devices and systems. The
record of his achievements in this respect comprises
more than 200 research publications, 2
monographs, 1 book and 1 academic textbook, as
well as over 100 reports on scientific research and
implementation. He is a member of the Committee
on Metrology and Scientific Instrumentation of the

Polish Academy of Sciences and the Vice-President
of the Polish Society for Measurement, Automatic
Control and Robotics POLSPAR.

In the years 1994-2001 and 2004-2005, he held
the position of Deputy Director for Research at the
Institute of Radioelectronics at Warsaw University of
Technology (WUT), then, in 2005-2008 he was Vice-
Dean for Research in the Faculty of Electronics and
Information Technologies, WUT. In 2008, he has
been re-appointed as Deputy Director for Research
at the Institute of Radioelectronics.

Piotr Bilski, PhD was born in
1977 in Olsztyn, Poland. He gra-
duated from Warsaw University
of Technology, Institute of Ra-
dioelectronics, obtaining MSc
degree in 2001 (with honors),
PhD degree in 2006 (with ho-
nors) and DSc degree in 2014.
Currently he is an Assistant Pro-
fessor in the Institute of Radio-

electronics, Warsaw University of Technology and
Department of Applied Informatics, Warsaw
University of Life Sciences. His main scientific
interests include diagnostics of analog systems,
design and analysis of virtual instrumentation,
application of artificial intelligence and machine
learning methods to the environmental sciences. He
is the member of IEEE, IMEKO TC10 and
POLSPAR and reviewer for such journals like
Measurement, IEEE Transactions on Instrumen-
tation and Measurement, Expert Systems with
Applications.

