
Oliver Kehret, Andreas Walz, Axel Sikora / International Journal of Computing, 15(1) 2016, 24-32

 24

INTEGRATION OF HARDWARE SECURITY MODULES
INTO A DEEPLY EMBEDDED TLS STACK

Oliver Kehret, Andreas Walz, Axel Sikora

Institute for Reliable Embedded Systems and Communications Electronics,

Offenburg University of Applied Sciences, Badstraße 24, D77652 Offenburg, Germany ,
okehret@stud.hs-offenburg.de, andreas.walz@hs-offenburg.de, axel.sikora@hs-offenburg.de

Abstract: The Transport Layer Security (TLS) protocol is a well-established standard for securing communication over
insecure communication links, offering layer-4 VPN functionality. In the classical Internet TLS is widely used. With the
advances of the Internet of Things (IoT) there is an increasing need to secure communication on resource-constrained
embedded devices. On these devices, computation of complex cryptographic algorithms is difficult. Additionally,
sensor nodes are physically exposed to attackers. Cryptographic acceleration and secure hardware security modules
(HSMs) are possible solutions to these challenges. The usage of specialized cryptographic modules for TLS is not a new
phenomenon. However, there are still few hardware security modules suitable for the use on microcontrollers in sensor
networks. We therefore present an overview of HSM and TLS solutions along with sample implementations and share
some recommendations how to combine both. Copyright © Research Institute for Intelligent Computer Systems, 2016.
All rights reserved.

Keywords: hardware security module, HSM, Transport Layer Security, Embedded Systems, cryptography, hardware
acceleration, Internet of Things.

1. INTRODUCTION

In the Internet, data communication has to be
secured to ensure safe functionality, confidentiality,
integrity, authentication, non-repudiation, and
availability. These requirements shall be observed
not only in legacy Internet applications, but also in
the machine-to-machine-(M2M)-type communi-
cation of the rapidly growing Internet of Things
(IoT). A well-established and very widely used
standard to secure communication over reliable
channels is the Transport Layer Security [1] (TLS)
protocol, initially invented by NetScape [2] Inc. as
Secure Sockets Layer (SSL). With Datagram
Transport Layer Security [3] (DTLS) a solution
based on unreliable channels is available, too.
(D)TLS combines strong, standardized
cryptographic algorithms to achieve data
confidentiality, integrity, and authenticity [4] of the
communication partners involved.

However, (D)TLS only provides means to secure
the data transport, leaving out devices and data at
rest. In the classical internet a server was placed in a
data center with rigid access controls. Its
counterpart, the client PC or notebook, was located
at home or in the company. The location of the
devices made physical attacks difficult. In a world

with ubiquitous communication and computing
nodes many of such devices may be physically
exposed to attackers [5], opening new attack vectors.
Communicating entities might not only be attacked
at the communication, but also be hijacked at
communication ends.

This new development makes it particularly
important to secure cryptographic material.
According to Kerckhoffs’ principle [6], the only
thing that has to be and should be kept secret is the
cryptographic material.

Thus, hardware security modules (HSM) with
secure memory are a major ingredient to establish an
anchor of trust. For an attacker, cryptographic keys
stored in a HSM may be much more difficult to
extract. But HSMs can do more, most of them
providing e.g. a high-quality True Random Number
Generator (TRNG). Good random numbers [7] are a
basic requirement for the secure execution of
cryptographic algorithms. Furthermore, most HSMs
are capable of efficiently and securely executing
different cryptographic operations on-chip, avoiding
the need to reveal cryptographic keys to off-chip
entities.

This paper provides an introduction to the usage
of hardware security modules as cryptographic
providers for implementations of TLS in embedded

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Oliver Kehret, Andreas Walz, Axel Sikora / International Journal of Computing, 15(1) 2016, 24-32

 25

systems. The paper is structured as follows:
Chapter 2 includes an overview of available security
module types. The TLS protocol along with
cryptographic algorithms and implementations is
outlined in Chapter 3. Chapter 4 describes the
integration of HSMs into an existing TLS stack. In
Chapter 5 related work is reviewed. Chapter 6 closes
with a conclusion.

2. HARDWARE SECURITY MODULES

The term Hardware Security Module (HSM) is
neither standardized nor normed. In the following
we will give an overview of what can be considered
a HSM and of the corresponding particularities.

2.1 SMART CARD

Smart Cards are widely used security devices for
personal identification and authentication. Electronic
tickets [8], credit cards, passports [9], and others rely
heavily on the use of smart cards. According to
Mayes [10] a smart card is a device that

 is able to participate in automated electronic
transaction,

 adds security and is not easily forged or
copied,

 stores data securely, and
 runs security algorithms.
Smart cards typically tend to be bound to a

specific human. The owner carries the smart card
along, typically. One might think of an insurance
agent unlocking his PC with a smart card. In most of
the application scenarios smart cards are lacking a
power supply. Usually the power comes from the
reader device. An Automated Teller Machine
(ATM) is a typical example of a smart card reader.
Due to the large number of cards deployed, smart
cards have to be low cost. Smart cards are typically
owned by the issuer, which in the previous example
would be the bank.

2.2 TRUSTED PLATFORM MODULE

Trusted Platform Modules (TPMs) and the smart
cards share many features. The goal of both is to
have a secure computing environment and both have
to be low cost. The TPM standard was originally
developed by the Trusted Computing Group (TCG).
Later on, the TPM was standardized by both the
International Organization for Standardization (ISO)
and the International Electrotechnical Commission
(IEC). The TCG introduces the term trusted
computing (TC). Trust in that context means “that a
device behaves in a particular manner for a specific
purpose” [11].

In the following we will highlight some
capabilities that are unique to the TPM specification.

For a more detailed overview the interested reader
can refer to [12].

According to the specification TPMs are shipped
in a pre-programmed state following the customer’s
requests [11]. During initial startup an entity has to
take “ownership” of the TPM. Taking ownership is
the process of establishing a shared secret between
the TPM and the user. Once ownership is taken and
the TPM is activated all features are available.

TPM specification introduces to secure storage
functions: Binding and Sealing. Binding allows to
store data encrypted by the TPM on external storage
and Sealing locks data to a specific platform using a
set of integrity metrics. In other words bound data
may be decrypted having the appropriate key,
whereas sealed data may only be decrypted having
the right key and the right platform.

The TPM specification, however, does not dictate
the use of any specific hardware nor that the TPM
has to be an Integrated Circuit. Communication
interfaces and bus architectures are determined by
the manufacturer.

A dedicated RSA-2048 [13] engine is a
requirement. However, 2048 bit keys are only
needed for some restricted operations. For most of
the operations the key length is arbitrary.

A high-quality True Random Number Generator
is required to seed a Pseudo Number Generator.
Random numbers are used to generate RSA keys
and random nonce.

It should be noted that symmetric algorithms are
foreseen in the specification for internal use only.

2.3 HSM FOR THE INTERNET OF
THINGS

An emerging class of new HSMs is designed for
the Internet of Things. This upcoming class is today
often based on existing smart card modules.
However, some differences can be observed.

This new kind of HSMs features a common
industrial bus interface for connection to the host
MCU. Power is provided over the host MCU’s
power supply.

Its main purpose is to provide cryptographic
algorithms and secure storage of cryptographic keys.
The algorithms and the strength used may vary
according to the HSM’s cost. For state-of-the-art
implementations elliptic curve cryptographic
acceleration, due to its computational efficiency, is
typical.

A setup using one HSM for one MCU is
expected. However, if required also multiple HSMs
on one MCU should be possible, depending on the
actual implementation. An application with high
traffic or a need to store more keys can likely benefit
from multiple HSMs.

Oliver Kehret, Andreas Walz, Axel Sikora / International Journal of Computing, 15(1) 2016, 24-32

 26

EVITA [14] modules are a special kind of HSMs
developed mainly for the use in car gateways.
Especially the full EVITA module specification has
a fitting feature set for a HSM, too.

3. TRANSPORT LAYER SECURITY

The Transport Layer Security (TLS) protocol is a
mature standard securing communication over
reliable, connection-oriented channels. For
communication over unreliable channels the
Datagram Transport Layer Security (DTLS) protocol
was established. To the best of the authors’
knowledge the current standard (D)TLS1.2 can be
considered secure if implemented and configured
carefully. (D)TLS preserves the confidentiality,
authenticity, and integrity of the messages sent. The
protocols are following a strict client and server
model. The use of a public key infrastructure [15]
spares the need to share a secret in advance.

3.1 THE INGREDIENTS OF THE TLS
PROTOCOL

(D)TLS is divided in five sub-protocols (cf.
Fig. 1). The Record Protocol is responsible for
fragmentation of the messages. Furthermore, it
provides confidentiality by means of bulk data
encryption and message integrity by means of
message authentication codes [16] (MAC).

The Change Cipher Spec Protocol is used to
switch to encrypted communication and the Alert
Protocol is used to convey error messages. The
Application Data Protocol exchanges raw
application data between the application and the
transport layer.

The Handshake Protocol is used to establish a
connection between two communication partners.
Both partners have to prove their authenticity and to
agree upon a key. Connection establishing is the
computationally most expensive period of a TLS
connection. During a handshake several complex
asymmetric cryptographic operations are applied.
The establishment starts with the exchange of Hello
messages between the client and the server, followed
by negotiations of the protocol version and the
algorithms used.

Fig. 1 – The TLS protocol with its sub-protocols in the
ISO OSI model.

Therefore, (D)TLS introduces the concept
of cipher suites. A cipher suite defines
algorithms to preserve message integrity,
authenticity, and application data encryption.
The exchange of certificates and shared secrets is the
last step in the handshake protocol. The
algorithms involved are depending on the type of
public key infrastructure used. For certificate
verification the RSA algorithm or the digital
signature algorithm (DSA) may be used. For key
exchange the Diffie-Hellman algorithm [17] with
static (DH) or ephemeral keys is one option. Public
key algorithms are available in a version based on
elliptic curves [18] called elliptic curve digital
signature algorithm (ECDSA), elliptic curve Diffie-
Hellman [19] (ECDH) or ephemeral elliptic curve
Diffie-Hellman (ECDHE).

3.2 CRYPTOGRAPHY FOR (D)TLS

The security of the TLS protocol is based on
strong, well-established cryptographic algorithms.
The implementation of cryptographic algorithms can
suffer from many flaws. Therefore it is strongly
recommended to use a cryptographic library written
by experts rather than develop a custom one.

TLS defines algorithms in cipher suites. A cipher
suite consists of:

 a hash function (PRF, MACs and signatures),
 a key agreement function (for forward secure

key exchange),

 asymmetric ciphers (for key exchange),
 symmetric ciphers (for bulk data encryption).
For the use on embedded systems cipher

suites using elliptic curve algorithms for key
agreement (ECDH) and signatures (ECDSA) are
recommended [20].

3.3 LEGAL REQUIREMENTS

In Germany and the United States governmental
authorities enact laws for the application of TLS in
specific fields.

The German Federal Office for Information
Security (BSI) obligates the use of BrainpoolP256r1
elliptic curve [21] and higher for ECDH and
ECDSA in smart meter gateways. For authentication
the algorithms have to be executed in a HSM. BSI
doesn’t allow the use of RSA or DH schemes for
that use case.

National Security Agency (NSA) published new
requirements for protection up to top secret [22].
NSA relies on NIST-P384 curves for ECDH and
ECDSA. RSA and DH should be used with a
modulus of at least 3072 bit.

Oliver Kehret, Andreas Walz, Axel Sikora / International Journal of Computing, 15(1) 2016, 24-32

 27

3.4 TLS PROTOCOL AND
CRYPTOGRAPHIC IMPLEMENTATIONS

This section gives an overview of the TLS
implementations available on the market as well as
cryptographic providers which can be used. In the
following the term TLS is used for TLS and DTLS
unless stated otherwise.

Pure cryptographic implementations
LibTomCrypt1 is an open source cryptographic

library written in C. It is a mature solution
supporting many widely and some less often used
algorithms.

MicroECC2 is a library focusing on very efficient
implementations of elliptic curve cryptography.
Currently it supports ECDH and ECDSA on four
elliptic curves: SECP128R1, SECP192R1,
SECP256R1, and SECP384R1 [23]. MicroECC is
mainly written in C but comes with optimized
assembler routines for many popular
microcontrollers.

The STM32 Cryptographic Library3 is a
cryptographic library designed by
STMicroelectronics for the STM32 series of
microcontrollers. On suitable hardware the library
makes use of cryptographic hardware acceleration.
However, this is a feature compatible with STM32
microcontrollers exclusively. The sources of the
STM32 Cryptographic Library can’t be reviewed as
it is available in compiled form only.

Atmel ATECC508A[24] is a new HSM based on
Atmels CryptoAuthentication series. It mainly offers
ECDSA and ECDH based on the NIST-P256 [25]
elliptic curve. For secure usage of the algorithms it
also comes with a TRNG and secure key storage for
up to 16 keys.

VaultIC460 [26] is a FIPS-140-2 [27][28]
certified [29] HSM manufactured by Inside Secure.
Based on an AT90SO128 microcontroller design it
offers various symmetric and asymmetric
algorithms. RSA and ECDSA may be freely
parameterized by the developer. The VaultIC460 is
available with several communication protocols
including SPI and USB. Communication to the host
MCU might also be secured using Secure Channel
Protocol 02 (SCP02) or SCP03 [30]. SCP are a set of
protocols specified by GlobalPlatform4 and designed
for the use on Smart Cards. More details can be
found in section 4.2.

Pure TLS implementations

1 https://github.com/libtom/libtomcrypt
2 https://github.com/kmackay/micro-ecc
3 http://www.st.com/web/en/catalog/tools/PF259409
4 https://www.globalplatform.org

S2N5 is a relatively new TLS implementation
(2015) developed by Amazon Web Services - Labs.
The goal of the project was to implement a small
and better maintainable alternative to OpenSSL. It
provides a full implementation up to TLS1.2 with
some weak ciphers disabled by default. However, it
makes use of the OpenSSL cryptographic library6
for cryptographic algorithms.

emb::TLS [31] is a TLS stack developed for
deeply embedded devices by the institute of the
authors. The TLS stack is capable of all protocol
versions from SSL3.0 up to TLS1.2.Written in pure
ANSI C, it provides high portability. Thanks to the
generic cryptographic interface (GCI) used in
emb::TLS, the cryptographic provider may be
exchanged seamlessly. The GCI removes all
dependencies between the TLS application and the
underlying cryptographic library. A reference
version uses the LibTomCrypt library for
cryptographic operations.

Bundled implementations
mbedTLS7, formerly known as PolarSSL, is a

TLS implementation developed by ARM. mbedTLS
is delivered bundled with its own cryptographic
library. It is mainly optimized for deployment on
microcontroller with ARM-based CPUs.

OpenSSL8 is the most widely known TLS
implementation. A lot of forks exist like LibreSSL9
developed for FreeBSD10 and BoringSSL11
developed for internal usage at Google Inc..
OpenSSL is both a TLS implementation and a
cryptographic library. For deployment on resource-
constrained embedded systems it is rather huge and
makes extensive use of heap allocation for
cryptographic computations.

GnuTLS12 is a TLS implementation developed by
the Free Software Foundation. Like OpenSSL
GnuTLS is mainly developed for usage in a desktop
environment. Licensed under the GNU Lesser
General Public License, version 2.1 (LGPLv2.1)
[32] it is possible to use GnuTLS in a lot of GPL
licensed projects where other license types may not
be compatible. It supports TPMs as well as PKCS
#11 [33] Smart Cards natively. TPM can be used for
RSA key generation and signing. For comfortable
access to PKCS #11 Smart Cards GnutTLS provides

5 https://github.com/awslabs/s2n
6https://www.openssl.org/docs/manmaster/crypto/crypto.h
tml
7 https://github.com/ARMmbed/mbedtls
8 https://www.openssl.org/
9 http://www.libressl.org/
10 https://www.freebsd.org/de/
11 https://boringssl.googlesource.com/boringssl/
12 http://www.gnutls.org/

Oliver Kehret, Andreas Walz, Axel Sikora / International Journal of Computing, 15(1) 2016, 24-32

 28

an application interface, mainly to store and load
sensitive information.

TinyDTLS13 is a DTLS implementation
especially designed for resource-constrained
embedded systems. It is delivered with its own
cryptographic implementation. TinyDTLS lacks
TLS support.

WolfSSL14 is a mature TLS library developed by
wolfSSL Inc. It is targeted on embedded devices,
IoT devices as well as desktop environments. It is
about 20 times smaller than OpenSSL. An OpenSSL
compatibility layer ensures good interoperability
with server and desktop systems.

TLS implementations with hardware support

Atmel Hardware-TLS15 is a TLS solution that allows
usage of the Atmel ATECC508A security module as
a crypto provider. It can be used based on
OpenSSL16 or WolfSSL17. The implementation
basically outsources some cryptographic operations
to the hardware security module. The OpenSSL
development is done out of the regular development
tree. This can be a problem if the vendor decides to
cancel support for these specialized TLS
implementations.

4. INTEGRATION OF HARDWARE
SECURITY MODULES

The integration of hardware security modules is a
challenge as compared to a pure software solution
many different measures have to be performed.

For the sample application we used a STM32F4
discovery board [34] with the STMCubeF4
Hardware Abstraction Layer (F4HAL) [35]. Most of
the software development is done using the libraries
provided freely by the manufacturers to ensure
comparability. Both HSMs, the VaultIC460 and the
ATECC508A, were tested independently. Both
HSMs are programmed using their respective
APIs18. The TLS implementation used is emb::TLS
developed at the authors’ institute.

4.1 PHYSICAL CONNECTION

Both HSMs are connected to the microcontroller
unit (MCU) using standard communication
interfaces. The VaultIC460 is used with a Standard
Peripheral Interface Bus (SPI) operated at 2 MHz.

13 https://projects.eclipse.org/projects/iot.tinydtls
14 https://wolfssl.com/wolfSSL/Home.html
15 http://www.atmel.com/Images/Atmel-45176-
Hardening-Transport-Layer-Security-for-IoT_Flyer.pdf
16 https://github.com/AtmelCSO/cryptoauth-openssl-
engine
17 http://www.atmel.com/tools/Atmel-HW-TLS.aspx
18 http://www.atmel.com/tools/CryptoAuthLib.aspx

This guarantees a high speed connection, however,
at the price of eight19 wires to be connected.
Additional wires are used for selection of the bus
protocol and further HSM specific adjustments. The
ATECC508 is connected via I2C clocked at 40 kHz.
The I2C bus offers significantly lower data rates but
only needs three wires to work. In addition the
ATECC508A is only capable of executing
asymmetric cryptographic operations. As a
consequence there is no bulk data encryption
expected and only small amounts of data have to be
transmitted via this link.

4.2 LOGICAL CONNECTION

From an abstract point of view the
implementation is compounded of three main parts:
The TLS application, the generic cryptographic
interface (GCI) (cf. Fig. 2) and the cryptographic
provider. The cryptographic provider computes the
crypto graphic function needed by the application.
To prevent a situation in which the application is
totally dependent on one specific provider the calls
are abstracted thanks to the GCI. Using the GCI,
crypto providers may be changed seamlessly.

The connection between the application, running
on the MCU, and the provider, on the HSM, is a
weak link. Data may be exchanged in plaintext over
this channel. To prevent unauthorized change of
components, HSM and MCU should provide means
for mutual authentication. There are some solutions
to that problem on the market. VaultIC460 can be
used with the Secure Channel Protocol (SCP)
version ’02 or ’03 [30]. However, HSMs capable of
the more recent SCP11 [36] are still missing. SCP03
uses symmetric algorithms like DES or AES to
encrypt the communication. For authentication a
password along with username may be used.
ATECC508A, missing symmetric algorithms, is
only capable of authentication. Due to this, data has
to be sent unencrypted over the channel between
MCU and HSM.

Fig. 2 – The Generic Cryptographic Interface is
linking the application and the cryptographic

provider. The GCI is an abstraction layer and makes
the application independent from the specific

provider.

19 SPI/I2C may need fewer wires, however the HSMs need
the additional wires to work

Oliver Kehret, Andreas Walz, Axel Sikora / International Journal of Computing, 15(1) 2016, 24-32

 29

4.3 KEY MANAGEMENT

Key management is potentially the most
significant difference of HSMs compared to a pure
software TLS solution. Storing keys on a MCU is
rather trivial. Most MCUs are equipped with
sufficient storage space. That is, as long as some free
storage is available one can easily create or import a
new key. In a pure software solution key
management is done in software.

Using a HSM each module type is shipped with a
specific key management solution. VaultIC460
offers 112 kByte of secured memory for storage of
keys, certificates, and arbitrary confidential data.
Key import and export is possible depending on the
mode selected on the HSM. In normal mode export
and import of private and public keys is possible
without restrictions. In secure mode private keys
may never leave the device. ATECC508A comes
with a different approach. It is capable of storing 16
keys. Public keys may be imported, private keys
along with their public counter parts can be
generated on the HSM only.

The capability to store keys in a secure manner is
one of the most important features of a HSM.In
general, secure slot memory can be written only a
limited number of times because of the used
EEPROM. Due to that a system has to ensure that
the usage of key slots is balanced and distributed.
The used HSMs have no functionality to get a list of
free slots. The best solution to check for a free slot is
simple trial and error. For this we propose a
mechanism that uses the TRNG of the HSM to
determine a slot to store. The algorithm basically
seeds the software PRNG with a true random
number and then determines the slot by creation of
pseudo random numbers in the given range. The
TRNG is used to seed the C standard library RNG.
The algorithm tries up to N times to find a free slot,
if no free slot is found after that the supposed slot is
freed and written to. The collision probability for
this is relatively low having a lot of slots (cf. Fig. 3).

Fig. 3 – The average number of iterations needed to
find a free slot as a function of the slot occupancy.

Another solution is to store a table of slots used
on the MCU. However, this would require extra
persistent memory on the MCU and we don’t want
to rely on extra hardware. It is expected by the
authors that a sudden loss of power is likely. If the
loss of power happens before writing information to
the storage, information in the table is wrong. No
known HSM allows the user to get information
about the key stored in a slot.

4.4 SOME CHALLENGES

HSMs, like other hardware, tend to have a fixed,
specific instruction set. Depending on the possibility
for a good or bad implementation in hardware it may
take longer or shorter until HSMs with new
algorithms appear on the market. To the authors’
knowledge it is more likely to take longer until new
HSM featuring new algorithms are released [37].

Private keys might be stored very securely in a
HSM. However, keys for authentication or
encryption of communication with the HSM have to
be stored on the MCU. As a result the keys on the
MCU are always the weak point. This situation
could be improved by adding some secure storage to
the MCU, too.

4.5 LESSONS LEARNED

Hardware-based TRNGs [38], providing much
more entropy compared to software solutions are a
huge plus, as high-quality random numbers are
required for basically every cryptographic algorithm
used in TLS. Weak random numbers are often the
reason of breaches in cryptographic protocols [39].

Efficiency of cryptographic algorithms computed
in a HSM compared to MCU computations for both
speed and energy is a more controversial topic.
Sophisticated HSM algorithms are able to
outperform software implementations [40] on both
energy efficiency and computation time. However,
using a different MCU, software libraries, or HSM
as well as algorithms the situation may change
significantly.

5. CONCLUSION

The design of secure sensor networks is a
delicate task. The solutions available have to be
combined carefully. (D)TLS with strong,
cryptographic algorithms is a secure base. HSMs can
add more efficient algorithm computation, better
random numbers and secure key storage to the
system. However, HSMs have to be selected
carefully. Updates are in general not possible and the
set of cryptographic algorithms is very small
compared to software implementations. If using a
subsidiary software library even the software

Oliver Kehret, Andreas Walz, Axel Sikora / International Journal of Computing, 15(1) 2016, 24-32

 30

algorithms can benefit from the true random
numbers provided by the hardware implementation.

However, actual deployment of a HSM mainly
depends on the physical vulnerability of the system.
System cost can also be saved by not upgrading to a
better MCU and offloading computational expensive
tasks to the HSM. This has to be decided as the case
arises.

In future research the energy consumption and
the computing time of the HSM algorithms have to
be measured. Based on this numbers and previous
research [41] assumptions about the energy
efficiency and speed of the hardware-accelerated
emb::TLS can be made. The results have to be
verified using a physical test setup.

Furthermore, it is planned to extend the hardware
support of emb::TLS in the future. Extern HSMs can
be supported by symmetric cryptographic units
integrated in the MCU, e.g. the STM32F417xx
series, providing AES, HMAC, and a hardware
RNG.

With the market launch of appropriate products
we want to integrate HSMs ready for governmental
use in Germany and the United States.

6. REFERENCES

[1] T. Dierks and E. Rescorla, The Transport Layer
Security (TLS) Protocol Version 1.2 RFC5246,
http://www.ietf.org/rfc/rfc5246, accessed
March 2016.

[2] R. Oppliger, SSL and TLS: Theory and
Practice, Artech House, 2009.

[3] E. Rescorla and N. Modadugu, Datagram
Transport Layer Security Version 1.2
RFC7507, available online on
http://www.ietf.org/rfc/rfc6347, accessed
March 2016.

[4] Legal Information Institute, U.S. Code § 3542 -
Definitions, https://www.law.cornell.edu/usco
de/text/44/3542, accessed March 2016.

[5] M. Abomhara et al., Cyber Security and the
Internet of Things: Vulnerabilities, Threats,
Intruders and Attacks, Journal of Cyber
Security, (4) 1 (2015), pp. 65-88.

[6] A. Kerckhoffs, La cryptographie militaire,
Journal des sciences militaires, 1883.

[7] D. Eastlake et al., Randomness Requirements
for Security RFC4086, http://www.ietf.org/rfc/
rfc4086, accessed March 2016.

[8] W. H. Tan, Practical Attacks on the MIFARE
Classic, Imperial College London,
http://www.doc.ic.ac.uk/~mgv98/MIFARE_file
s/report.pdf, accessed March 2016.

[9] Bundesdruckerei, ePassport Pocket Guide
2013, https://www.bundesdruckerei.de/sites/

default/files/documents/2013/08/pocketguide_e
pass_en.pdf, accessed March 2016.

[10] K. Mayes, An Introduction to Smart Cards, in:
Smart Cards, Tokens, Security and
Applications, Springer US, 2008, pp. 155-172.

[11] TCG, TCG Specification Architecture
Overview, http://www.trustedcomputinggroup.
org/files/resource_files/AC652DE1-1D09-3519
-ADA026A0C05CFAC2/TCG_1_4_Architectu
re_Overview.pdf, 2007, accessed March 2016.

[12] A. Tomlinson, Introduction to the TPM, in:
Smart Cards, Tokens, Security and
Applications, Springer US, 2008, pp. 155-172.

[13] R.L. Rivest et. al., A Method for Obtaining
Digital Signatures and Public-Key
Cryptosystems, https://pdfs.semanticscholar.
org/21b2/34ff1ec4b42fb84f5f27f4de1a2cd05d7
f2b.pdf, 1978, accessed March 2016.

[14] M. Wolf, T. Gendrullis, Design,
Implementation, and Evaluation of a Vehicular
Hardware Security Module, in Proceeding of
the 14th International Conference on
Information Security and Cryptology ICISC'11,
Springer-Verlag Berlin, Heidelberg, 2011, pp.
302-318.

[15] M. Cooper et al., Internet X.509 Public Key
Infrastructure: Certification Path Building
RFC4158, http://www.ietf.org/rfc/rfc4158,
accessed March 2016.

[16] H. Krawczyk et al., HMAC: Keyed-Hashing for
Message Authentication RFC2104,
http://www.ietf.org/rfc/rfc2104, accessed
March 2016.

[17] E. Rescorla, Diffie-Hellman Key Agreement
Method RFC2631, available online on
http://www.ietf.org/rfc/rfc2631, accessed
March 2016.

[18] S. Blake-Wilson et al., Elliptic Curve
Cryptography (ECC) Cipher Suites for
Transport Layer Security (TLS) RFC4492,
http://www.ietf.org/rfc/rfc4492, accessed
March 2016.

[19] D. McGrew et al., Fundamental Elliptic Curve
Cryptography Algorithms RFC6090,
http://www.ietf.org/rfc/rfc6090, accessed
March 2016.

[20] N. Gura et al., Comparing Elliptic Curve
Cryptography and RSA on 8-bit CPUs,
https://www.iacr.org/archive/ches2004/315601
17/31560117.pdf, accessed March 2016.

[21] BSI, TR-03116-3, Kryptographische Vorgaben
für Projekte der Bundesregierung, 2015.

[22] NSA, NSA Suite B Cryptography, 2015,
https://www.nsa.gov/ia/programs/suiteb_crypto
graphy/index.shtml#guides.

Oliver Kehret, Andreas Walz, Axel Sikora / International Journal of Computing, 15(1) 2016, 24-32

 31

[23] Standards for Efficient Cryptography, SEC 2:
Recommended Elliptic Curve Domain
Parameters, http://www.secg.org/SEC2-Ver-
1.0.pdf, accessed March 2016.

[24] Atmel Inc., ATECC508A Summary Datasheet,
http://www.atmel.com/images/atmel-8923s-
cryptoauth-atecc508a-datasheet-summary.pdf,
accessed March 2016.

[25] National Institute of Standards and
Technology, Recommended Elliptic Curves for
federal Government use, http://csrc.nist.gov/
groups/ST/toolkit/documents/dss/NISTReCur.p
df, accessed March 2016.

[26] Inside Secure, VaultIC460 Summary Datasheet,
http://www.insidesecure.com/content/download
/1381/8640/version/2/file/SummaryVIC460_66
06CS.pdf , accessed March 2016.

[27] Inside Secure, FIPS PUB 140-2 Non-
proprietary Security Policy,
http://csrc.nist.gov/groups/STM/cmvp/docume
nts/140-1/140sp/140sp1762.pdf, accessed
March 2016.

[28] National Institute of Standards and
Technology, FIPS PUB 140-2 Security
Requirements for cryptographic modules,
http://csrc.nist.gov/publications/fips/fips140-
2/fips1402.pdf, accessed March 2016.

[29] National Institute of Standards and
Technology, Validated FIPS 140-1 and FIPS
140-2 Cryptographic Modules, http://csrc.nist.
gov/groups/STM/cmvp/documents/140-1/140
val-all.htm, accessed March 2016.

[30] GlobalPlatform: Card Technology Secure
Channel Protocol ‘03’ Card Specification v2.2
– Amendment D V1.1.1, http://www.global
platform.org/specificationscard.asp, accessed
March 2016.

[31] A. Yushev et. al, Securing Embedded
Communication with TLS1.2, 2015.

[32] Free Software Foundation, GNU Lesser
General Public License, version 2.1,
http://www.gnu.org/licenses/old-licenses/lgpl-
2.1.html, accessed March 2016.

[33] RSA Laboratories, PKCS #11 Base
Functionality v2.30: Cryptoki – Draft 4,
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-
30/pkcs-11v2-30b-d6.pdf, accessed March
2016.

[34] STMicroelectronics, STM32F4DISCOVERY,
http://www.st.com/web/en/resource/technical/d
ocument/data_brief/DM00037955.pdf,
accessed March 2016.

[35] STMicroelectronics, STM32CubeF4, http://
www.st.com/st-web-ui/static/active/en/resource
/technical/document/data_brief/DM00103572.p
df, accessed March 2016.

[36] GlobalPlatform, Card Secure Channel Protocol
‘11’ Card Specification v2.2 – Amendment F
v1.0, http://www.globalplatform.org/specifi
cationscard.asp, accessed March 2016.

[37] PRNewswire, Atmel First to Ship Ultra-Secure
Crypto Element Enabling Smart, Connected
and Secure Systems, http://www.prnewswire.
com/news-releases/atmel-first-to-ship-ultra-se
cure-crypto-element-enabling-smart-connected-
and-secure-systems-300036172.html, accessed
March 2016.

[38] National Institute of Standards and
Technology, Recommendation for the Entropy
Sources Used for Random Bit Generation,
NIST SP 800-90B, http://csrc.nist.gov/
publications/drafts/800-90/sp800-90b_second_
draft.pdf, accessed March 2016.

[39] F. D. Garcia et al., Computer Security, in
Proceedings of the 13th European Syposium on
Research in Computer Security ESORICS’08:,
Málaga, Spain, 2008, Springer Berlin,
Heidelberg, Chapter: Dismantling MIFARE
Classic, pp. 97-114.

[40] M. Koschuch et al., Hardware/Software Co-
Design of Elliptic Curve Cryptography on an
8051 Microcontroller, https://www.iacr.org/
archive/ches2006/34/34.pdf, accessed March
2016.

[41] N. A. Kofi et al., Embedded TLS 1.2
Implementation for Smart Metering & Smart
Grid Applications, 2015.

Oliver Kehret, holds a B. Eng.
Degree from Offenburg
University of Applied Sciences.
He is currently pursuing the
M.S. degree with University of
Applied Sciences Offenburg,
Germany. His research interest
includes security algorithms and
protocols for resource constrai-
ned devices.

Andreas Walz, holds a diploma
in Physics from the University of
Freiburg. From his studies and
from working as a research
assistant in experimental
particle physics he has many
years of experience in the
development of embedded
hardware systems as well as

efficient software. Currently, he is pursuing his Ph.D.
in the field of security in embedded systems with
special interest in the TLS protocol family.

Oliver Kehret, Andreas Walz, Axel Sikora / International Journal of Computing, 15(1) 2016, 24-32

 32

Axel Sikora, holds a diploma of
Electrical Engineering and a
diploma of Business Administra-
tion, both from Aachen Tech-
nical University. He has done a
Ph.D. in Electrical Engineering
at the Fraunhofer Institute of
Microelectronics Circuits and
Systems, Duisburg, with a thesis
on SOI-Technologies. After po-

sitions in the telecommunications and
semiconductor industry, he became a professor at
the Baden-Wuerttemberg Cooperative State
University Loerrach in 1999. In 2011, he joined
Offenburg University of Apllied Sciences, where he

leads the institute for reliable embedded systems
and communications electronics. His major interest
is in the field of efficient, energy-aware, safe and
secure algorithms and protocols for wired and
wireless embedded communication. In 2002 he
founded the Steinbeis Transfer Center Embedded
Design and Networking for professional protocol and
platform developments, which was successfully
spun off as STACKFORCE GmbH in 2014. Dr.
Sikora is author, co-author, editor and co-editor of
several textbooks and numerous papers in the field
of embedded design and wireless and wired
networking, and head and member of manifold
steering and program committees of international
scientific conferences.

