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Abstract: The Transport Layer Security (TLS) protocol is a well-established standard for securing communication over 
insecure communication links, offering layer-4 VPN functionality. In the classical Internet TLS is widely used. With the 
advances of the Internet of Things (IoT) there is an increasing need to secure communication on resource-constrained 
embedded devices. On these devices, computation of complex cryptographic algorithms is difficult. Additionally, 
sensor nodes are physically exposed to attackers. Cryptographic acceleration and secure hardware security modules 
(HSMs) are possible solutions to these challenges. The usage of specialized cryptographic modules for TLS is not a new 
phenomenon. However, there are still few hardware security modules suitable for the use on microcontrollers in sensor 
networks. We therefore present an overview of HSM and TLS solutions along with sample implementations and share 
some recommendations how to combine both. Copyright © Research Institute for Intelligent Computer Systems, 2016. 
All rights reserved. 
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1. INTRODUCTION 

In the Internet, data communication has to be 
secured to ensure safe functionality, confidentiality, 
integrity, authentication, non-repudiation, and 
availability. These requirements shall be observed 
not only in legacy Internet applications, but also in 
the machine-to-machine-(M2M)-type communi-
cation of the rapidly growing Internet of Things 
(IoT). A well-established and very widely used 
standard to secure communication over reliable 
channels is the Transport Layer Security [1] (TLS) 
protocol, initially invented by NetScape [2] Inc. as 
Secure Sockets Layer (SSL). With Datagram 
Transport Layer Security [3] (DTLS) a solution 
based on unreliable channels is available, too. 
(D)TLS combines strong, standardized 
cryptographic algorithms to achieve data 
confidentiality, integrity, and authenticity [4] of the 
communication partners involved. 

However, (D)TLS only provides means to secure 
the data transport, leaving out devices and data at 
rest. In the classical internet a server was placed in a 
data center with rigid access controls. Its 
counterpart, the client PC or notebook, was located 
at home or in the company. The location of the 
devices made physical attacks difficult. In a world 

with ubiquitous communication and computing 
nodes many of such devices may be physically 
exposed to attackers [5], opening new attack vectors. 
Communicating entities might not only be attacked 
at the communication, but also be hijacked at 
communication ends. 

This new development makes it particularly 
important to secure cryptographic material. 
According to Kerckhoffs’ principle [6], the only 
thing that has to be and should be kept secret is the 
cryptographic material. 

Thus, hardware security modules (HSM) with 
secure memory are a major ingredient to establish an 
anchor of trust. For an attacker, cryptographic keys 
stored in a HSM may be much more difficult to 
extract. But HSMs can do more, most of them 
providing e.g. a high-quality True Random Number 
Generator (TRNG). Good random numbers [7] are a 
basic requirement for the secure execution of 
cryptographic algorithms. Furthermore, most HSMs 
are capable of efficiently and securely executing 
different cryptographic operations on-chip, avoiding 
the need to reveal cryptographic keys to off-chip 
entities. 

This paper provides an introduction to the usage 
of hardware security modules as cryptographic 
providers for implementations of TLS in embedded 
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systems. The paper is structured as follows: 
Chapter 2 includes an overview of available security 
module types. The TLS protocol along with 
cryptographic algorithms and implementations is 
outlined in Chapter 3. Chapter 4 describes the 
integration of HSMs into an existing TLS stack. In 
Chapter 5 related work is reviewed. Chapter 6 closes 
with a conclusion. 

 
2. HARDWARE SECURITY MODULES 

The term Hardware Security Module (HSM) is 
neither standardized nor normed. In the following 
we will give an overview of what can be considered 
a HSM and of the corresponding particularities. 

 

2.1 SMART CARD 

Smart Cards are widely used security devices for 
personal identification and authentication. Electronic 
tickets [8], credit cards, passports [9], and others rely 
heavily on the use of smart cards. According to 
Mayes [10] a smart card is a device that  

 is able to participate in automated electronic 
transaction, 

 adds security and is not easily forged or 
copied,  

 stores data securely, and 
 runs security algorithms. 
Smart cards typically tend to be bound to a 

specific human. The owner carries the smart card 
along, typically. One might think of an insurance 
agent unlocking his PC with a smart card. In most of 
the application scenarios smart cards are lacking a 
power supply. Usually the power comes from the 
reader device. An Automated Teller Machine 
(ATM) is a typical example of a smart card reader. 
Due to the large number of cards deployed, smart 
cards have to be low cost. Smart cards are typically 
owned by the issuer, which in the previous example 
would be the bank. 

 

2.2 TRUSTED PLATFORM MODULE 

Trusted Platform Modules (TPMs) and the smart 
cards share many features. The goal of both is to 
have a secure computing environment and both have 
to be low cost. The TPM standard was originally 
developed by the Trusted Computing Group (TCG). 
Later on, the TPM was standardized by both the 
International Organization for Standardization (ISO) 
and the International Electrotechnical Commission 
(IEC). The TCG introduces the term trusted 
computing (TC). Trust in that context means “that a 
device behaves in a particular manner for a specific 
purpose” [11]. 

In the following we will highlight some 
capabilities that are unique to the TPM specification. 

For a more detailed overview the interested reader 
can refer to [12].  

According to the specification TPMs are shipped 
in a pre-programmed state following the customer’s 
requests [11]. During initial startup an entity has to 
take “ownership” of the TPM. Taking ownership is 
the process of establishing a shared secret between 
the TPM and the user. Once ownership is taken and 
the TPM is activated all features are available. 

TPM specification introduces to secure storage 
functions: Binding and Sealing. Binding allows to 
store data encrypted by the TPM on external storage 
and Sealing locks data to a specific platform using a 
set of integrity metrics. In other words bound data 
may be decrypted having the appropriate key, 
whereas sealed data may only be decrypted having 
the right key and the right platform. 

The TPM specification, however, does not dictate 
the use of any specific hardware nor that the TPM 
has to be an Integrated Circuit. Communication 
interfaces and bus architectures are determined by 
the manufacturer.  

A dedicated RSA-2048 [13] engine is a 
requirement. However, 2048 bit keys are only 
needed for some restricted operations. For most of 
the operations the key length is arbitrary.  

A high-quality True Random Number Generator 
is required to seed a Pseudo Number Generator. 
Random numbers are used to generate RSA keys 
and random nonce.  

It should be noted that symmetric algorithms are 
foreseen in the specification for internal use only.  

 

2.3 HSM FOR THE INTERNET OF 
THINGS 

An emerging class of new HSMs is designed for 
the Internet of Things. This upcoming class is today 
often based on existing smart card modules. 
However, some differences can be observed. 

This new kind of HSMs features a common 
industrial bus interface for connection to the host 
MCU. Power is provided over the host MCU’s 
power supply. 

Its main purpose is to provide cryptographic 
algorithms and secure storage of cryptographic keys. 
The algorithms and the strength used may vary 
according to the HSM’s cost. For state-of-the-art 
implementations elliptic curve cryptographic 
acceleration, due to its computational efficiency, is 
typical. 

A setup using one HSM for one MCU is 
expected. However, if required also multiple HSMs 
on one MCU should be possible, depending on the 
actual implementation.  An application with high 
traffic or a need to store more keys can likely benefit 
from multiple HSMs. 
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EVITA [14] modules are a special kind of HSMs 
developed mainly for the use in car gateways. 
Especially the full EVITA module specification has 
a fitting feature set for a HSM, too. 

 

3. TRANSPORT LAYER SECURITY 

The Transport Layer Security (TLS) protocol is a 
mature standard securing communication over 
reliable, connection-oriented channels. For 
communication over unreliable channels the 
Datagram Transport Layer Security (DTLS) protocol 
was established. To the best of the authors’ 
knowledge the current standard (D)TLS1.2 can be 
considered secure if implemented and configured 
carefully. (D)TLS preserves the confidentiality, 
authenticity, and integrity of the messages sent. The 
protocols are following a strict client and server 
model. The use of a public key infrastructure [15] 
spares the need to share a secret in advance. 

 

3.1 THE INGREDIENTS OF THE TLS 
PROTOCOL 

(D)TLS is divided in five sub-protocols (cf. 
Fig. 1). The Record Protocol is responsible for 
fragmentation of the messages. Furthermore, it 
provides confidentiality by means of bulk data 
encryption and message integrity by means of 
message authentication codes [16] (MAC). 

The Change Cipher Spec Protocol is used to 
switch to encrypted communication and the Alert 
Protocol is used to convey error messages. The 
Application Data Protocol exchanges raw 
application data between the application and the 
transport layer. 

The Handshake Protocol is used to establish a 
connection between two communication partners. 
Both partners have to prove their authenticity and to 
agree upon a key. Connection establishing is the 
computationally most expensive period of a TLS 
connection. During a handshake several complex 
asymmetric cryptographic operations are applied. 
The establishment starts with the exchange of Hello 
messages between the client and the server, followed 
by negotiations of the protocol version and the 
algorithms used. 

 

 

Fig. 1 – The TLS protocol with its sub-protocols in the 
ISO OSI model. 

Therefore, (D)TLS introduces the concept  
of cipher suites. A cipher suite defines  
algorithms to preserve message integrity, 
authenticity, and application data encryption.  
The exchange of certificates and shared secrets is the 
last step in the handshake protocol. The  
algorithms involved are depending on the type of 
public key infrastructure used. For certificate 
verification the RSA algorithm or the digital 
signature algorithm (DSA) may be used. For key 
exchange the Diffie-Hellman algorithm [17] with 
static (DH) or ephemeral keys is one option. Public 
key algorithms are available in a version based on 
elliptic curves [18] called elliptic curve digital 
signature algorithm (ECDSA), elliptic curve Diffie-
Hellman [19] (ECDH) or ephemeral elliptic curve 
Diffie-Hellman (ECDHE). 

 

3.2 CRYPTOGRAPHY FOR (D)TLS 

The security of the TLS protocol is based on 
strong, well-established cryptographic algorithms. 
The implementation of cryptographic algorithms can 
suffer from many flaws. Therefore it is strongly 
recommended to use a cryptographic library written 
by experts rather than develop a custom one. 

TLS defines algorithms in cipher suites. A cipher 
suite consists of: 

 a hash function (PRF, MACs and signatures), 
 a key agreement function (for forward secure 

key exchange), 

 asymmetric ciphers (for key exchange), 
 symmetric ciphers (for bulk data encryption). 
For the use on embedded systems cipher  

suites using elliptic curve algorithms for key 
agreement (ECDH) and signatures (ECDSA) are 
recommended [20]. 

 

3.3 LEGAL REQUIREMENTS 

In Germany and the United States governmental 
authorities enact laws for the application of TLS in 
specific fields. 

The German Federal Office for Information 
Security (BSI) obligates the use of BrainpoolP256r1 
elliptic curve [21] and higher for ECDH and 
ECDSA in smart meter gateways. For authentication 
the algorithms have to be executed in a HSM. BSI 
doesn’t allow the use of RSA or DH schemes for 
that use case. 

National Security Agency (NSA) published new 
requirements for protection up to top secret [22]. 
NSA relies on NIST-P384 curves for ECDH and 
ECDSA. RSA and DH should be used with a 
modulus of at least 3072 bit.  
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3.4 TLS PROTOCOL AND 
CRYPTOGRAPHIC IMPLEMENTATIONS 

This section gives an overview of the TLS 
implementations available on the market as well as 
cryptographic providers which can be used. In the 
following the term TLS is used for TLS and DTLS 
unless stated otherwise. 

 
Pure cryptographic implementations 
LibTomCrypt1 is an open source cryptographic 

library written in C. It is a mature solution 
supporting many widely and some less often used 
algorithms. 

MicroECC2 is a library focusing on very efficient 
implementations of elliptic curve cryptography. 
Currently it supports ECDH and ECDSA on four 
elliptic curves: SECP128R1, SECP192R1, 
SECP256R1, and SECP384R1 [23]. MicroECC is 
mainly written in C but comes with optimized 
assembler routines for many popular 
microcontrollers. 

The STM32 Cryptographic Library3 is a 
cryptographic library designed by 
STMicroelectronics for the STM32 series of 
microcontrollers. On suitable hardware the library 
makes use of cryptographic hardware acceleration. 
However, this is a feature compatible with STM32 
microcontrollers exclusively. The sources of the 
STM32 Cryptographic Library can’t be reviewed as 
it is available in compiled form only. 

Atmel ATECC508A[24] is a new HSM based on 
Atmels CryptoAuthentication series. It mainly offers 
ECDSA and ECDH based on the NIST-P256 [25] 
elliptic curve. For secure usage of the algorithms it 
also comes with a TRNG and secure key storage for 
up to 16 keys. 

VaultIC460 [26] is a FIPS-140-2 [27][28] 
certified [29] HSM manufactured by Inside Secure. 
Based on an AT90SO128 microcontroller design it 
offers various symmetric and asymmetric 
algorithms. RSA and ECDSA may be freely 
parameterized by the developer. The VaultIC460 is 
available with several communication protocols 
including SPI and USB. Communication to the host 
MCU might also be secured using Secure Channel 
Protocol 02 (SCP02) or SCP03 [30]. SCP are a set of 
protocols specified by GlobalPlatform4 and designed 
for the use on Smart Cards. More details can be 
found in section 4.2. 

 
Pure TLS implementations 

                                                
1 https://github.com/libtom/libtomcrypt 
2 https://github.com/kmackay/micro-ecc 
3 http://www.st.com/web/en/catalog/tools/PF259409 
4 https://www.globalplatform.org 

S2N5 is a relatively new TLS implementation 
(2015) developed by Amazon Web Services - Labs. 
The goal of the project was to implement a small 
and better maintainable alternative to OpenSSL. It 
provides a full implementation up to TLS1.2 with 
some weak ciphers disabled by default. However, it 
makes use of the OpenSSL cryptographic library6 
for cryptographic algorithms. 

emb::TLS [31] is a TLS stack developed for 
deeply embedded devices by the institute of the 
authors. The TLS stack is capable of all protocol 
versions from SSL3.0 up to TLS1.2.Written in pure 
ANSI C, it provides high portability. Thanks to the 
generic cryptographic interface (GCI) used in 
emb::TLS, the cryptographic provider may be 
exchanged seamlessly. The GCI removes all 
dependencies between the TLS application and the 
underlying cryptographic library. A reference 
version uses the LibTomCrypt library for 
cryptographic operations. 

 
Bundled implementations 
mbedTLS7, formerly known as PolarSSL, is a 

TLS implementation developed by ARM. mbedTLS 
is delivered bundled with its own cryptographic 
library. It is mainly optimized for deployment on 
microcontroller with ARM-based CPUs. 

OpenSSL8 is the most widely known TLS 
implementation. A lot of forks exist like LibreSSL9 
developed for FreeBSD10 and BoringSSL11 
developed for internal usage at Google Inc.. 
OpenSSL is both a TLS implementation and a 
cryptographic library. For deployment on resource-
constrained embedded systems it is rather huge and 
makes extensive use of heap allocation for 
cryptographic computations.  

GnuTLS12 is a TLS implementation developed by 
the Free Software Foundation. Like OpenSSL 
GnuTLS is mainly developed for usage in a desktop 
environment. Licensed under the GNU Lesser 
General Public License, version 2.1 (LGPLv2.1) 
[32] it is possible to use GnuTLS in a lot of GPL 
licensed projects where other license types may not 
be compatible. It supports TPMs as well as PKCS 
#11 [33] Smart Cards natively. TPM can be used for 
RSA key generation and signing. For comfortable 
access to PKCS #11 Smart Cards GnutTLS provides 

                                                
5 https://github.com/awslabs/s2n 
6https://www.openssl.org/docs/manmaster/crypto/crypto.h
tml 
7 https://github.com/ARMmbed/mbedtls 
8 https://www.openssl.org/ 
9 http://www.libressl.org/ 
10 https://www.freebsd.org/de/ 
11 https://boringssl.googlesource.com/boringssl/ 
12 http://www.gnutls.org/ 
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an application interface, mainly to store and load 
sensitive information. 

TinyDTLS13 is a DTLS implementation 
especially designed for resource-constrained 
embedded systems. It is delivered with its own 
cryptographic implementation. TinyDTLS lacks 
TLS support. 

WolfSSL14 is a mature TLS library developed by 
wolfSSL Inc. It is targeted on embedded devices, 
IoT devices as well as desktop environments. It is 
about 20 times smaller than OpenSSL. An OpenSSL 
compatibility layer ensures good interoperability 
with server and desktop systems. 

 
TLS implementations with hardware support 

Atmel Hardware-TLS15 is a TLS solution that allows 
usage of the Atmel ATECC508A security module as 
a crypto provider. It can be used based on 
OpenSSL16 or WolfSSL17. The implementation 
basically outsources some cryptographic operations 
to the hardware security module. The OpenSSL 
development is done out of the regular development 
tree. This can be a problem if the vendor decides to 
cancel support for these specialized TLS 
implementations. 
 

4. INTEGRATION OF HARDWARE 
SECURITY MODULES 

The integration of hardware security modules is a 
challenge as compared to a pure software solution 
many different measures have to be performed. 

For the sample application we used a STM32F4 
discovery board [34] with the STMCubeF4 
Hardware Abstraction Layer (F4HAL) [35]. Most of 
the software development is done using the libraries 
provided freely by the manufacturers to ensure 
comparability. Both HSMs, the VaultIC460 and the 
ATECC508A, were tested independently. Both 
HSMs are programmed using their respective 
APIs18. The TLS implementation used is emb::TLS 
developed at the authors’ institute. 

 
4.1 PHYSICAL CONNECTION 

Both HSMs are connected to the microcontroller 
unit (MCU) using standard communication 
interfaces. The VaultIC460 is used with a Standard 
Peripheral Interface Bus (SPI) operated at 2 MHz. 

                                                
13 https://projects.eclipse.org/projects/iot.tinydtls 
14 https://wolfssl.com/wolfSSL/Home.html 
15 http://www.atmel.com/Images/Atmel-45176-
Hardening-Transport-Layer-Security-for-IoT_Flyer.pdf 
16 https://github.com/AtmelCSO/cryptoauth-openssl-
engine 
17 http://www.atmel.com/tools/Atmel-HW-TLS.aspx 
18 http://www.atmel.com/tools/CryptoAuthLib.aspx 

This guarantees a high speed connection, however, 
at the price of eight19 wires to be connected. 
Additional wires are used for selection of the bus 
protocol and further HSM specific adjustments. The 
ATECC508 is connected via I2C clocked at 40 kHz. 
The I2C bus offers significantly lower data rates but 
only needs three wires to work. In addition the 
ATECC508A is only capable of executing 
asymmetric cryptographic operations. As a 
consequence there is no bulk data encryption 
expected and only small amounts of data have to be 
transmitted via this link. 

 

4.2 LOGICAL CONNECTION 

From an abstract point of view the 
implementation is compounded of three main parts: 
The TLS application, the generic cryptographic 
interface (GCI) (cf. Fig. 2) and the cryptographic 
provider. The cryptographic provider computes the 
crypto graphic function needed by the application. 
To prevent a situation in which the application is 
totally dependent on one specific provider the calls 
are abstracted thanks to the GCI. Using the GCI, 
crypto providers may be changed seamlessly. 

The connection between the application, running 
on the MCU, and the provider, on the HSM, is a 
weak link. Data may be exchanged in plaintext over 
this channel. To prevent unauthorized change of 
components, HSM and MCU should provide means 
for mutual authentication. There are some solutions 
to that problem on the market. VaultIC460 can be 
used with the Secure Channel Protocol (SCP) 
version ’02 or ’03 [30]. However, HSMs capable of 
the more recent SCP11 [36] are still missing. SCP03 
uses symmetric algorithms like DES or AES to 
encrypt the communication. For authentication a 
password along with username may be used. 
ATECC508A, missing symmetric algorithms, is 
only capable of authentication. Due to this, data has 
to be sent unencrypted over the channel between 
MCU and HSM.  

 

 
Fig. 2 – The Generic Cryptographic Interface is 
linking the application and the cryptographic 

provider. The GCI is an abstraction layer and makes 
the application independent from the specific 

provider. 

                                                
19 SPI/I2C may need fewer wires, however the HSMs need 
the additional wires to work 
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4.3 KEY MANAGEMENT 

Key management is potentially the most 
significant difference of HSMs compared to a pure 
software TLS solution. Storing keys on a MCU is 
rather trivial. Most MCUs are equipped with 
sufficient storage space. That is, as long as some free 
storage is available one can easily create or import a 
new key. In a pure software solution key 
management is done in software. 

Using a HSM each module type is shipped with a 
specific key management solution. VaultIC460 
offers 112 kByte of secured memory for storage of 
keys, certificates, and arbitrary confidential data. 
Key import and export is possible depending on the 
mode selected on the HSM. In normal mode export 
and import of private and public keys is possible 
without restrictions. In secure mode private keys 
may never leave the device. ATECC508A comes 
with a different approach. It is capable of storing 16 
keys. Public keys may be imported, private keys 
along with their public counter parts can be 
generated on the HSM only. 

The capability to store keys in a secure manner is 
one of the most important features of a HSM.In 
general, secure slot memory can be written only a 
limited number of times because of the used 
EEPROM. Due to that a system has to ensure that 
the usage of key slots is balanced and distributed. 
The used HSMs have no functionality to get a list of 
free slots. The best solution to check for a free slot is 
simple trial and error. For this we propose a 
mechanism that uses the TRNG of the HSM to 
determine a slot to store. The algorithm basically 
seeds the software PRNG with a true random 
number and then determines the slot by creation of 
pseudo random numbers in the given range. The 
TRNG is used to seed the C standard library RNG. 
The algorithm tries up to N times to find a free slot, 
if no free slot is found after that the supposed slot is 
freed and written to. The collision probability for 
this is relatively low having a lot of slots (cf. Fig. 3).  

 

 
Fig. 3 – The average number of iterations needed to 
find a free slot as a function of the slot occupancy. 

Another solution is to store a table of slots used 
on the MCU. However, this would require extra 
persistent memory on the MCU and we don’t want 
to rely on extra hardware. It is expected by the 
authors that a sudden loss of power is likely. If the 
loss of power happens before writing information to 
the storage, information in the table is wrong. No 
known HSM allows the user to get information 
about the key stored in a slot. 

 
4.4 SOME CHALLENGES 

HSMs, like other hardware, tend to have a fixed, 
specific instruction set. Depending on the possibility 
for a good or bad implementation in hardware it may 
take longer or shorter until HSMs with new 
algorithms appear on the market. To the authors’ 
knowledge it is more likely to take longer until new 
HSM featuring new algorithms are released [37]. 

Private keys might be stored very securely in a 
HSM. However, keys for authentication or 
encryption of communication with the HSM have to 
be stored on the MCU. As a result the keys on the 
MCU are always the weak point. This situation 
could be improved by adding some secure storage to 
the MCU, too. 

 
4.5 LESSONS LEARNED 

Hardware-based TRNGs [38], providing much 
more entropy compared to software solutions are a 
huge plus, as high-quality random numbers are 
required for basically every cryptographic algorithm 
used in TLS. Weak random numbers are often the 
reason of breaches in cryptographic protocols [39]. 

Efficiency of cryptographic algorithms computed 
in a HSM compared to MCU computations for both 
speed and energy is a more controversial topic. 
Sophisticated HSM algorithms are able to 
outperform software implementations [40] on both 
energy efficiency and computation time. However, 
using a different MCU, software libraries, or HSM 
as well as algorithms the situation may change 
significantly. 

 
5. CONCLUSION 

The design of secure sensor networks is a 
delicate task. The solutions available have to be 
combined carefully. (D)TLS with strong, 
cryptographic algorithms is a secure base. HSMs can 
add more efficient algorithm computation, better 
random numbers and secure key storage to the 
system. However, HSMs have to be selected 
carefully. Updates are in general not possible and the 
set of cryptographic algorithms is very small 
compared to software implementations. If using a 
subsidiary software library even the software 
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algorithms can benefit from the true random 
numbers provided by the hardware implementation. 

However, actual deployment of a HSM mainly 
depends on the physical vulnerability of the system. 
System cost can also be saved by not upgrading to a 
better MCU and offloading computational expensive 
tasks to the HSM. This has to be decided as the case 
arises.  

In future research the energy consumption and 
the computing time of the HSM algorithms have to 
be measured. Based on this numbers and previous 
research [41] assumptions about the energy 
efficiency and speed of the hardware-accelerated 
emb::TLS can be made. The results have to be 
verified using a physical test setup. 

Furthermore, it is planned to extend the hardware 
support of emb::TLS in the future. Extern HSMs can 
be supported by symmetric cryptographic units 
integrated in the MCU, e.g. the STM32F417xx 
series, providing AES, HMAC, and a hardware 
RNG. 

With the market launch of appropriate products 
we want to integrate HSMs ready for governmental 
use in Germany and the United States. 
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