
Peter J. Zeno / International Journal of Computing, 14(2) 2015, 77-86 

 

 77

 
 
 

EMULATING THE FUNCTIONALITY OF RODENTS’ NEUROBIOLOGICAL 
NAVIGATION AND SPATIAL COGNITION CELLS IN A MOBILE ROBOT 

 
Peter J. Zeno 

 
Robotics, Intelligent Sensing & Control (RISC) Lab, School of Engineering, University of Bridgeport,  

Bridgeport, CT 06601 
pzeno@my.bridgeport.edu 

 
Abstract: A unique roving robot navigational system is presented here, which is inspired by rats’ navigational and 
spatial awareness brain cells. Rodents, as well as all mammalians, are capable of exploring their surroundings when 
foraging or avoiding predators, and remembering their way home or to the closest known shelter through path 
integration. This is true for other creatures, but the neural cells involved in accomplishing these tasks have been most 
notably studied in rats, as they share certain similarities with a human’s brain. The robot built in this study, named 
ratbot, uses characteristics and interpreted functionalities of the specialized navigational and spatial cognition brain 
cells, which are primarily found in the hippocampus and entorhinal cortex. These cells are the: place cells, head 
direction cells, boundary cells, and grid cells, as well as memory used for the storage and access of salient distal cues. 
Similar to a rat, the ratbot uses path integration to navigate from one waypoint to another. This is accomplished through 
use of vectors and vector mathematics. Additionally, the ratbot uses a field programmable gate array (FPGA) to 
emulate grid cell inspired functionality for environment mapping and spatial cognition. Copyright © Research Institute 
for Intelligent Computer Systems, 2015. All rights reserved. 
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1. INTRODUCTION 

Many mobile robotic navigation and mapping 
systems have been studied and developed over the 
past several decades. Continued technology 
advancements gained by Moore’s Law (e.g., 
shrinking of computing packaging) have helped fuel 
this area, as well as advancements in robotics in 
general.  As with any system design, these robotic 
navigation and mapping systems are designed to 
achieve the goals of its application, while optimizing 
on given constraints. Such constraints include: goals, 
performance measurements, cost, size, power 
consumption, computing resources available, etc. 
For example, an autonomous mobile robot which 
uses a complex navigation system, and requires high 
accuracy over many different environmental 
conditions, is the self-driving car. Such a system 
requires many expensive sensors and computational 
resources (for obvious safety reasons), such as: 
LIDAR, RADAR, GPS and video cameras, as well 
as complicated, compute intensive multi-sensor 
fusion, information fusion and visual processing 
algorithms [1-5].  

As illustrated by this example, it is very difficult 
to emulate in a machine that which comes naturally 
and instinctively to humans, animals, insects, etc. 

Given tight constraints, such as limited platform size 
(17.5 cm x 21.5 cm for the ratbot), it becomes that 
much more difficult to emulate a neurobiological 
based navigation system which possesses much 
accuracy. However, that is the precise goal of the 
system design presented in this paper, and its 
implementation in the ratbot.  

Therefore, this paper brings together a 
culmination of animal and insect navigation related 
observations and laboratory findings from 
researchers in the fields of neuroscience, biology, 
and zoology. In particular, the focus of the collected 
research material falls into the following two areas: 
(1) observations made of insects, mammals, and 
other animals in their travel patterns, along with the 
conjecture that their brains are continuously 
performing vector summations to calculate a straight 
vector “home” [6-8], also known as path integration 
(PI), and (2) the study of specific brain cells in rats 
found to be involved in navigation and spatial 
cognition [6, 9-19]. 

 

1.1. VECTORS FOR PATH INTEGRATION 

Path integration was first suggested by Charles 
Darwin [20], and further experimental evidence of 
this hypothesis was shown in [21]. Fig. 1 illustrates 
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the concept of PI used by animals, as well as the 
ratbot. In this figure, the rat leaves its home, travels 
around the enclosed area until it finds food, then 
returns directly home. As previously described, such 
a foraging task is accomplished by the rat 
continuously updating a cognitive return vector to its 
home based on changes in its head direction, via 
vestibular stimuli, and distance traveled, via 
proprioceptive stimuli.  

 

 

Fig. 1 ˗ Path integration example. 

 

a)           b) 

 

Fig. 2 ˗ a) Recorded firing locations (red dots) of a 
single grid cell, as a rat explores (black line) a square, 

enclosed area. Such recordings are obtained by 
installing an electrode in a rat’s cerebral cortex 

(dorsomedial entorhinal cortex or dMEC), where it 
picks up the firing of a single grid cell as the rat moves 

around his enclosure. The rat’s actual location is 
recorded with a camera or similar and matched up 

with the grid cell’s firing data. b) The 
autocorrelogram of the firing data for the grid cell. 
Each firing region for the single grid cell in a can be 

statistically auto correlated, resulting in a spatial 
autocorrelogram of the same neuron’s firing activity. 
The hexagonal pattern of the firing locations can be 

seen in both parts a and b of the figure.  

 
Initially, PI is dependent on both external and 

internal stimuli. However, once a path or area has 
been learned, the need for external stimuli has been 
shown not to be required in rats [6, 15, 22], as well 
as other animals and insects, to successfully navigate 
around a known area. Despite this ability, relying on 
internal stimuli alone, causes for an accumulation of 
calculated location error. If possible, this growing 
error should be reset to zero by occasionally adding 
external stimuli (e.g., visual, smell, tactile, etc.) to 

reveal a salient distal cue. Without periodic 
affirmation of current position, this error will grow 
without bound [23]. 

The relationship between the navigational 
specific brain cells found in rats and PI (e.g., 
waypoints, vectors out and return), as is discussed in 
[6, 7, 24], will be covered in the neuroscience 
background section. 

The study and presentation of PI usually focuses 
on the measured movements and calculations 
leading up to the home bound vector or waypoint 
vector. However, an equally important area of study 
is how the brain deals with navigating around both 
known and unknown barriers, which intersect the 
single return vector. For example, Fig. 3a illustrates 
a minor barrier in the home bound vector path, while 
Fig. 3b illustrates a more complex barrier in the 
path. Each barrier should pose no problem for a rat 
that has previously traversed the area, whether there 
is external stimuli or not. However, if the rat (or 
mobile robot) has no prior knowledge of either 
barrier, and has low- to no- external stimuli, then the 
scenario in Fig. 3b becomes much more complex for 
traversing. These examples illustrate the need for a 
mapping/recall capability, so that the rat or mobile 
robot is able to optimally traverse the landscape. 
This is where spatial cognition capabilities become 
of great importance and is uniquely addressed in this 
paper. 

 

a)              b) 

 
Fig. 3 ˗ a & b) Examples of a known or unknown 

barrier in the home bound vector path. 

 

As for the ratbot, PI is implemented through the 
use of a central microcontroller (Arduino 
microcontroller board) for calculating vectors, motor 
encoders for distance traveled information, and a 
microelectromechanical systems (MEMS) based 
gyroscope for measuring change in head direction. 
Since the ratbot’s vision is implemented with a 
forward looking ultrasonic sensor, the visual data 
obtained is in the form of the distance to an object 
directly in front of the ratbot. Therefore, the ratbot’s 
vision can be used for object/barrier detection and 
avoidance purposes only, and must rely heavily on 
the internal stimuli of the system. This creates a 
growing localization error/uncertainty problem [5, 
25, 26]. However, if the location of barriers and 
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obstacles can be statistically identified with the 
internal stimuli data, then it can be mapped into the 
spatial cognition memory for possible use in path 
planning (Fig.’s 3a & 3b).   

 

1.2. SPATIAL COGNITION IN ROBOT 
NAVIGATION 

Through the use of a field programmable gate 
array (FPGA), the ratbot’s environment is logically 
mapped into a two dimensional array of parallel 
processing units. Each unit is an instantiated grid 
cell’s firing location/region, similar to that shown in 
Fig. 2b. In a rodent or any mammal, a single grid 
cell fires whenever the animal has crossed (or 
stopped on) a spot that the animal has visited before. 
The reason the author uses the word region is due to 
the fact the physical location is not actually a single 
spot, but rather a statistical region around a spot, as 
illustrated in Fig.’s 2a & 2b. However, to the 
animal’s brain, it is the same location, thus 
illustrating error in external and internal stimuli 
based measurements. Despite the accumulated 
errors, the regions of all of the firing locations of a 
single grid cell tend to be of similar shape and size. 
Also, the firing regions make a hexagonal lattice 
shape, which is constructed of equilateral triangles. 
Each vertex of the equilateral triangle is a particular 
firing node or region. The hexagonal lattice firing 
locations of a single grid cell covers the entire local 
environment that the rat is currently exploring. The 
firing characteristics of a grid cell, as well as more 
detail on all of the specialized navigation cells of a 
rat’s brain, are covered next. Additionally, a greater 
detailed discussion of the FPGA’s use is covered in 
the implementation section. 

 
2. NEUROSCIENCE BACKGROUND 

Since the discovery of place cells in a rat’s 
hippocampus by O’Keefe and Dostrovsky in 1971 
[11, 12], research has continued to increase in this 
area over time, particularly as other specialized, 
navigation and cognitive mapping cells have been 
discovered along the way. These cells include: place 
cells, head direction cells, boundary cells, and most 
recently discovered, grid cells. A brief description of 
the characteristics of these navigation and spatial 
cognition cells follow. 

 
2.1. PLACE CELLS 

Place cells are a type of neuron that fires when a 
rat is in a particular region of a larger, containment 
area. The place cell will not fire until the rat has 
“learned” a particular location by traversing it first. 
Thus, several of these place cells, each with their 
own firing region within the rat’s containment area, 

will map the areas that the rat has previously 
discovered. One might ask, how do the place cells 
differentiate between regions in an environment, 
particularly if the enclosure is a perfect square with 
no salient distal cues. The answer may lie in the fact 
that not all external cues are being eliminated. For 
example, a person placing snacks in pseudo random 
spots in the environment while the rat is foraging, 
may be picked up by the rat’s vision. It is also 
possible the rat picks up on breezes, smells, etc., 
although these artifacts are typically “eliminated” 
from the test environment to the best of the testers’ 
knowledge and abilities.   

Place cells will continue to fire at their preferred 
location, once learned, even when the rat is unable to 
see. How this is accomplished is not known at this 
time.   

 
2.2. HEAD DIRECTION CELLS 

In addition to place cells, head direction (HD) 
cells/neurons were discovered in rats some 12 years 
after place cells [18, 19]. Although HD cells were 
identified in the post-subiculum, which is part of the 
hippocampal formation [18, 22], they are also 
present in other areas of the brain as well. Each 
place cell has its own preferred direction of the rat’s 
head in the horizontal plane, regardless of the rat’s 
location, eye movement, and the angle of its head 
with respect to its body [22, 27]. In addition, the 
collective set of preferred directions of the HD cells 
will typically fall into a finite, correlated set. For 
example, one will find some HD cells that have 
maximum firing when the rat’s head is pointed 
north, some when it is pointed northwest, and the 
rest when the rat’s head is pointed southeast (these 
are just example directions and relativity). Once a rat 
is entered into an environment, these HD cells seem 
to align relative to a dominant, external cue. If the 
rat is taken out of the environment and the external 
cue is moved, or the environment is rotated, the 
preferred directions will rotate with respect to the 
new cue position by the same relative amount. Thus, 
eliminating the possibility that the earth’s magnetic 
poles having an influence on HD.  

HD cells are similar to place cells, with respect to 
the fact that they will continue to fire at their 
preferred head direction, once learned, in the 
absence of external stimuli. Although, after time, 
these internal compasses will start to drift.  

 

2.3. BORDER CELLS 

Border cells are similar to place cells, such that a 
single border cell will only fire at a particular area or 
region of the rat’s environment [9, 10]. However, 
border cells, as the name implies, only fire along the 
borders of the rat’s environment. The border cell 
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does have some unique properties over the place 
cell, however, the ratbot’s navigational system 
doesn’t need to distinguish between border cells and 
place cells. Thus, border cells won’t be used for our 
navigation system per se, but may fit into future 
needs. 

 
2.4. GRID CELLS 

Grid cells are the last spatial cognition neurons 
discovered to date in a rat’s brain. They were 
discovered by Edvard and May-Britt Moser in 2005 
[6, 15-17]. This discovery, as well as John 
O’Keefe’s discovery of the place cell back in 1971, 
earned O’Keefe and the Moser’s the 2014 Nobel 
Prize in Physiology or Medicine. The grid cell is 
very unique as compared to the other spatial 
awareness and navigational cells covered thus far. 
As discussed previously and illustrated in Fig. 2, a 
single grid cell doesn’t fire in just one learned region 
of a rat’s environment, it fires in many small regions 
of the environment. What makes the grid cell even 
more interesting is that as the rat learns his or hers 
environment by traveling over it again and again, a 
single grid cell will fire in a perfect pattern of 
hexagonal/equilateral triangles, at their vertices, that 
geometrically map over the rat’s local environment. 

Fig.’s 2a and 2b illustrate a single grid cell’s 
activity as a rat explores its area. However, there are 
actually many grid cells active at any given time. 
Additionally, differences from grid cell to grid cell 
occurs in three ways: (1) spacing, i.e., distance 
between firing regions, (2) orientation, i.e., firing 
location changes relative to rotation about a given 
axis, and (3) phase, which is a relative displacement 
of the firing regions [6, 15, 16].  Rather than going 
into greater detail of these difference, it should be 
noted that the combined firing regions of all these 
grid cell should cover every part of the rat’s local 
environment or at least a significant part of it. How 
all of the activity of these grid cells work together 
for navigational and spatial awareness is not truly 
known at this point. This is also true of the other 
specialized cells just covered in this section. 

 

2.5. THE HUMAN BRAIN’S “GPS” 

It is believed that humans have the same 
navigation and spatial cognition cells in our brains 
as do rodents [28]. However, these cells are 
speculated for being used not just for learning our 
surroundings for navigation and mapping, but for 
episodic memory storage and recall as well [29]. 

 
2.6. PUTTING IT ALL TOGETHER 

As briefly stated before, the neural circuitry of 
these cells are unknown. However, it can be 

assumed that their functionality and connectivity are 
somehow related. This topic in itself could be, and 
has been, split into several sub-studies and papers. 
What is known is that the external cues via visual or 
whisker sensory, proprioceptive stimuli in the form 
of motor/muscular feedback, and vestibular stimuli 
in the form of inner ear type feedback, are the major 
influences in stimulating and integrating these 
specialized cell systems, as illustrated in Fig. 4a.  

 
a) 

 
 

b) 

 
 

Fig. 4 ˗ a) Mapping of a rat’s conceptual navigation 
and spatial cognition system to b) the ratbot’s system 

(adapted from [22]). 

 
The following example is the author’s 

interpretation of the overall role that the navigational 
and spatial cognition brain cells behave when a 
person is learning a new environment. 
Correspondingly, this ideology is carried over into 
the ratbot’s navigational system: When one stops to 
think how a person remembers where they parked 
their car at a mall or grocery store that they have 
never visited, typically one takes note of salient 
distal cues near the car that won’t likely change 
(using the red sports car next to you as an external 
cue won’t help much if it is gone when you come 
back from shopping!). These cues may include 
alignment with large nearby structures, such as: light 
posts, trees, building fronts, grass islands, 
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embankments, etc. At this point, one or more place 
cells will begin to fire at this location due to the 
learned alignment to external cues. Additionally, the 
head direction cells will become aligned relative to 
some relation of these external cues at the “home” 
place cell. As one walks towards the store entrance, 
the relative distance walked adds more information 
for the firing of grid cells. Other non-conscious cues 
may be picked up along the way. When one reaches 
the inside of the store, dead reckoning and 
localization are reinitialized for the new 
environment. Once you have reached the shopping 
area and start going up and down all the isles, the 
firing of the grid cells take dominance, along with 
the head direction cells. Spatial mapping is thus 
occurring.  

From the neural cell descriptions and the example 
just given, we will now explain how these 
specialized navigational and spatial cognition cells 
are functionally mapped to hardware and software, 
as installed on the ratbot. 

 

3. THE RATBOT’s ARCHITECTURE 

The ratbot’s hardware components, connectivity, 
and functional relationship to the hardware’s 
biological counter parts are now described, as 
illustrated in Fig. 4b. Fig. 5 shows a picture of the 
ratbot without the FPGA module installed. This 
configuration was used for the initial PI algorithm 
testing. 

 

 

Fig. 5 ˗ The ratbot and its hardware. The two 12v 
motors with encoders are not shown, but each motor 
connects to a rear wheel of the ratbot. Each motor is 
held into place by connecting to a (blue) bracket, as 

seen on the rear left side. 

 

3.1. SENSORY INPUT 

As described earlier, the sensory input to the 
ratbot’s navigational system consists of three 
sensors: 

 

3.1.1. VISION: ULTRASONIC SENSOR 

The HC-SR04 Ultrasonic Sensor is mounted to 
the front of the ratbot to simulate the rat’s vision. 

Due to the limited capability of this sensor, which 
uses sound waves to detect obstacles up to 4 meters 
away, it will only be used for wall and obstacle 
avoidance. The starting coordinates of the ratbot, 
which will be explained shortly, will have to be used 
for determining its starting position. This will 
replace the initial search for external cues. The 
capability of finding visual cues will be 
implemented in the next iteration of the ratbot. 

 

3.1.2. VESTIBULAR ORGAN OF THE 
INNER EAR: MPU6050 

The MPU6050 is a 6 degrees of freedom, MEMS 
based chip made by Invensense. This chip is also 
referred to as an inertial measurement unit (IMU). 
There is a tri-axis accelerometer and a tri-axis 
gyroscope on the IMU. Only data from a single axis 
of the gyroscope is used for the rat’s head direction 
with respect to the horizontal plane. The gyroscope 
has a slow, steady drift, which is eliminated through 
a simple algorithm. 

 

3.1.3. PROPRIOCEPTIVE STIMULI: MD25 
MOTOR DRIVER BOARD 

The two 12v motors, which are mounted on the 
rear of the ratbot, have encoders installed on them. 
These motors connect to an MD25 board, which is 
made by Robot Electronics (UK). The motors are 
driven by writing serial data from the main robot’s 
microcontroller to the MD25 onboard Microchip 
PIC microcontroller, which then drives the H-Bridge 
amplifiers with pulse width modulated (PWM) 
signals. Wheel movement data, at 1 degree 
resolution, and a total of 360 degrees for a full turn 
of the wheel/motor, is accumulated for each motor in 
special register in the PIC microcontroller. The 
robot’s main microcontroller can request these 
values for each wheel at any time. This represents 
the proprioceptive stimuli or motor feedback to the 
rat’s brain. 

 

3.2. THE RATBOT’S “BRAIN” 

From a neuroscience perspective, the circuitry in 
the above described input sensors would be 
considered as part of the rat’s brain. However, for 
the ratbot, the main microcontroller and the FPGA 
will be considered as the robot’s “brain”. 

 

3.2.1. I/O INTERFACE AND PI 
CALCULATOR: MICROCONTROLLER 

The microcontroller chosen for the ratbot’s 
navigation part of the “brain” is the Arduino Yun. 
The Arduino Yun is a combination of an Atmel 
ATmega 32U4 microcontroller connected to an 
Atheros AR9331 processor, which runs a Linux 
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distribution based on OpenWrt. This board was 
chosen over a less expensive Arduino 
microcontroller, due to the built in WiFi capabilities 
of the Yun. Thus, the Yun and a computer with a 
WiFi card can connect to each other via a shared 
WiFi hub. This is important for sending data from 
the ratbot to the PC for graphing and/or debugging 
purposes. Example debug data sent from the ratbot 
to the PC includes: direction data from the IMU, 
distance data from the motor encoders, turn 
commands, and calculated vector values.  

When debug mode is not required, the Arduino 
Yun can be replaced with a much less expensive 
(both cost and power consumption wise) Arduino 
Uno microcontroller board. Both microcontroller 
boards have the same header pinouts, and the 
microcontroller software only requires two lines of 
code commented out (#define’s) at the top of the 
program for compatibility with the Uno.  

 

3.2.2. ENVIRONMENT MAPPING/SPATIAL 
AWARENESS: FPGA  

A Xilinx Spartan-6 FPGA is used for performing 
spatial awareness tasks (see Fig. 4b for general data 
flow). The FPGA based platform used is made by 
Embedded Micro and is called Mojo, see Fig. 6. The 
headers surrounding the perimeter of the Mojo are 
for the 84 digital I/O ports and 8 analog input ports.  

 

Fig. 6 ˗ The Mojo by Embedded Micro. The on-board 
Xilinx Spartan-6 FPGA is used for the implementation 

of grid cells and their firing regions. 

 

The FPGA module receives vector data, object 
detection data, and a stop indicator signal from the 
central microcontroller (Yun/Uno). This information 
is used by the biologically inspired grid cell and its 
logically mapped, lattice firing regions in the FPGA. 
Thus, the logic and registers in the aggregate 
instantiated firing regions of a grid cell, replaces the 
use of a single grid cell connected to a complex 
artificial neural network (ANN). The advantage to 
this method is the ability to quickly update and 
retrieve mapped locations through the use of parallel 
processing. The grid cell firing regions process the 
input data from the microcontroller in parallel, saves 
information about locations of objects detected, and 
uses this information later during path planning.   

Greater detail on how PI and spatial awareness is 
achieved in the ratbot’s “brain” and sensory system 
is described next. 
 

4. NAVIGATION ALGORITHM 

As discussed previously, the goal of the ratbot is 
to simulate a rat leaving its home, go foraging 
(making a preset number of collision avoidance 
turns), then return back to its home. Therefore, the 
performance of the navigational system will be 
based on how closely the robot returns to its initial 
starting position (home).  

In the ratbot, path integration is easily achieved 
using the law of sines and cosines on the measured 
angle and relative distance traveled respectively. 
Therefore, the first return vector is calculated after 
the first two legs of the foraging journey (in Fig. 7, 
R1 is the return vector calculated from the direction 
and distance measured for L1 and L2). Thereafter, a 
return vector is calculated at the end of each 
additional leg of the journey. Fig. 7 represents the 
data processing that is occurring in the 
microcontroller and FPGA combined. For example, 
PI is occurring in the microcontroller, while 
initialization of grid cell firing region instances (this 
includes coordinates given to each firing node or 
instance, and the spacing between firing nodes), 
mapping, error checking, conversion of grid cell 
firing region instance to border cell with barrier 
relative direction information, etc. occurs in the 
FPGA. 
 

 

Fig. 7 - An example environment and travel scenario 
of the ratbot. The black dots represent a single grid 

cell’s firing region, which is mapped to the 
environment ratbot’s environment. The yellow dot is 

the ratbot’s home (start and ending position). The 
black arrows (Ln) represents a travel leg of the 

journey. The red dashed arrows (Rn) are the return 
vectors calculated along the way (PI). The red 

rectangles represent barriers, and the blue dots 
represent a pseudo barrier cell with directional 

information. 
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5. IMPLEMENTATION AND RESULTS 

The ratbot currently performs PI with only minor 
return distance error (small percent of total distance 
traveled). As expected, the error grows with each 
additional waypoint added to the ratbot’s journey. 
The programmed decision making that the ratbot 
performs at each barrier reached, is to turn 
approximately 110° to the right, then proceed 
forward if there is no blockage. Otherwise it will 
continue to turn right and check for blockage. The 
flow chart shown in Fig. 8 gives further details on 
the currently implemented PI algorithm, and 
represents the software which runs on the central 
microcontroller of the ratbot. For visual 
simplification, Fig. 8 shows all of the return vectors 
being calculated just prior to the ratbot heads back 
home, rather than at each waypoint as previously 
described.  

As of writing this paper, the FPGA’s 
programming and interfacing to the central 
microcontroller is currently being performed. The 
testing that will be performed once the FPGA’s 
design and integration is completed will be to 
compare various environment scenarios (e.g., as 
illustrated in Fig.’s 1, 3 & 7), along with a range of 
waypoints, to see how much, if any, the spatial 
cognition inspired algorithm adds to the ratbot’s 
foraging performance.   

 
6. OTHER POSSIBLE RELATED 

RESEARCH 

6.1. RATBOT’S LIMITED EXTERNAL 
STIMULI SENSORS 

As compared to the self-driving car example or 
any robot with complex external stimuli sensor, the 
ratbot uses a more simplistic navigational system, 
from a sensor fusion perspective [5, 30], due to the 
minimum number of sensors used. Minimizing the 
number of sensors allows for greater focus on the 
analysis of the ratbot’s neuro-biologically inspired 
navigational system (i.e., PI and spatial cognition), 
as opposed to the sensory systems themselves. In 
particular, a very limited visual system is employed, 
thus making the ratbot’s navigation algorithm more 
dependent on internal stimuli, rather than external 
stimuli. If the navigation system had strong visual 
recognition capabilities, then the importance of the 
internal stimulus would be over shadowed. This is 
based on the assumption of there being many unique 
salient distal cues along the robot’s path, as well as 
the visual based sensors and algorithms capable of 
picking them out. However, the impact of adding 
better visual capabilities to the navigation system 
will be addressed in the future work section of this 
paper. 

 

Fig. 8 ˗ Flow chart of PI program which runs on the 
ratbot’s central microcontroller. The “Unexpected 

Barrier” is a very likely state when mapping and path 
planning is not used (no spatial cognition). It is also a 
possible state when mapping is used (e.g., new object 

in path, error in previous or current mapping function 
due to accumulated PI errors, etc.). Thus, this 
condition needs to be rectified, in the FPGA 

preferably. 

 
The ratbot’s low visibility capable navigation 

system, could easily represent individuals with poor-
to-no visual capabilities, or individuals in poor 
visibility settings. For example, having the ratbot 
emulate individuals with poor/no visual capabilities, 
could be useful for investigating city 
architectures/layouts for the blind [31, 32], as well 
as all pedestrians in some cases. The same would 
apply to the ratbot emulating an individual in low 
visibility environments, such as those found in 
building fires. Thus, how well an autonomous robot, 
which is equipped with our proposed navigation 
system, could be used for indoor search and rescue 
purposes during building fires [33], would also be an 
applicable application.  

 
7. CONCLUSIONS AND FUTURE WORK 

As with some similar mobile robot systems 
which use a neuro-biological inspired navigational 
system, such as the RatSLAM [34, 35], some 
consolidation and modifications had to be made to a 
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neural navigation cell’s original functionality. In the 
case of the ratbot, it was sensible to have a grid 
cell’s firing region/node morph into a border cell 
with directional information when a barrier was 
detected. This allows for the node to relate 
information back to the grid cell itself, information 
about obstacles or barriers in the direction and path 
of the return vector. Additionally, width had to be 
added to the return path search, to deal with the 
space between nodes.  

Future work will include the full implementation 
and integration of the FPGA for the neurobiological 
inspired environment mapping. Additionally, much 
test data is to be gathered in the area of mapping 
errors due to the accumulated PI errors. A statistical 
based algorithm, such as the extended Kalman filter 
(EKF), will need to be implemented in the FPGA to 
correct these errors over multiple foraging 
expeditions of the Ratbot. Correspondingly, humans 
and animals make neurological connection 
adaptations using Hebbian theory. 

Other future work will include upgrading the 
ratbot’s visual capability. This will most likely be 
accomplished through the use of a simple camera 
and algorithm for object detection and recognition. 
The Arduino based microcontroller board will likely 
need to be upgraded to a RaspberryPi board, which 
uses an Arm 700MHz processor and has much more 
main memory, as well as off chip memory. The 
mapping will still be performed by the FPGA for its 
parallel processing capability, which emulates the 
way the brain works. Additionally, increasing the 
ratbot’s foraging distance and complexity, such as 
adding the ability for the map information to roll 
over from one local area to another, will also be 
addressed.  
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