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Abstract: The construction of filters arising from linear neural networks with feed-backward excitatory-inhibitory 
connections is presented. Spatially invariant coupling between neurons and the distribution of neuron-receptor units in 
the form of a uniform square grid yield the TBT (Toeplitz-Block-Toeplitz) connection matrix. Utilizing the relationship 
between spectral properties of such matrices and their generating functions, the method for construction of recurrent 
linear networks is addressed. By appropriately bounding the generating function, the connection matrix eigenvalues are 
kept in the desired range allowing for large matrix inverse to be approximated by a convergent power series. Instead of 
matrix inversion, the single pass convolution with the filter obtained from the network connection weights is applied 
when solving the network. For the case of inter-neuron coupling in the form of a function that is expandable in a Fourier 
series in polar angle, the network response filter is shown to be steerable. Copyright © Research Institute for Intelligent 
Computer Systems, 2015. All rights reserved. 
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1. INTRODUCTION 

This paper addresses the construction of filters 
arising from neural networks with feed-backward 
connections accounting for lateral inhibition and 
excitation. Such networks are often used when 
modeling biological vision systems. The well known 
example is the Hartline-Ratliff equation [1], [2] 
which describes the mutual inhibitory influences of 
visual receptor units of the limulus. This discussion 
is restricted to the simplified, linear model of the 
limulus equation and its steady state solution as 
described by: 
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

 
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y I B x
 

 (1) 

 
Vectors x


 and y


 from (1) are time invariant 

input and system output respectively while, B
represents the connection matrix. Gutkin and 
Smith [3] studied the dynamics of linearized 
recurrent networks in the presence of additive noise 
and pointed out that the asymptotically attractive 
steady state in the mean described by (1) is achieved 
if all eigenvalues of the connection matrix B  have 
real parts greater than -1. The linearity between 
input and output as well as the contrast enhancement 
effects produced by the 1D network with lateral 
inhibition characterized by (1) were demonstrated by 

Furman [4]. Following Furman’s work, the 2D 
model of such a network was addressed by 
Messner [5] and later used by Szu and Messner [6] 
when deriving multiple-channel novelty filters of 
associative memory. In [5] and [6] it was shown that 
the network response in the case of a Gaussian 
inhibitory coupling between neurons can be 
represented in terms of spatial filtering with band-
pass DOG (Difference of Gaussian) kernels 
providing the analogy with spatial frequency theory 
of early visual processing [7]. Authors of [8] used 
the iterative method to solve the network 
characterized by (1) without identifying the proper 
network weights that would guarantee convergence 
of such solution. The linear model of recurrent 
inhibition with DOG inter-neuron coupling was used 
to account for a Mach band effect, Herman grid 
illusion and White’s effect [9]. Similar model 
effectively explained the modified Poggendorff 
illusion [10]. The network used in [9] yields a 
simple feed forward filter resulting from the matrix 
inverse operation. This paper demonstrates how to 
obtain such filters without explicitly inverting the 

usually large matrix I B . 

Consider networks with a spatial distribution of 
sensory units producing the system characterized by 
the TBT (Toeplitz-Block-Toeplitz) matrix, i.e. the 
matrix with block Toeplitz structure where each 
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block is of Toeplitz type. The network response can 
be found by using specialized algorithms for such 
systems. Some of those techniques utilize the 
persymetry property of the TBT matrix [11], [12] 
and in the case of large matrices can still be 
computationally demanding. The solution of a TBT 
system reformulated as a 2-D deconvolution seen 
in [13] requires the smoothness of the TBT matrix 
entries. If the inter-neuron coupling is spatially 
limited or is extremely small for mutually distant 
units, the connection matrix becomes block banded 
with banded blocks and can be solved by techniques 
presented in [14] and [15]. Alternatively, the 
convolution with a kernel computed iteratively from 
the coupling model can be used to obtain a close 
approximation of the network output [5]. Solving the 
system by this method can reveal important 
characteristics of the network impulse response 
filter. In order to achieve the convergent result, the 
estimation of spectral properties of TBT matrix 
becomes critical. 

The continuous function,  
2

: ,f R    generates 

the TBT matrix ,n mB  of structure: 
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with Toeplitz blocks: 
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if: 
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The relationship between the spectra of Toeplitz 

matrix and its generating function was introduced by 
Grenader and Szego [16]. Following their work, 
Sierra [17] and Tilli [18] showed that the interval 
containing the eigenvalues of the TBT matrix is 
closely related to the properties of the matrix 
generating function. More precisely, Sierra [17] 
states that for the function f continuous on the 

interval  
2

,  , and not identically constant, for 

any n  and m , all the eigenvalues of ,n mB  lie in the 

interval:
    2 2

, ,
min , maxf f

    
 

This allows one to characterize the spectral 

properties of the TBT matrix ,n mB B  based on the 

corresponding generating function. Such 
characterization can be used when choosing neural 
network inter-neuron coupling functions. 

In [5] and [6] the microscopic neuron network 
solution for the 2D receptor grid with recurrent 
lateral inhibition was found by approximating the 
inverse of the following matrix by a convergent 
power series: 

 

  
 321

BBBIBI  
(5) 

 

Identifying a proper connection matrix B  
guaranteeing convergence of this series is essential 
for valid calculation. 

The main contributions of this paper are as 
follows. Based on conditions for convergence of the 
matrix power series in (5) and the spectral properties 
of the TBT matrices, the method for construction of 
inter-neuron connection models is identified and 
applied to obtain parameters of five different 
coupling functions. Once the convergence of (5) is 
guaranteed, the equivalent filter representing the 
network impulse response is pre-computed explicitly 
based solely on the connection model. Finally, it is 
shown that for the inter-neuron coupling in the form 
of a function expandable in a Fourier series in polar 
angle, the network behaves as a steerable [19] filter. 

 

2. CONSTRUCTION AND SOLUTION OF 
RECURRENT NEURAL NETWORK 

The simplified form of Hartline-Ratlif equation 
for the n m  2D systems case with solution given 
by (1) can be written in the form: 
 

Byxy   (6) 
 

where x  and y  are 1nm  vectors representing 

input and output of the system and B  is the 
nmnm   connection matrix. Consider the uniform 

distribution of receptor-neurons in a 2D square grid 
with the structure as presented in Fig. 1.  

Assuming that inter-neuron coupling is spatially 
invariant for the sensory distribution given in Fig. 1 
the connection matrix is of TBT type. Furthermore, 
if the coupling depends only on distances between 
receptors, the TBT connection matrix is symmetric 
with symmetric blocks. Following the notation from 

(2) and (3), each block lB  of this matrix represents 

interactions between units in rows i  and k  so that
l k i  .  
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Fig. 1 – Uniform receptor-neuron grid. 

 
The TBT form of matrix B  can efficiently be 

utilized when solving the system defined by (6). If 
all the eigenvalues of such a matrix satisfy the 

condition 1,i   the series given in (5) converges 

[20]. When choosing the inter-neuron coupling 
model for the receptor grid with recurrent lateral 
inhibition-excitation, the direct implementation of 
Sierra’s result can ensure adequate spectral 
properties of TBT connection matrix and allow for 
the system solution to be found by approximating 
the matrix inverse in the form of (5).  

Instead of using the conventional definition for 
generating function of TBT matrix, throughout the 
reminder of this paper it is said that the continuous 

function  
2

: ,f R    generates the TBT 

matrix ,n mB  of structure given by (2) and (3) if  

 

   

 

0

2

90
, 2

,

1
,

4

; , 0, 1, 2,...

j px qy

p qb f x y e dxdy

where p q

 


 





  


 (7) 

 

In previous equation,  
090 ,f x y  represents the 

rotation of the function  ,f x y  by 90 degrees 

about the origin. The reason for adopting the new 
definition for the generating function is the fact that 
the multiplication by the TBT matrix generated 
according to (7) closely approximates the 2-D 

convolution with the discrete kernel  ,b m n 1 

comprised of Fourier coefficients of (original, not 

rotated) function f given as: 

 

                                                
1 Assumption is that this kernel is symmetric. 
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(8) 

 
That is why, for the purposes of the work 

presented in this paper, it is also said that the 

function  ,f x y  generates the connection function 

 ,b m n  if equation (8) is satisfied.  

Proposition 1 (Direct interpretation of Sierra’s 
result for TBT matrices):  

If the connection matrix B  from Eq. (6) is 
generated by the function f  that is continuous and 

not identically constant on  
2

,  , and if: 

 

 
  1,max 2,




yxf
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 (9) 

 
the series (5) will converge and the system response 
can be written in the form: 
 

 xBBBIy 32   (10) 
 

This proposition defines the method for 
construction of the network that can be solved 
without explicit matrix inversion. Note that each 
matrix-vector product in (10) closely approximates 
the convolution. Provided convergence is 
guaranteed, the system response can be realized by 
the sum of finite number of filters constituting the 
series (5) [5]. The resulting filter can be pre-
computed before actual processing takes place. 
Connection weights from matrix B  as given by (7) 

can be related to convolution kernel  ,b m n  as: 

 

 mnbb nm  ,,  (11) 

 

The impulse response of the network is given as: 
 

         



N

i

in

t nmbnmnmh
1

,1,,   (12) 

 

where    nmb i ,  is the discrete connection function 

convolved with itself 1i  times and  nm,  

representing the 2D unit impulse. The size of kernel 

 nmb ,  can be quite small if the extent of inter-

neuron coupling is spatially limited. This is in 
agreement with all practical models addressed 
herein. As demonstrated in the subsequent text, the 
choice of generating functions with absolute values 
of their extremes significantly less than unity 
improves the speed of convergence and requires 
fewer filters to be used.  
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2.1 CONSTRUCTION OF CONNECTION 
MATRIX (PRACTICAL MODELS) 

This section focuses on construction of the 
network with specific, well defined inter-neuron 
coupling models. Such models are inspired by 
functions commonly used to describe receptive 
fields at various stages of biological vision [21]. The 
Gaussian kernel as defined can be represented in 
spatial and frequency domain as follows: 
 

   
2 22 2
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222
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Consistent with Eq. (1), (7) and (8), the 

generating function is denoted as  ,f x y  while the 

connection matrix is labeled as B . It is formed by 

sampling the connection function  ,b u v . From this 

point on, this correspondence assumes that the 

generating function is defined on the entire 2R  

domain, i.e. 2:f R R , but is also narrow-width, 

with values outside the interval  
2

,   close to 

zero. When this is the case, the weights of the 
network given by (7) and (8) can be approximated 
as: 
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Note that while integrating on  
2

,   the 

integral from (14) integrates the same function as 
that given in (8). In all cases except for the DOG 

model it is assumed that 0  . Since the matrix B  
is real, it is necessary that generating functions have 
real Fourier transform.  

 
Gaussian model 
 

When dealing with Gaussian coupling, cases with 
and without self-inhibition are studied. The 

generating function  ,f x y  and the corresponding 

inter-neuron coupling are given as: 
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where operation ‘Gen’ is defined by Eq. (8). For the 
network with self-inhibition, the condition for 
convergence of the series given in (5) becomes: 
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By eliminating self-inhibition, the elements on 

the main diagonal of B  are set to zero. In this case 
the connection matrix spectrum is characterized by: 
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Finally, for narrow-width generating functions 

with    the condition for convergence of (5) 

becomes: 
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DOG model 
 

For the DOG inter-neuron coupling model, the 
generating and corresponding connection functions 
are: 
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Conditions for the convergence of series given in 

(5) are set by limiting the extreme values of the 
generating function or: 
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The Gaussian connection model with unity DC 

component used in [5] and [6] yields very slow 
convergence of the series given in (5). If Gaussian or 
DOG coupling as described by (15) or (19) are used, 
the network response can still be characterized as the 
linear combination of Gaussian filters. For example, 
in the case of Gaussian connection profile without 
self-inhibition, and assuming a finite number of 
terms in the series (5) are used, the resulting filter 
can be rewritten as: 
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where g  is a Gaussian kernel with DC component 

equal to  . Coefficients i  can easily be obtained 

from (10) and(12) by replacing the unity matrix with 

a narrow width Gaussian  0g . Equation (21) 
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represents the result similar to that shown by [6] 
confirming that the network with lateral inhibition 
behaves as a collection of multiple channel spatial 
frequency filters. 
 
Difference of Offset Gaussians (DOOG) model 
 

The generating and the connection functions for 
the DOOG model used herein are: 

 
   

     

       

, 0 0

, 0 0 , 0 0 ,

, ,

, , 2 cos 1

, , , ,

Genf x y b u v

f x y G x y xu yv

b u v g u u v v g u u v v g u v

 

     







    

        

 

(22) 

 
By setting 0.5  , the model similar to the one 

from [21] consistent with the construction of the 
DOOG profile based on central differencing of 
Gaussian function is obtained. In this case: 
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Assuming the offset is in the x direction  0 0v 

the series given in (5) converges if:  
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approximates the location of generating function 
minimum. The term t of (24) is obtained through the 
application of a Taylor series expansion. 
 

2nd
 Order Derivative of Gaussian (2ODG) model 

 
The last type of inter-neuron coupling addressed 

is the Second Order Derivative of Gaussian. Our 
analysis is based on the derivative in the x direction. 
Rotation of the generating function by an arbitrary 
angle causes the rotation of its Fourier transform 
while the extreme values remain intact yielding the 
same conditions for convergence of the series given 
in (5). The 2ODG generating function and its 
coupling model are defined as:  
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The condition for convergence of series (5) is: 
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Fig. 2.a. and Fig. 2.b. depict examples of 

generating functions and the corresponding coupling 
models that were used.  

 

 

Fig. 2.a – Generating functions (left) and 
corresponding connection functions (right); Gaussian 

model (top), DOG model (bottom); 

 

 

Fig. 2.b – Generating functions (left) and 
corresponding connection functions (right); DOOG 

model (top), 2ODG model (bottom). 

 
2.2 STEERABILITY OF THE RECURRENT 
NETWORK WITH LATERAL INHIBITION-
EXCITATION 

The network filter given in (12) represents the 

sum of 1N  components with each function
   ,ib n m constructed as i cascades of kernel

 ,b n m . Consider the connection function  ,b x y  

(note the replacement of variables ,u v with ,x y ) 

that can be represented in polar coordinates 
2 2r x y  and  arg ,x y  as a Fourier series 

in polar angle: 
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The Fourier transform of such a kernel is a 
function that can also be expanded in a similar way: 
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nJ  being the Bessel function [22]. Cascading 

filters represented in frequency domain by (28) 
produces steerable filter, i.e. arbitrarily rotated 
function can be synthesized by using the linear 
combination of basis kernels (for details see [19] and 
[23]). The steering property holds also for the entire 
filter given in (12) since the overall sum remains 
expandable in a Fourier decomposition in polar 
angle. 

It is well known that a 2ODG kernel can be 
steered by using the linear combination of three 
basis kernels [19]. As a special case of a kernel 
given in (27), consider the order n directional 

derivative of a function  ,cb x y  that is circularly 

symmetric in spatial and frequency domains. The
1m successive convolution of this kernel with 

itself yields: 
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The basis for steering of this cascade consists of 

1nm   functions since the pure real (or imaginary) 
frequency response is the product of polynomial in 
u  of order nm containing only odd or even terms 
and circularly symmetric function. The sum of 
filters: 
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 (30) 

 
can similarly be represented as a product of 

polynomial in x  of order nN  and another circularly 

symmetric function where the polynomial 
coefficients may depend on the radius r . In this, 

more general case 12 nN  basis functions are 

sufficient to steer the function  yxh , . When 

 yxb mn
c ,,  is a connection function the overall 

network impulse response given as: 
 

     yxhyxyxht ,,,    (31) 

 
is steerable as well and represents continuous 
equivalent of (12). For n  even, the number of basis 

functions that steer (31) is reduced to 1nN . For 

example, in the case of 2ODG coupling, 12 N  
filters steer the network. Steerability can efficiently 
be used to determine the response of the network for 
arbitrary orientation of the connection function 
without performing its actual rotation. Limiting the 
basis set to a small number of functions by enabling 
fast convergence of (5) is essential for practical 
implementations. Fig. 3 depicts components of the 
steerable impulse response of a network with 2ODG 
coupling model assuming 3N in continuum; 

 yxht ,  is an arbitrarily rotated filter while  ik  

and  yxh i

t ,  are the interpolating and basis 

functions respectively 
 

 

Fig. 3 – Steerable impulse response of the network 
with 2ODG coupling model. 

 

3. SIMULATION RESULTS 

This section presents simulations obtained when 
processing synthetic images with networks whose 
connection weights are constructed using the 
previously addressed models of inter-neuron 
coupling. By bounding the generating function, the 
spectral radius of the connection matrix is 

maintained in the interval  0,1 . This guarantees 

convergence of the power series given in (5) but it 
also enables finding of the network solution via the 
iterative scheme: 
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nn Byxy 1 , (32) 
 

previously used in slightly modified form in [8]. 
Simple algebra proves that this procedure is the 
equivalent of equation (10). In order to validate the 
network construction and solution introduced via 
Proposition 1 and equation (10), the solution 
obtained by direct convolution with a pre-computed 
kernel of relatively small size is compared with the 
solution obtained by application of the iterative 
scheme given by (32). When solving the system with 
the iterative method the spatial extent of coupling 
between neurons was not limited while when using 
convolution with the pre-computed kernel, the 
coupling between distant neurons is set to zero. The 
estimated number of filters N  from (12) necessary 
to produce the convergent result is reached once the 

energy of the term    mnb N ,  is extremely small 

(0.0002%) when compared to the energy of the filter

 mnht , . The iterative procedure given by equation 

(32) is terminated when the average absolute 
difference between successive solutions is less than 
a predefined small threshold (for the grayscale 
images with levels of gray between 0 and 255 this 
threshold was set to 0.5).  

When changing parameters of the connection 
model(s), extremes of generating functions are 
varied which in turn influences the rate of 
convergence of the series given in (5). The resulting 
sufficient number of filters N  for all coupling 
models for each case are shown in Fig. 4 with 
parameters chosen: Gaussian model 3/  , 

DOOG model 3/  , 20 u , 2DOG model 

5/  , DOG model 1 0.11  

1/ 4,  / 5     .  

Based on Fig. 4, appropriately chosen parameters 
of the connection function allow the use of a 
reasonably small N . Networks with circular 
symmetric inter-neuron coupling models (e.g. 
Gaussian and DOG) produce similar results since the 
response is not orientation sensitive. Similarly, when 
non-isotropic models (e.g. DOOG and 2ODG) are 
used the response is orientation sensitive. Fig. 5 
depicts the result obtained by processing a square 
test pattern of uniform intensity placed on a dark 
background when using DOG connection model. In 
this figure a one pass convolution with pre-
computed kernel using connection model DOG with 

parameters  ,1 and 1  identical to those from 

Fig. 4. and 13.0 ). The filtered square pattern 
is shown top and the mid-line resulting profiles for 
iterative procedure and single-pass convolution is 
shown bottom. The pre-computed kernel was 
constructed by using N=7. 

 

Fig. 4 – The number of sufficient filters versus  

 

Fig. 5 – One pass convolution with pre-computed 
kernel. 
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As an example for the orientation sensitive 
model, processing by using a steerable filter 
constructed from the 2ODG connection function is 
demonstrated. The number of sufficient filters is 
chosen based on results described in Fig. 4. 
Interpolating coefficients necessary for steering are 
obtained from [19], by using basis functions evenly 
spaced between 0  and  . These coefficients are 
provided in the Table 1. The mesh plots of the 

network response  ,th m n  and its portion  ,h m n  

are shown in Fig. 6 for the 2ODG connection model 

with parameters; ,12.0 5/  , 7N . 

Shown are  nmh ,  portion top and  nmht ,  bottom. 

 

Fig. 6 – Steerable network impulse response. 
 

Table 1. Steering coefficients for the network with 
2ODG connection modem (=0.12, =/5, N=7). 

i   6/ik   2/ik   6/5ik  

1 0.1333 -0.0667 0.1333 
2 -0.2157 0.0682 -0.0996 
3 0.6378 -0.073 0.0824 
4 0.6378 0.0824 -0.073 
5 -0.2157 -0.0996 0.0682 
6 0.1333 0.1333 -0.0667 
7 -0.0996 -0.2157 0.0682 
8 0.0824 0.6378 -0.073 
9 -0.073 0.6378 0.0824 
10 0.0682 -0.2157 -0.0996 
11 -0.0667 0.1333 0.1333 
12 0.0682 -0.0996 -0.2157 
13 -0.073 0.0824 0.6378 
14 0.0824 -0.073 0.6378 
15 -0.0996 0.0682 -0.2157 

The results of processing the hexagonal test 

patterns by the steering the filter  ,h m n  are shown 

in Fig. 7. In this figure steering the network is done 
with the 2ODG connection model with parameters; 

,12.0 5/  , and 7N . A linear 

combination of 15 filters are used to steer the 
response to three different orientations 

 

 

Fig. 7 – Steering the network with 2ODG connection. 

 
4. CONCLUSIONS 

The work presented in this paper reveals 
important theoretical aspects behind biologically 
inspired recurrent networks with lateral excitatory-
inhibitory connectivity and addressed construction 
of filters arising from such networks. Spatially 
invariant inter-neuron coupling and the distribution 
of sensory units in the form of a uniform square grid 
yield the TBT connection matrix. The relationship 
between spectral properties of such matrices and 
their generating functions is utilized when 
constructing the network. For networks with the 
connection weights generated by the function whose 
absolute value is bounded by unity, the response can 
be determined without a large matrix inversion by 
the application of a single pass convolution. The 
filtering kernel is pre-computed based on a 
convergent matrix power series approximating the 
matrix inverse. Five different connection functions 
are analyzed and proper parameters determined 
when choosing weights of the network. Finally, 
it was shown that for the inter-neuron coupling in 
the form of a function expandable in a Fourier 
series in polar angle, the network impulse response 
is steerable. 

It is clear that the presented work is limited to 
theoretical concepts related to construction of filters 
arising from the recurrent linear networks with 
spatially invariant inter-neuron coupling. Hopefully, 
the results provided herein could be used by other 
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researchers to better understand and deploy 
techniques of signal processing based on such neural 
models. Utilization of filters described in this text 
for image processing and feature extraction 
applications when solving pattern recognition 
problems is currently being investigated by the 
authors and will be reported in a sequel paper. 
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