
Lukáš Krejčí / International Journal of Computing, 16(1) 2017, 18-26

 18

PROGRAMMING AUTONOMOUS BEHAVIOR OF REACTIVE METERING
SYSTEMS BY TIMED AUTOMATA

Lukáš Krejčí

Faculty of Electrical Engineering, Czech Technical University in Prague,

Technická 2, 166 27 Praha, krejclu6@fel.cvut.cz

Abstract: The paper presents a new, innovative approach of programming of autonomous behavior of reactive metering
systems. The presented method is based on safely timed automata defined by UPPAAL team. This modeling language
is extended with event monitoring, utility functions for asynchronous operations invocation and supervising capabilities.
Additionally, appropriate metering operations querying principle for metering systems is proposed. Finally, a new
method of timed automata systems simulation is presented. This method is based on the principle of random
interleaving of automata execution order and probabilities balancing in order to ensure fairness of automata execution.
Advantages of presented methods as well as their basic principles are summarized and demonstrated on a case study of
AMM network data concentrator. On this case study, it is shown, that proposed methods allow to effortlessly define the
autonomous behavior of a data concentrator in the understandable and easily modifiable way, thus they lack major
disadvantages of the currently used approach. Copyright © Research Institute for Intelligent Computer Systems, 2017.
All rights reserved.

Keywords: AMM, smart metering, data concentrator, autonomous behavior, timed automata, UPPAAL.

1. INTRODUCTION

The Aim of this paper is to present new method
of programming of autonomous behavior of reactive
metering systems using timed automata, extending
the method proposed in [1]. Principles of proposed
methods are demonstrated on a case study of
Advanced Metering Management (AMM) network
data concentrator.

Typical AMM network is composed from two
distinct parts. Metering part, which consists of
various metering devices interconnected via wired or
wireless networks, and data centers part consisting
of various user data centers, usually connected via
the TCP/IP based network. Data concentrator unit is
a device, which serves as an interconnection point
between metering and data centers parts of AMM
network.

Data concentrator unit (DCU) purpose is to
gather data from metering part and distribute it
further to the numerous data centers in opposite part
of AMM network. Currently, following DCU types
are common:

• Transparent DCU, which functionality is
similar to network switch/router.

• Autonomous DCU, which is, in addition,
capable to perform independent metering
management operations.

Transparent DCU simply routes requests and
responses between data centers and respective
metering network. Consequently, if the transparent
DCU is used within AMM network, all metering and
data upload operations are managed by data centers.

The autonomous DCU is able to manage
metering and data upload operations by itself,
however, such a DCU is also able to operate in
transparent mode in order to enable advanced
management of metering devices. Autonomous
DCU usually embeds an internal database system
providing the metering data storage.

Currently, autonomous behavior of DCU is
typically defined by a fixed set of tasks, as in case of
[2] and [3]. Each task usually defines one specific
AMM operation (e.g. data reading or writing) tied
together with some data upload operation. User can
parameterize, which of these tasks should be
executed, as well as trigger conditions of each task
and, for some particular tasks, number of retry
attempts in case of task failure. The task trigger
condition is characteristically temporal, that means it
specifies moment of first activation and task
periodicity. Additionally, there are several more
built-in tasks within the autonomous DCU that are
hidden from user and thus cannot be parameterized.
Synchronization of metering device clock is an
example of such a task.

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Lukáš Krejčí / International Journal of Computing, 16(1) 2017, 18-26

 19

Above described approach has several
drawbacks. As there is no possibility of specifying
relations among tasks, user have to trust that a DCU
manufacturer had implemented some precautious
measures that would prevent deadlocks or other
unpredictable conditions. However, even if these
measures are provided, they can fail. In such case,
DCU can become unresponsive for several minutes.
As the hidden tasks exist within DCU, tasks
execution is not transparent enough and prediction
of exact behavior of DCU is very hard for its users.
Additionally, fixed set of tasks with limited
parameterization capabilities usually do not fit exact
requirements of final user. Finally, today DCUs
usually support only a single metering and data
center network type, as well as support single,
commonly proprietary, data center communication
protocol. Therefore, users are forced to adapt their
AMM networks to DCU behavior.

In order to avoid above stated problems in future,
new generation of autonomous DCU software
facility and suitable autonomous behavior definition
approach was developed.

2. PROJECT BACKGROUND

Since one of the main flaws of the current DCU
design approach is limited configurability and
extensibility, software facility with modular
architecture was developed (Fig. 1).

Fig. 1 – Structure of developed DCU software facility

The software facility is divided into blocks. Each

block is executed as independent process within host
operating system and performs set of specific
operations. The following block types were defined:

• Downlink blocks responsible for
communication with metering devices.

• Uplink blocks responsible for communication
with data centers.

• Database control block responsible for internal
database system.

• AMM block responsible for all AMM
operations.

• Central control block responsible for
autonomous behavior of DCU.

• Core block, which serves as message dispatcher

and supervisor of other blocks.
Each mentioned block is configurable by its own

XML based configuration file, so changes of user
requirements can be easily reflected in modifications
of these files. Furthermore, software facility
designed in such way can be easily extended with
new types of blocks developed in future, e.g. when
support of new metering devices network is added
by introducing a new type of the downlink proxy
block. Additional details about software facility, e.g.
structure of each block or used inter-process
communication mechanisms, are beyond scope of
this paper.

Since extensible and configurable DCU software
facility was designed, new suitable approach of
DCU autonomous behavior description was
necessary. Similar effort was made by authors of [4],
[5] and [6], who proposed method for programming
of autonomous embedded systems based on Petri
nets. However, disadvantage of Petri nets is
complicated incorporation of timing. Therefore,
approach that is more suitable for reactive metering
systems was found. Proposed approach utilizes
timed automata systems developed by UPPAAL
team [9].

3. TIMED AUTOMATA SYSTEMS

In the following text, the timed automata systems
developed by UPPAAL team [9] are described.
UPPAAL team extended existing theory of timed
automata, described in [7] and [8], with discrete
variables and synchronization capabilities. As
defined by UPPAAL, timed automata systems are a
powerful tool for the model-checking verification
[10] of various systems. Moreover, timed-automata
systems can be used as modeling languages for
model-based test-generation approaches (e.g. [11],
[12] and [13]). Each timed automata system is
basically a set of Finite State Machines (FSM)
driven by a system of transition labels and automata
variables/constants. These automata are always
simulated in a discrete time flow. The timed
automata systems can be described in XML files
with the standard schema defined by UPPAAL team.

As mentioned before, timed automata are driven
by a system of automata variables and transition
labels, represented as text strings, referencing
automata variables or constants. These labels have
two purposes. They decide if labeled transition can
be executed and define operations that are done
upon transition execution. The following types of
transition labels exist:

• Synchronization label, which purpose is to
specify relation among automata. This label can
reference only single variable. Synchronization
can be invoked on particular variable by usage

Lukáš Krejčí / International Journal of Computing, 16(1) 2017, 18-26

 20

of “!” operator placed after variable name. A
variable can be awaited for synchronization by
usage of “?” operator placed after variable
name.

• Guard condition label, which decides, when
labeled transition can be executed. It has form
of arithmetic expression. Labeled transition is
evaluated as executable if, and only if this
expression is evaluated as true or guard
condition label is an empty string.

• Assignment operations label specifies
operations performed upon transition
execution. Operation can be a call of a defined
function, or assignment of value to a variable.

As previously mentioned, definitions of functions
can be part of a timed automata system. Functions
can be declared as globally or locally visible and
typically perform calculations on the automata
variables or constants.

The automata variables or constants (denoted
also as variables in following text) can be declared
as globally or locally visible and are of following
types:

• Clock variable (denoted as “clock”), which
value is increased over time, is used for timing
of automata. Can be referenced within guard
condition or assignment operations labels.

• Integer variable (denoted as “integer”). Can be
referenced within guard condition or
assignment operations labels.

• Boolean variable (denoted as “boolean”). Can
be referenced within guard condition or
assignment operations labels.

• Unicast synchronization channel variable
(denoted as “chan”), which is used for
synchronization of run among automata. Can
be referenced within synchronization labels
only. When synchronization is invoked on
variable of this type, only single transition
awaiting for synchronization on same variable
is randomly executed among all awaiting
transitions.

• Broadcast synchronization channel variable
(denoted as “broadcast chan”), which has
similar purpose as unicast synchronization
channel variable. However, opposed to it, upon
synchronization invocation on particular
variable, all awaiting transitions are executed.

As primary purpose of the timed automata is to
allow the model-checking verification of the
described systems, verification tool is provided by
UPPAAL team. This tool allows finding the state
coverage, as well as is able to detect several
hazardous conditions, such as the presence of
deadlocks.

4. BEHAVIOR DESCRIPTION

The data concentrator unit autonomous behavior
can be described as a set of processes, which
produce various actions. These processes are
typically executed on regular basis, which means
they are driven by time. However, DCU is a reactive
system and thus these processes must deal with
various events. These events are usually bound to
metering part of AMM network and provide
information about numerous conditions related to
the specified metering devices. Produced actions are
mostly related to data manipulation operations, like
metering information reading or their upload to data
centers.

An example of the typically encountered event is
the metering device state update. This particular
event occurs in several situations, e.g. when
metering device is connected to the network, or
when the number of metering devices connected to
the network reaches the predefined maximum. An
example of the action commonly performed by DCU
is the meter reading. This action performs upload of
some AMM related data from metering device to the
DCU internal database.

Because the processes defining DCU autonomous
behavior are driven by time, each process can be
described as a single timed automaton, as defined by
UPPAAL team. Consequently, it’s possible to
describe autonomous behavior of DCU as a timed
automata system. As timed automata systems are
described using XML files with the defined schema,
these files can be used for autonomous behavior
definition as well. However, timed automata systems
do not suit for processing of external inputs (events)
or producing outputs (actions); therefore, developing
a way for definition of these bindings to underlying
system in timed automata sets was necessary.

4.1 EVENTS HANDLING

Since DCU have to handle incoming events as
soon as possible after they are raised, events are
comparable to the broadcast synchronization
channels of the timed automata systems. Thus,
similar approach can be used for awaiting the events.
Consequently, new timed automata variable type,
denoted as “_event”, was introduced. The event
variables can be used in similar manner as broadcast
synchronization channels. This means following:

• The event variable can be awaited for
synchronization in the same way as the
synchronization channel type variables by
usage of “?” operator in a transition
synchronization label.

• When synchronization is invoked on some
event variable, every transition with valid guard
condition awaiting synchronization on this

Lukáš Krejčí / International Journal of Computing, 16(1) 2017, 18-26

 21

particular variable has to be executed.
• Synchronization on specific event variable is

invoked, when notification about event linked
to this particular variable is received.

As the synchronization on the event variable is
invoked only by occurrence of specific event, it,
opposed to the synchronization channel variables,
cannot be invoked explicitly by usage of “!”
operator in a transition synchronization label.

As various types of events exist within DCU
system, the event variable must be configured for
monitoring specific event before its first usage in a
transition synchronization label. Hence, new built-in
synchronous function “_evt_subscribe(…)” was
introduced. This function can be referenced within
an assignment operations label of transition only.

Fig. 2 shows example of the event variable
initialization and usage.

Fig. 2 – Example of the event variable usage

4.2 ACTIONS PRODUCTION

As already mentioned, DCU produces various
actions. These actions have to be issued as some
transition is being executed. Therefore, an
assignment operation is suitable for specifying
actions. The following built-in functions have been
introduced to cover several actions produced by
DCU:

• Function “_amm_read(…)” allowing to read
specified AMM data from specified metering
device and store it in internal database.

• Function “_amm_write(…)” allowing to write
specified AMM data to specified metering
devices.

• Function “_amm_invoke(…)” allowing to
invoke specified operations within specified
metering devices.

• Function “_amm_clock_sync(…)” allowing to
synchronize internal real-time clock of
specified metering devices with internal real-
time clock of DCU.

• Function “_report_upload(…)” allowing to
query specified information from internal

database system, build report in specified
format and upload it to specified data center.

These built-in functions are, by principle,
asynchronous, so finding a method allowing
supervising their results was desirable. Suitable
method, inspired by C# 5.0 Task Parallel Library
[14] and asynchronous API [15], was found and new
timed automata variable type denoted as “_action”
was introduced. The action variables can have their
values assigned only by built-in functions listed
above. In order to allow awaiting completion of the
asynchronous actions represented by each action
variable, the following properties similar to the
event or the broadcast synchronization channels are
assigned to the action variables:

• The action variable can be awaited for
synchronization in same way as the event
variables by usage of “?” operator in transition
synchronization label.

• When synchronization is invoked on some
action variable, all transitions with valid guard
condition awaiting synchronization on this
particular variable have to be executed.

• Synchronization on specific action variable is
invoked, when the asynchronous action
represented by this particular variable is
completed.

Similarly to the event variables, synchronization
on specific action variable cannot be invoked
explicitly by usage of “!” operator in a transition
synchronization label, because an invocation is done
implicitly upon completion of the represented
asynchronous action.

As an ability of asynchronous action success or
failure detection is desirable, the action variables can
be referenced within a guard condition label. In such
case, each referenced action variable is interpreted
as a Boolean expression. This Boolean expression is
evaluated as true value, if, and only if asynchronous
action represented by this variable has been
completed successfully; otherwise it is evaluated as
false value. Similarly, the action variable can be
referenced within an assignment operations label for
reading.

None of the asynchronous actions described
above provides a return value, however, some
actions defined in a future versions could have it.
Considering that, it is possible to use action variable
on the right side of assignment operation as well.
Action variable used in this way has value of the
action represented by the given action variable. If
the referenced action has not yet completed, this
variable has zero value.

Fig. 3 shows example of the action variable
usage.

Lukáš Krejčí / International Journal of Computing, 16(1) 2017, 18-26

 22

Fig. 3 – Example of action variable usage

4.3 ADDITIONAL CONSIDERATIONS

The timed automata clock variables are powerful
tool that can be used for timing certain DCU
operations. However, in several cases, some form of
absolute time reference is required, e.g. while
performing certain action every 10th minute of each
6th hour. Hence, the following synchronous built-in
functions were introduced:

• Function “_rtc_get_seconds(…)” returning
number of current second in current minute.

• Function “_rtc_get_minutes(…)” returning
number of current minute in current hour.

• Function “_rtc_get_hours(…)” returning
number of current hour in current day.

• Function “_rtc_get_wday(…)” returning
number of current day in current week.

• Function “_rtc_get_mday(…)” returning
number of current day in current month.

• Function “_rtc_get_month(…)” returning
number of current month in current year.

• Function “_rtc_get_year(…)” returning number
of current year.

These functions can be referenced within a guard
condition and an assignment operations labels.

Since the unicast synchronization channel
variables are stochastic by nature, they are not
supported in order to prevent unpredictable
conditions in the timed automata runtime. The
broadcast synchronization channel variables provide
similar functionality and are, opposed to the unicast
channel variables, deterministic.

Finally, only the normal locations (i.e. states of a
timed automaton) are supported, because the urgent
and committed locations, defined by UPPAAL team,
lacks the usage in case of the DCU system.

4.4 VERIFICATION

If autonomous behavior of DCU is described in
presented form, it can be verified using UPPAAL
verification tool in order to find state coverage and
detect possible deadlocks. Due to the newly
introduced variable types and built-in functions

some modifications are necessary before the
verification. These adjustments can be done by some
sort of preprocessing tool. They should replace the
introduced event and action variables by the
standard variables and define or unroll the built-in
functions.

Each event variable can be replaced by a
broadcast synchronization channel variable. In order
to simulate the events raising during the verification,
a new automata should be added to the system (one
automaton for each event variable). These additional
automata would randomly invoke synchronization
on the broadcast synchronization channel variables
that replaced the event variables.

The action variables can be replaced in similar
way; however, a single action variable should be
replaced by one broadcast synchronization channel
variable, one Boolean variable and two integer
variables in order to trace action information (type,
completion, success and return value).

4.5 EXAMPLES

Fig. 4 depicts example of two particular automata
(the build-in functions parameters are omitted).

Fig. 4 – AMM application layer testing automata

The automaton on the left side of Fig. 4 simply
increases counter when a metering device status
update event is raised. Automaton on the right side
of Fig. 4 performs AMM application layer test on
devices, which have recently been connected to the
network and waits for completion of this test.

Fig. 5 depicts another example of used automaton
(the built-in functions parameters are omitted).

Fig. 5 – Clock synchronization automaton

Lukáš Krejčí / International Journal of Computing, 16(1) 2017, 18-26

 23

The automaton in Fig. 5 reads current time from
real-time clocks of all active metering devices every
hour. After the reading is done, automaton performs
clock synchronization on all devices without
synchronized real-time clock suitable autonomous
behavior definition approach was developed.

5. METERING OPERATIONS QUERING

In order to enable usage of action-production
built-in functions, it was necessary to propose a
query system allowing to specify which data on
which metering devices should be affected by called
function. Consequently, an appropriate approach
was developed. The proposed principle is based on
usage of the Structured Query Language (SQL;
originally proposed in [16]; standardized in [17];
described in [18]). The AMM network and metering
data within each metering device is represented as
SQL data tables with fixed structure and therefore
SQL language can be used for specifying parameters
of presented metering functions.

 The metering network itself is represented as a
virtual SQL table with following columns:

• Column “gid” is an integer representing unique
metering device global identifier within AMM
network. This ID is assigned to the metering
devices during their first connection.

• Column “address” is a string representing
hardware address of a metering device.

• Column “clock_diff” is an integer representing
a difference between internal clock of metering
device and the DCU.

• Column “status” is an integer representing an
encoded state of metering device. This encoded
value covers all of possible states of metering
device (e.g. if is the device communicating
with DCU on link and application layers, if the
device’s internal clock is synchronized with the
DCU, etc.).

• Column “link_reliability” is a floating-point
value representing reliability of communication
with the device on the link layer.

• Column “amm_reliability” is a floating-point
value representing reliability of communication
with the device on the application layer (i.e.
responsibility of AMM operations).

Proposed table structure enables effortless
specification of target metering device using various
parameters. For example, clock synchronization can
be triggered only on such metering devices, which
clock difference and link layer communication
reliability is in specified range (i.e. query
“clock_diff > 60 AND link_reliability > 0.8”).

The metering data themselves are represented as
a virtual SQL table, where individual columns
correspond to all possible metering information, row

identifier and measurement time stamp. Each row of
table corresponds to exactly one row in metering
device's internal recorder. This structure allows to
exactly specify, which values within specified
timespan should be manipulated. The configuration
data are represented in equivalent manner.

Additionally, in order to allow repetition of failed
metering operations, an additional virtual SQL table
type has been introduced. Rows of this virtual table
corresponds to individual failed metering operations,
while columns identify operation type, timestamp
and parameters. Using multiple virtual tables of this
type (each individual virtual table is bound to one
specific metering device), any attempts to re-execute
any failed metering operation can be easily
described within the program XML file.

Every call to action production functions
(described in section 4.2) utilizes the metering
devices, metering data and operation retry queries as
parameters. Metering devices query parameter is
always required. Second parameter can contain
metering data query. In cases when second
parameter is not used, third parameter must contain
operation retry query. Otherwise, third parameter
should be left empty. Last parameter of each action
production function call is always the timeout of
corresponding asynchronous metering operation.

6. AUTOMATA RUNTIME SIMULATION
ENGINE

Finally, some method of timed automata systems
simulation was necessary to develop. The simplest
way would be to use randomizing of transition
execution, i.e. selecting random transition in each
simulation cycle. However, this approach has two
major drawbacks that could cause severe problems,
especially in case when malfunctioning Pseudo-
Random Numbers Generator (PRNG) is used. If
executed transition is selected globally among all
possible transitions, then transition-rich automata are
preferred. Similarly, if executed transition is selected
from randomly selected automaton, then probability
of executing transitions of particular automaton
decreases with increasing number of automata.
Therefore, as DCU can be a complex system
described by several timed automata and as even
simplest automata are vital to proper DCU
functionality (e.g. metering device status update
events counting automaton), this approach is
inacceptable in the DCU case. Consequently,
an appropriate approach of timed automata
simulation was developed.

The developed automata simulation approach,
called Automata Runtime Simulation Engine
(ARSE), attempts to equalize probabilities of
transitions and automata execution. During each

Lukáš Krejčí / International Journal of Computing, 16(1) 2017, 18-26

 24

simulation cycle, ARSE attempts to execute
transitions of as many automata as possible, each of
them giving the exact probability of execution.

As already mentioned, ARSE attempts to
interleave automata in each simulation cycle. In
order to achieve this, one transition is randomly
selected among all possible transitions. Selected
transition is then randomly executed or passed,
which is necessary to prevent divergence of state
coverages of ARSE and mentioned simple random
approach, and particular automaton is marked as
simulated. This process is repeated during cycle;
however transitions of automata marked
as simulated are ignored. When no possible
transition is found, the simulation cycle is
terminated and all automata are marked as not
simulated. Because it is important to properly react
to raised events and completion of asynchronous
actions in the DCU’s use case, ARSE prioritizes
transitions awaiting synchronization on event
or action variables over other transitions upon
transition selection. Also, the prioritized transitions
are always executed.

During particular simulation cycle, transitions are
randomly selected using weight	��,� (weight of
transition � in cycle	�). After selection is done,
weight of selected transition is decreased using
arbitrary non-increasing function	����(��,�, �), down
to the minimal transition weight, denoted as	����.
Afterwards, weight of each non-selected possible
transition is increased using arbitrary non-decreasing
function	����(��,�, �), up to the maximal transition
weight, denoted as	����. These weight-balancing
operations ensure, that despite usage
of malfunctioning PRNG, subsequently ignored
possible transitions are more likely to be selected
over time.

When deciding if selected transition is executed
or passed, the particular automaton’s probability
of execution, denoted as	��,� (execution probability
of automaton	� in cycle	�) is used as a reference.
In the case that the transition is executed, this
reference probability is decreased using arbitrary
non-increasing function	����(��,�,�), down to the
minimal execution probability, denoted as	����. In
the opposite case, the reference probability is
increased using arbitrary non-decreasing
function	����(��,�,�), up to the maximal execution
probability, denoted as	���� . Similarly to transition
weight-balancing operations, these balancing
operations ensure, that although malfunctioning
PRNG is used, subsequently passed automata are
more probable to be executed over time.

Pseudo-code of ARSE’s single simulation cycle
is depicted on Fig. 6.

Fig. 6 – Pseudo-code of ARSE simulation cycle

7. CONCLUSIONS, RESULTS AND

FUTURE WORK

In this paper, the novel approach for a DCU
autonomous behavior programming is presented.
The described approach utilizes timed automata
systems as a suitable way of autonomous behavior
description and extends timed automata systems
with support of event detection and action
production / supervising capabilities. In addition,
appropriate method of timed automata simulation
runtime (ARSE) is presented. Moreover, as the only
DCU-specific parts of presented case study are event
types and asynchronous actions definitions, same
principles can be reused for programming of
autonomous behavior of arbitrary reactive metering
device (i.e. device with autonomous behavior
describable as set of time-driven processes reacting
to raised events and producing specific actions). As
the presented methods allow to define autonomous
behavior of DCU in the understandable and easily
alterable way, we believe that they improve the
usability of DCU devices within AMM networks.

In recent time, a limited version of the presented
approach was implemented in several real DCU
devices, which were beta-tested as the prototypes.
Implemented version of ARSE lacks support of the
absolute time referencing functions, so automata had
to rely on relative timing provided by the clock

Lukáš Krejčí / International Journal of Computing, 16(1) 2017, 18-26

 25

variables. Additionally, globally visible implicitly
existing event variables were used (one for each
supported event type) and thus the declaration of
event variables is not supported. Similarly, locally
visible implicitly existing action variables are used
(one variable in each automaton for each supported
asynchronous action type) and therefore each
declaration of action variable is ignored. Finally, the
mentioned weight-balancing and probability-
balancing functions are defined as constant
functions; however, that is not a big issue since
reliable PRNG e.g. based on Mersenne-Twister [19]
or RANLUX [20] algorithms can be used and thus a
sufficient randomness of the selection of transitions
and transition execution/pass decision was achieved.

Described beta test proved that proposed concept
of programming of autonomous behavior of
metering systems is applicable on existing AMM
networks. Moreover, the beta-test has shown that
presented principles remove disadvantage of usually
cumbersome specification of custom autonomous
behavior that currently used DCUs suffer from.

As the part of future research, the most
appropriate forms of the mentioned weight- real-
time clock suitable autonomous behavior definition
approach was developed.

8. ACKNOWLEDGEMENT

Development described in this paper was
supported by the Technology Agency of Czech
Republic under grant no. TA03011091.

9. REFERENCES

[1] L. Krejci, “Programming autonomous behavior
of AMM network data concentrator by timed
automata,” in Proceedings of the IEEE 8th
International Conference on Intelligent Data
Acquisition and Advanced Computing Systems:
Technology and Application (IDAACS’2015),
Warsaw, Poland, September 24-26, 2015,
Vol. 1, pp. 214-219.

[2] Ormazabal, Smart Metering, [product website]
[Online]. Available http://www.ormazabal.
com/en/your-business/products/advanced-mete
ring?tab=13757&refer=894.

[3] ZIV, ZIV Metering Solutions, [product
website]. [Online]. Available: http://www.mete
ringsolutions.ziv.es/ziv/systems.html#AMR?ta
b=13757&refer=894.

[4] T. Richta, V. Janoušek, “Petri Nets-based
development of dynamically reconfigurable
embedded systems,” in PNSE'13 – CEUR
Workshop Proceedings, Vol. 2013, Issue 989,
pp. 203-217, ISSN 1613-0073, Hamburk, 2013.

[5] T. Richta, V. Janoušek, “Code generation for
Petri Nets-specified reconfigurable distributed

control systems,” in Proceedings of the 15th
International Conference on Mechatronics –
Mechatronika 2012, Prague, 2012, pp. 263-
269, ISBN 978-80-01-04985-3.

[6] T. Richta, V. Janoušek, “Operating system for
Petri Nets-specified reconfigurable embedded
systems,” in Proceedings of the Computer
Aided Systems Theory – EUROCAST 2013,
Lecture Notes in Computer Science, 8111,
Berlin Heidelberg: Springer Verlag, pp. 444-
451.

[7] R. Alur, D.L. Dill, “A theory of timed
automata,” Theoretical Computer Science,
Vol. 126, Issue 2, pp. 183-235, 1994.

[8] J. Bengtsson, J. Bengtsson, W. Yi, W. Yi,
“Timed automata: Semantics, algorithms and
tools,” Lecture Notes in Computer Science,
Vol. 3098, pp. 87-124, 2004.

[9] G. Behrmann, A. David, K. G. Larsen, “A
Tutorial on Uppaal,” In Proceedings of the 4th
International School on Formal Methods for
the Design of Computer, Communication, and
Software Systems (SFM-RT'04).

[10] T. A. Henzinger, X. Nicollin, J. Sifakis and
S. Yovine, “Symbolic model checking for real-
time systems,” Information and Computation,
Vol. 111, No. 2, pp. 193-244, doi:
10.1006/inco.1994.1045, 1994.

[11] A. Hessel, K. G. Larsen, B. Nielsen,
P. Pettersson, A. Skou, “Time-optimal real-
time test case generation using UPPAAL,” in
Proceedings of the 3rd International
Workshop on Formal Approaches to Testing of
Software 2003 (FATES'03), 2003.

[12] J. Blom, A. Hessel, B. Jonsson, P. Pettersson,
“Specifying and generating test cases using
observer automata,” in Proceedings of the 4th
International Workshop on Formal Approaches
to Testing of Software 2004 (FATES'04), 2004.

[13] L. Krejčí, J. Novák, “Framework and
automated prioritization procedure for model-
based testing of automotive distributed
systems,” in Proceedings of the 17th Annual
International Workshop on Databases, Texts,
Specifications and Objects (DATESO 2017),
2017.

[14] Microsoft Corporation, Task Parallel Library,
[Online]. Available: http://msdn.microsoft.com/
en-us/library/dd460717(v=vs.110).aspx.

[15] Microsoft Corporation, Asynchronous
Programming with Async and Await (C# and
Visual Basic), [Online]. Available:
http://msdn.microsoft.com/en-us/library/hh191
443.aspx.

[16] D. D. Chamberlin, R. F. Boyce, “SEQUEL: A
Structured English Query Language,” in
Proceedings of the ACM SIGFIDET Workshop

Lukáš Krejčí / International Journal of Computing, 16(1) 2017, 18-26

 26

on Data Description, Access and Control.
Association for Computing Machinery, 1974,
pp. 249-264.

[17] International Organization for Standardization
(ISO), “ISO/IEC 9075-1:2008: Information
technology – Database languages – SQL – Part
1: Framework (SQL/Framework),” 1987.

[18] M. Chapple, “SQL Fundamentals,” Databases,
About.com.

[19] M. Matsumoto and T. Nishimura, “Mersenne
Twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator,”
ACM Transaction on Modeling and Computer
Simulation, Vol. 8, No. 1, pp. 3-30, January
1998.

[20] M. Luscher, “A Portable high quality random
number generator for lattice field theory
simulations,” Comput. Phys. Commun, No. 79,
1994.

Lukáš Krejčí was born in Prague
in 1990. He received his
bachelor's and master's degree
from the CTU in Prague, FEE in
2012 and 2014 respectively.
Since February 2015, he has
been studying the branch of
doctoral studies called Measu-
rement and Instrumentation at

the Department of Measurement on CTU in Prague,
FEE.

