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Abstract: The paper presents a new, innovative approach of programming of autonomous behavior of reactive metering 
systems. The presented method is based on safely timed automata defined by UPPAAL team. This modeling language 
is extended with event monitoring, utility functions for asynchronous operations invocation and supervising capabilities. 
Additionally, appropriate metering operations querying principle for metering systems is proposed. Finally, a new 
method of timed automata systems simulation is presented. This method is based on the principle of random 
interleaving of automata execution order and probabilities balancing in order to ensure fairness of automata execution. 
Advantages of presented methods as well as their basic principles are summarized and demonstrated on a case study of 
AMM network data concentrator. On this case study, it is shown, that proposed methods allow to effortlessly define the 
autonomous behavior of a data concentrator in the understandable and easily modifiable way, thus they lack major 
disadvantages of the currently used approach. Copyright © Research Institute for Intelligent Computer Systems, 2017. 
All rights reserved. 
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1. INTRODUCTION 

The Aim of this paper is to present new method 
of programming of autonomous behavior of reactive 
metering systems using timed automata, extending 
the method proposed in [1]. Principles of proposed 
methods are demonstrated on a case study of 
Advanced Metering Management (AMM) network 
data concentrator. 

Typical AMM network is composed from two 
distinct parts. Metering part, which consists of 
various metering devices interconnected via wired or 
wireless networks, and data centers part consisting 
of various user data centers, usually connected via 
the TCP/IP based network. Data concentrator unit is 
a device, which serves as an interconnection point 
between metering and data centers parts of AMM 
network. 

Data concentrator unit (DCU) purpose is to 
gather data from metering part and distribute it 
further to the numerous data centers in opposite part 
of AMM network. Currently, following DCU types 
are common: 

• Transparent DCU, which functionality is 
similar to network switch/router. 

• Autonomous DCU, which is, in addition, 
capable to perform independent metering 
management operations. 

Transparent DCU simply routes requests and 
responses between data centers and respective 
metering network. Consequently, if the transparent 
DCU is used within AMM network, all metering and 
data upload operations are managed by data centers. 

The autonomous DCU is able to manage 
metering and data upload operations by itself, 
however, such a DCU is also able to operate in 
transparent mode in order to enable advanced 
management of metering devices. Autonomous 
DCU usually embeds an internal database system 
providing the metering data storage. 

Currently, autonomous behavior of DCU is 
typically defined by a fixed set of tasks, as in case of 
[2] and [3]. Each task usually defines one specific 
AMM operation (e.g. data reading or writing) tied 
together with some data upload operation. User can 
parameterize, which of these tasks should be 
executed, as well as trigger conditions of each task 
and, for some particular tasks, number of retry 
attempts in case of task failure. The task trigger 
condition is characteristically temporal, that means it 
specifies moment of first activation and task 
periodicity. Additionally, there are several more 
built-in tasks within the autonomous DCU that are 
hidden from user and thus cannot be parameterized. 
Synchronization of metering device clock is an 
example of such a task. 
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Above described approach has several 
drawbacks. As there is no possibility of specifying 
relations among tasks, user have to trust that a DCU 
manufacturer had implemented some precautious 
measures that would prevent deadlocks or other 
unpredictable conditions. However, even if these 
measures are provided, they can fail. In such case, 
DCU can become unresponsive for several minutes. 
As the hidden tasks exist within DCU, tasks 
execution is not transparent enough and prediction 
of exact behavior of DCU is very hard for its users. 
Additionally, fixed set of tasks with limited 
parameterization capabilities usually do not fit exact 
requirements of final user. Finally, today DCUs 
usually support only a single metering and data 
center network type, as well as support single, 
commonly proprietary, data center communication 
protocol. Therefore, users are forced to adapt their 
AMM networks to DCU behavior. 

In order to avoid above stated problems in future, 
new generation of autonomous DCU software 
facility and suitable autonomous behavior definition 
approach was developed. 

 
2. PROJECT BACKGROUND 

Since one of the main flaws of the current DCU 
design approach is limited configurability and 
extensibility, software facility with modular 
architecture was developed (Fig. 1). 

 

 

Fig. 1 – Structure of developed DCU software facility 

 
The software facility is divided into blocks. Each 

block is executed as independent process within host 
operating system and performs set of specific 
operations. The following block types were defined: 

• Downlink blocks responsible for 
communication with metering devices. 

• Uplink blocks responsible for communication 
with data centers. 

• Database control block responsible for internal 
database system. 

• AMM block responsible for all AMM 
operations. 

• Central control block responsible for 
autonomous behavior of DCU. 

• Core block, which serves as message dispatcher 

and supervisor of other blocks. 
Each mentioned block is configurable by its own 

XML based configuration file, so changes of user 
requirements can be easily reflected in modifications 
of these files. Furthermore, software facility 
designed in such way can be easily extended with 
new types of blocks developed in future, e.g. when 
support of new metering devices network is added 
by introducing a new type of the downlink proxy 
block. Additional details about software facility, e.g. 
structure of each block or used inter-process 
communication mechanisms, are beyond scope of 
this paper. 

Since extensible and configurable DCU software 
facility was designed, new suitable approach of 
DCU autonomous behavior description was 
necessary. Similar effort was made by authors of [4], 
[5] and [6], who proposed method for programming 
of autonomous embedded systems based on Petri 
nets. However, disadvantage of Petri nets is 
complicated incorporation of timing. Therefore, 
approach that is more suitable for reactive metering 
systems was found. Proposed approach utilizes 
timed automata systems developed by UPPAAL 
team [9]. 

 
3. TIMED AUTOMATA SYSTEMS 

In the following text, the timed automata systems 
developed by UPPAAL team [9] are described. 
UPPAAL team extended existing theory of timed 
automata, described in [7] and [8], with discrete 
variables and synchronization capabilities. As 
defined by UPPAAL, timed automata systems are a 
powerful tool for the model-checking verification 
[10] of various systems. Moreover, timed-automata 
systems can be used as modeling languages for 
model-based test-generation approaches (e.g. [11], 
[12] and [13]). Each timed automata system is 
basically a set of Finite State Machines (FSM) 
driven by a system of transition labels and automata 
variables/constants. These automata are always 
simulated in a discrete time flow. The timed 
automata systems can be described in XML files 
with the standard schema defined by UPPAAL team. 

As mentioned before, timed automata are driven 
by a system of automata variables and transition 
labels, represented as text strings, referencing 
automata variables or constants. These labels have 
two purposes. They decide if labeled transition can 
be executed and define operations that are done 
upon transition execution. The following types of 
transition labels exist: 

• Synchronization label, which purpose is to 
specify relation among automata. This label can 
reference only single variable. Synchronization 
can be invoked on particular variable by usage 
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of “!” operator placed after variable name. A 
variable can be awaited for synchronization by 
usage of “?” operator placed after variable 
name. 

• Guard condition label, which decides, when 
labeled transition can be executed. It has form 
of arithmetic expression. Labeled transition is 
evaluated as executable if, and only if this 
expression is evaluated as true or guard 
condition label is an empty string. 

• Assignment operations label specifies 
operations performed upon transition 
execution. Operation can be a call of a defined 
function, or assignment of value to a variable. 

As previously mentioned, definitions of functions 
can be part of a timed automata system. Functions 
can be declared as globally or locally visible and 
typically perform calculations on the automata 
variables or constants. 

The automata variables or constants (denoted 
also as variables in following text) can be declared 
as globally or locally visible and are of following 
types: 

• Clock variable (denoted as “clock”), which 
value is increased over time, is used for timing 
of automata. Can be referenced within guard 
condition or assignment operations labels. 

• Integer variable (denoted as “integer”). Can be 
referenced within guard condition or 
assignment operations labels. 

• Boolean variable (denoted as “boolean”). Can 
be referenced within guard condition or 
assignment operations labels. 

• Unicast synchronization channel variable 
(denoted as “chan”), which is used for 
synchronization of run among automata. Can 
be referenced within synchronization labels 
only. When synchronization is invoked on 
variable of this type, only single transition 
awaiting for synchronization on same variable 
is randomly executed among all awaiting 
transitions. 

• Broadcast synchronization channel variable 
(denoted as “broadcast chan”), which has 
similar purpose as unicast synchronization 
channel variable. However, opposed to it, upon 
synchronization invocation on particular 
variable, all awaiting transitions are executed. 

As primary purpose of the timed automata is to 
allow the model-checking verification of the 
described systems, verification tool is provided by 
UPPAAL team. This tool allows finding the state 
coverage, as well as is able to detect several 
hazardous conditions, such as the presence of 
deadlocks. 

 

4. BEHAVIOR DESCRIPTION 

The data concentrator unit autonomous behavior 
can be described as a set of processes, which 
produce various actions. These processes are 
typically executed on regular basis, which means 
they are driven by time. However, DCU is a reactive 
system and thus these processes must deal with 
various events. These events are usually bound to 
metering part of AMM network and provide 
information about numerous conditions related to 
the specified metering devices. Produced actions are 
mostly related to data manipulation operations, like 
metering information reading or their upload to data 
centers. 

An example of the typically encountered event is 
the metering device state update. This particular 
event occurs in several situations, e.g. when 
metering device is connected to the network, or 
when the number of metering devices connected to 
the network reaches the predefined maximum. An 
example of the action commonly performed by DCU 
is the meter reading. This action performs upload of 
some AMM related data from metering device to the 
DCU internal database. 

Because the processes defining DCU autonomous 
behavior are driven by time, each process can be 
described as a single timed automaton, as defined by 
UPPAAL team. Consequently, it’s possible to 
describe autonomous behavior of DCU as a timed 
automata system. As timed automata systems are 
described using XML files with the defined schema, 
these files can be used for autonomous behavior 
definition as well. However, timed automata systems 
do not suit for processing of external inputs (events) 
or producing outputs (actions); therefore, developing 
a way for definition of these bindings to underlying 
system in timed automata sets was necessary. 

 

4.1 EVENTS HANDLING 

Since DCU have to handle incoming events as 
soon as possible after they are raised, events are 
comparable to the broadcast synchronization 
channels of the timed automata systems. Thus, 
similar approach can be used for awaiting the events. 
Consequently, new timed automata variable type, 
denoted as “_event”, was introduced. The event 
variables can be used in similar manner as broadcast 
synchronization channels. This means following: 

• The event variable can be awaited for 
synchronization in the same way as the 
synchronization channel type variables by 
usage of “?” operator in a transition 
synchronization label. 

• When synchronization is invoked on some 
event variable, every transition with valid guard 
condition awaiting synchronization on this 
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particular variable has to be executed. 
• Synchronization on specific event variable is 

invoked, when notification about event linked 
to this particular variable is received. 

As the synchronization on the event variable is 
invoked only by occurrence of specific event, it, 
opposed to the synchronization channel variables, 
cannot be invoked explicitly by usage of “!” 
operator in a transition synchronization label. 

As various types of events exist within DCU 
system, the event variable must be configured for 
monitoring specific event before its first usage in a 
transition synchronization label. Hence, new built-in 
synchronous function “_evt_subscribe(…)” was 
introduced. This function can be referenced within 
an assignment operations label of transition only. 

Fig. 2 shows example of the event variable 
initialization and usage. 

 

 

Fig. 2 – Example of the event variable usage 

 
4.2 ACTIONS PRODUCTION 

As already mentioned, DCU produces various 
actions. These actions have to be issued as some 
transition is being executed. Therefore, an 
assignment operation is suitable for specifying 
actions. The following built-in functions have been 
introduced to cover several actions produced by 
DCU: 

• Function “_amm_read(…)” allowing to read 
specified AMM data from specified metering 
device and store it in internal database. 

• Function “_amm_write(…)” allowing to write 
specified AMM data to specified metering 
devices. 

• Function “_amm_invoke(…)” allowing to 
invoke specified operations within specified 
metering devices. 

• Function “_amm_clock_sync(…)” allowing to 
synchronize internal real-time clock of 
specified metering devices with internal real-
time clock of DCU. 

• Function “_report_upload(…)” allowing to 
query specified information from internal  
 
 

database system, build report in specified 
format and upload it to specified data center. 

These built-in functions are, by principle, 
asynchronous, so finding a method allowing 
supervising their results was desirable. Suitable 
method, inspired by C# 5.0 Task Parallel Library 
[14] and asynchronous API [15], was found and new 
timed automata variable type denoted as “_action” 
was introduced. The action variables can have their 
values assigned only by built-in functions listed 
above. In order to allow awaiting completion of the 
asynchronous actions represented by each action 
variable, the following properties similar to the 
event or the broadcast synchronization channels are 
assigned to the action variables: 

• The action variable can be awaited for 
synchronization in same way as the event 
variables by usage of “?” operator in transition 
synchronization label. 

• When synchronization is invoked on some 
action variable, all transitions with valid guard 
condition awaiting synchronization on this 
particular variable have to be executed. 

• Synchronization on specific action variable is 
invoked, when the asynchronous action 
represented by this particular variable is 
completed. 

Similarly to the event variables, synchronization 
on specific action variable cannot be invoked 
explicitly by usage of “!” operator in a transition 
synchronization label, because an invocation is done 
implicitly upon completion of the represented 
asynchronous action. 

As an ability of asynchronous action success or 
failure detection is desirable, the action variables can 
be referenced within a guard condition label. In such 
case, each referenced action variable is interpreted 
as a Boolean expression. This Boolean expression is 
evaluated as true value, if, and only if asynchronous 
action represented by this variable has been 
completed successfully; otherwise it is evaluated as 
false value. Similarly, the action variable can be 
referenced within an assignment operations label for 
reading. 

None of the asynchronous actions described 
above provides a return value, however, some 
actions defined in a future versions could have it. 
Considering that, it is possible to use action variable 
on the right side of assignment operation as well. 
Action variable used in this way has value of the 
action represented by the given action variable. If 
the referenced action has not yet completed, this 
variable has zero value. 

Fig. 3 shows example of the action variable 
usage. 
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Fig. 3 – Example of action variable usage 

 

4.3 ADDITIONAL CONSIDERATIONS 

The timed automata clock variables are powerful 
tool that can be used for timing certain DCU 
operations. However, in several cases, some form of 
absolute time reference is required, e.g. while 
performing certain action every 10th minute of each 
6th hour. Hence, the following synchronous built-in 
functions were introduced: 

• Function “_rtc_get_seconds(…)” returning 
number of current second in current minute. 

• Function “_rtc_get_minutes(…)” returning 
number of current minute in current hour. 

• Function “_rtc_get_hours(…)” returning 
number of current hour in current day. 

• Function “_rtc_get_wday(…)” returning 
number of current day in current week. 

• Function “_rtc_get_mday(…)” returning 
number of current day in current month. 

• Function “_rtc_get_month(…)” returning 
number of current month in current year. 

• Function “_rtc_get_year(…)” returning number 
of current year. 

These functions can be referenced within a guard 
condition and an assignment operations labels. 

Since the unicast synchronization channel 
variables are stochastic by nature, they are not 
supported in order to prevent unpredictable 
conditions in the timed automata runtime. The 
broadcast synchronization channel variables provide 
similar functionality and are, opposed to the unicast 
channel variables, deterministic. 

Finally, only the normal locations (i.e. states of a 
timed automaton) are supported, because the urgent 
and committed locations, defined by UPPAAL team, 
lacks the usage in case of the DCU system. 

 

4.4 VERIFICATION 

If autonomous behavior of DCU is described in 
presented form, it can be verified using UPPAAL 
verification tool in order to find state coverage and 
detect possible deadlocks. Due to the newly 
introduced variable types and built-in functions  
 

some modifications are necessary before the 
verification. These adjustments can be done by some 
sort of preprocessing tool. They should replace the 
introduced event and action variables by the 
standard variables and define or unroll the built-in 
functions.  

Each event variable can be replaced by a 
broadcast synchronization channel variable. In order 
to simulate the events raising during the verification, 
a new automata should be added to the system (one 
automaton for each event variable). These additional 
automata would randomly invoke synchronization 
on the broadcast synchronization channel variables 
that replaced the event variables.  

The action variables can be replaced in similar 
way; however, a single action variable should be 
replaced by one broadcast synchronization channel 
variable, one Boolean variable and two integer 
variables in order to trace action information (type, 
completion, success and return value). 

 

4.5 EXAMPLES 

Fig. 4 depicts example of two particular automata 
(the build-in functions parameters are omitted). 
 

 

Fig. 4 – AMM application layer testing automata 

 

The automaton on the left side of Fig. 4 simply 
increases counter when a metering device status 
update event is raised. Automaton on the right side 
of Fig. 4 performs AMM application layer test on 
devices, which have recently been connected to the 
network and waits for completion of this test. 

Fig. 5 depicts another example of used automaton 
(the built-in functions parameters are omitted). 
 

 

Fig. 5 – Clock synchronization automaton 
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The automaton in Fig. 5 reads current time from 
real-time clocks of all active metering devices every 
hour. After the reading is done, automaton performs 
clock synchronization on all devices without 
synchronized real-time clock suitable autonomous 
behavior definition approach was developed. 

 
5. METERING OPERATIONS QUERING 

In order to enable usage of action-production 
built-in functions, it was necessary to propose a 
query system allowing to specify which data on 
which metering devices should be affected by called 
function. Consequently, an appropriate approach 
was developed. The proposed principle is based on 
usage of the Structured Query Language (SQL; 
originally proposed in [16]; standardized in [17]; 
described in [18]). The AMM network and metering 
data within each metering device is represented as 
SQL data tables with fixed structure and therefore 
SQL language can be used for specifying parameters 
of presented metering functions. 

 The metering network itself is represented as a 
virtual SQL table with following columns: 

• Column “gid” is an integer representing unique 
metering device global identifier within AMM 
network. This ID is assigned to the metering 
devices during their first connection.  

• Column “address” is a string representing 
hardware address of a metering device. 

• Column “clock_diff” is an integer representing 
a difference between internal clock of metering 
device and the DCU. 

• Column “status” is an integer representing an 
encoded state of metering device. This encoded 
value covers all of possible states of metering 
device (e.g. if is the device communicating 
with DCU on link and application layers, if the 
device’s internal clock is synchronized with the 
DCU, etc.). 

• Column “link_reliability” is a floating-point 
value representing reliability of communication 
with the device on the link layer. 

• Column “amm_reliability” is a floating-point 
value representing reliability of communication 
with the device on the application layer (i.e. 
responsibility of AMM operations). 

Proposed table structure enables effortless 
specification of target metering device using various 
parameters. For example, clock synchronization can 
be triggered only on such metering devices, which 
clock difference and link layer communication 
reliability is in specified range (i.e. query 
“clock_diff > 60 AND link_reliability > 0.8”). 

The metering data themselves are represented as 
a virtual SQL table, where individual columns 
correspond to all possible metering information, row 

identifier and measurement time stamp. Each row of 
table corresponds to exactly one row in metering 
device's internal recorder. This structure allows to 
exactly specify, which values within specified 
timespan should be manipulated. The configuration 
data are represented in equivalent manner. 

Additionally, in order to allow repetition of failed 
metering operations, an additional virtual SQL table 
type has been introduced. Rows of this virtual table 
corresponds to individual failed metering operations, 
while columns identify operation type, timestamp 
and parameters. Using multiple virtual tables of this 
type (each individual virtual table is bound to one 
specific metering device), any attempts to re-execute 
any failed metering operation can be easily 
described within the program XML file. 

Every call to action production functions 
(described in section 4.2) utilizes the metering 
devices, metering data and operation retry queries as 
parameters. Metering devices query parameter is 
always required. Second parameter can contain 
metering data query. In cases when second 
parameter is not used, third parameter must contain 
operation retry query. Otherwise, third parameter 
should be left empty. Last parameter of each action 
production function call is always the timeout of 
corresponding asynchronous metering operation. 

 

6. AUTOMATA RUNTIME SIMULATION 
ENGINE 

Finally, some method of timed automata systems 
simulation was necessary to develop. The simplest 
way would be to use randomizing of transition 
execution, i.e. selecting random transition in each 
simulation cycle. However, this approach has two 
major drawbacks that could cause severe problems, 
especially in case when malfunctioning Pseudo-
Random Numbers Generator (PRNG) is used. If 
executed transition is selected globally among all 
possible transitions, then transition-rich automata are 
preferred. Similarly, if executed transition is selected 
from randomly selected automaton, then probability 
of executing transitions of particular automaton 
decreases with increasing number of automata. 
Therefore, as DCU can be a complex system 
described by several timed automata and as even 
simplest automata are vital to proper DCU 
functionality (e.g. metering device status update 
events counting automaton), this approach is 
inacceptable in the DCU case. Consequently, 
an appropriate approach of timed automata 
simulation was developed. 

The developed automata simulation approach, 
called Automata Runtime Simulation Engine 
(ARSE), attempts to equalize probabilities of 
transitions and automata execution. During each 
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simulation cycle, ARSE attempts to execute 
transitions of as many automata as possible, each of 
them giving the exact probability of execution. 

As already mentioned, ARSE attempts to 
interleave automata in each simulation cycle. In 
order to achieve this, one transition is randomly 
selected among all possible transitions. Selected 
transition is then randomly executed or passed, 
which is necessary to prevent divergence of state 
coverages of ARSE and mentioned simple random 
approach, and particular automaton is marked as 
simulated. This process is repeated during cycle; 
however transitions of automata marked 
as simulated are ignored. When no possible 
transition is found, the simulation cycle is 
terminated and all automata are marked as not 
simulated. Because it is important to properly react 
to raised events and completion of asynchronous 
actions in the DCU’s use case, ARSE prioritizes 
transitions awaiting synchronization on event 
or action variables over other transitions upon 
transition selection. Also, the prioritized transitions 
are always executed. 

During particular simulation cycle, transitions are 
randomly selected using weight	��,� (weight of 
transition � in cycle	�). After selection is done, 
weight of selected transition is decreased using 
arbitrary non-increasing function	����(��,�, �), down 
to the minimal transition weight, denoted as	����. 
Afterwards, weight of each non-selected possible 
transition is increased using arbitrary non-decreasing 
function	����(��,�, �), up to the maximal transition 
weight, denoted as	����. These weight-balancing 
operations ensure, that despite usage 
of malfunctioning PRNG, subsequently ignored 
possible transitions are more likely to be selected 
over time.  

When deciding if selected transition is executed 
or passed, the particular automaton’s probability 
of execution, denoted as	��,� (execution probability 
of automaton	� in cycle	�) is used as a reference. 
In the case that the transition is executed, this 
reference probability is decreased using arbitrary 
non-increasing function	����(��,�,�), down to the 
minimal execution probability, denoted as	����. In 
the opposite case, the reference probability is 
increased using arbitrary non-decreasing 
function	����(��,�,�), up to the maximal execution 
probability, denoted as	���� . Similarly to transition 
weight-balancing operations, these balancing 
operations ensure, that although malfunctioning 
PRNG is used, subsequently passed automata are 
more probable to be executed over time. 

Pseudo-code of ARSE’s single simulation cycle 
is depicted on Fig. 6. 

 

Fig. 6 – Pseudo-code of ARSE simulation cycle 

 
7. CONCLUSIONS, RESULTS AND 

FUTURE WORK 

In this paper, the novel approach for a DCU 
autonomous behavior programming is presented. 
The described approach utilizes timed automata 
systems as a suitable way of autonomous behavior 
description and extends timed automata systems 
with support of event detection and action 
production / supervising capabilities. In addition, 
appropriate method of timed automata simulation 
runtime (ARSE) is presented. Moreover, as the only 
DCU-specific parts of presented case study are event 
types and asynchronous actions definitions, same 
principles can be reused for programming of 
autonomous behavior of arbitrary reactive metering 
device (i.e. device with autonomous behavior 
describable as set of time-driven processes reacting 
to raised events and producing specific actions). As 
the presented methods allow to define autonomous 
behavior of DCU in the understandable and easily 
alterable way, we believe that they improve the 
usability of DCU devices within AMM networks. 

In recent time, a limited version of the presented 
approach was implemented in several real DCU 
devices, which were beta-tested as the prototypes. 
Implemented version of ARSE lacks support of the 
absolute time referencing functions, so automata had 
to rely on relative timing provided by the clock 
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variables. Additionally, globally visible implicitly 
existing event variables were used (one for each 
supported event type) and thus the declaration of 
event variables is not supported. Similarly, locally 
visible implicitly existing action variables are used 
(one variable in each automaton for each supported 
asynchronous action type) and therefore each 
declaration of action variable is ignored. Finally, the 
mentioned weight-balancing and probability-
balancing functions are defined as constant 
functions; however, that is not a big issue since 
reliable PRNG e.g. based on Mersenne-Twister [19] 
or RANLUX [20] algorithms can be used and thus a 
sufficient randomness of the selection of transitions 
and transition execution/pass decision was achieved. 

Described beta test proved that proposed concept 
of programming of autonomous behavior of 
metering systems is applicable on existing AMM 
networks. Moreover, the beta-test has shown that 
presented principles remove disadvantage of usually 
cumbersome specification of custom autonomous 
behavior that currently used DCUs suffer from.  

As the part of future research, the most 
appropriate forms of the mentioned weight- real-
time clock suitable autonomous behavior definition 
approach was developed. 
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