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Abstract: The paper continues the discussion concerning the computational decision making on evolution of local 
climate dynamics taking into account inevitable nonlinear nature of such systems and deficiency of reliable data on its 
dynamics. Here we focus on seasonality in the context of bifurcation phenomena described by the model of the 
hysteresis regulator with double synchronization (so-called HDS-model). From this conception, the method of 
structuring and analysis of meteorological data (method of relative scales) is proposed, where new useful information 
on local seasonal evolution becomes available. First of all, it concerns increase in analytical resolution (daily 
description in a climate scale). The key procedures of this method provide building the specialized seasonal structures 
in relative time scales. Advantages are illustrated in comparison with the traditional processing the time series of 
temperature observations on daily mean surface air temperature over last century. We believe that the results could be 
interesting in order to increase the confidence of estimations on coming climate changes. Copyright © Research 
Institute for Intelligent Computer Systems, 2017. All rights reserved. 
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1. INTRODUCTION 

Per se, it seems to be impossible to imagine the 
contemporary climatology without IT-support in 
relation to collecting, digitizing, processing, 
transferring, storing, transmitting, converting and 
estimating climate data series [1]. Moreover, the 
point on enough IT-support becomes extremely 
pressing due to the combination between the inertia 
in official analytical methods and the observed 
increase in climate abnormalities [2, 3]. Why it 
occurs? Climate models relate, first of all, to middle-
term (several decades at least) and long-term (paleo-
periods of several centuries at least) time scales. In 
particular, the official standard climate norms 
remain calculated over 1961-1990 year [4, 5]. 
Regional and global weather models relate, first of 
all, to several days due to the “butterfly effect” [6, 7, 
8]. So, month and season estimations, especially 
with daily resolution and local peculiarities, remain 
comparatively far from the baselines of climate 
researches till now [9, 10, 11, 12, 13, 14]. 
Theoretical fundamentals concerning seasonal 
evolution remain rather empirical due to ignoring the 
nonlinearities with evident hysteresis phenomena 
and feedbacks [15, 16, 17]. Let us briefly comment 
specific demands to methods of analysis in this case.  

Simply, if a state of a nonlinear system is stable, 
then description of deviations from this state can be 
based on the statistical analysis. The current 
standard methods and protocols of meteorological 
data measurement and processing originate from this 
basis. The observed weather events exhibit growing 
deviations from the climate norms [18, 19, 20]. 
Similar facts mean that dynamics description should 
take into account bifurcation constituents [21, 22]. 
So, the standard data analytics have quite hard 
restrictions on its application [2, 15]. Taking into 
account both comparatively long duration and high 
monetary value which are necessary to spend for 
organization of new global climate observation 
network, it seems to be important to find novel ways 
on how to use the available data in order to get 
additional information. Then any new model and 
method of meteorological data analytics will need in 
IT-support in order to realize its verification at least; 
and such support supposes the specialized software, 
the main purpose of which is aimed at formalization 
of expert solutions.  

From this viewpoint we focus hereafter on how 
to estimate local seasonal evolution. The novelty of 
the discussion is connected with the context of 
bifurcation phenomena described by the model of 
the hysteresis regulator with double synchronization 
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(so-called HDS-model). This model provides unique 
chance to make daily descriptions of peculiarities of 
local annual temperature variation which are 
appropriated for heterogeneous local climate 
processes [23, 24, 25]. However it supposes 
reconsidering the traditional viewpoint [15]. With 
this purpose, we mention briefly the statistical 
seasonal estimations (section 2) and reveal  
contradictions for different time resolutions (section 
3). Then we propose to avoid these contradictions at 
the expense of building the original seasonal 
structures in relative time scales. In section 4 we 
describe the idea of the corresponding analytics and 
illustrate typical examples. We use the open-access 
data of the meteorological observation on daily 
mean surface air temperature over last 100-130 years 
provided by Russian Research Institute of 
Hydrometeorological Information - World Data 
Center [26]. Main outcomes and future outlook are 
presented in section 5.  

 
2. MODEL OF SEASONS IN THE 

ABSOLUTE SCALE 

Let us mention several important moments 
concerning notions of “seasonality”, where 
climatology, ecology, geodynamics, and so on unite 
to classify regional changes. In other words, some 
seasonal patterns are observed in local dynamics, 
where each of them is visualized by the 
corresponding changes in flora and fauna [23, 27, 
28]. The climatology viewpoint [19, 27, 28] 
describes these circumstances by four seasons, 
which lasts three months in the context of so-called 
annual temperature variation (hereafter ATV-unit) 
from January to January by monthly means (T-

MONTH). In the case of the Northern hemisphere, the 
following division occurs (Fig.1a): “spring” is from 
March to May; “summer” is from June to August; 
“autumn” is from September to November; “winter” 
is from December to February. Peculiarities of 
seasonal patterns relate to regions. 

Then two assumptions are supposed. First, 
seasons are accepted as regular ranges in time within 
a year; climate states and norms are estimated over 
regular time windows. Hereafter we base on the 
current meteorological convention, in accordance to 
which time windows follow in 30-years with fixed 
beginning dates (Fig.1b, regular widows). Second, 
deviations from the norms are excused by chaotic 
constituent and are statistically described. So, in 
general, formal traditional seasonal estimations are 
made in accordance with the following main 
procedures (Fig.1c): specialized data structuring; 
calculation of climatic states and norms; estimating 
seasonal dynamics or/and abnormalities. Due to the 
best combination of both duration and correctness of 

the instrumental measurements, temperature 
observations remain the main variable for analytics 
[5, 29, 30], and we restrict our discussion by the land 
surface air temperature. 

 
 

Fig. 1 – To notions of “seasonality” (a); comparative 
division on regular and irregular time windows (b); 

the main cycle of data analysis in the absolute scale (c). 
Examples here and after are illustrated for St.-

Petersburg (WMO-code 26063). 
 

Official protocols of data observation, measuring, 
translation and filing represent the basis of the first 
procedure. In particular, the Global Climate 
Observation Network remains the main provider of 
the unified hydro-meteorological observations, 
which are collected and processed within the 
specialized departments of the State Federal 
Services for Hydrometeorology and Environmental 
Monitoring. With research purposes, data from the 
official websites are translated to forms which are 
proper for original software. In particular, we 
translated data got from [26] into specialized 3D-
structures for each local climate system. Such 
structure for St.-Petersburg in (day, TDAY, year)-
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coordinates is visualized in Fig.2a, where TDAY is a 
daily mean temperature.  

 
Fig. 2 – 3D-structure of the meteorological data (a); 

seasonal dynamics over 1881-2015 years presented by 
time series with trends (b) and  by the linear seasonal 
pattern (c); monthly dynamics of annual temperature 

variation over 1901-1990 years (d).  
 
The second procedure is based on statistical 

processing the local observations in the context of 
ATV-units. The norms are traditionally calculated 
for the reference time window of 1961-1990 years. 
Last years, other durations and other beginning dates 

are also considered, for example [5, 20, 24]. 
However, all these variants continue to take into 
account the mentioned assumption on common 
regular time windows for all the local climate 
systems. So, a normal climate dynamic at a certain 
place over a quasi-homogeneous climate region is 
presented in the average form for each regular 
window (similar to the pattern presented in Fig.1a), 
and it is the third assumption that each local climate 
norm follows by one kind of annual behavior [4, 20]. 

Trend analysis of the data as well as estimating 
extremes and deviations from norms are realized 
during the third procedure. These calculations relate 
mainly to monthly and seasonal resolutions, where 
seasonal trends demonstrate quite good correlation 
with the trends of regional and global warming [5, 
18, 19]. For example, seasonal trends are illustrated 
in Fig.2b. Here the increase in wintry, spring, 
summer and autumnal average temperatures occurs, 
where the corresponding total temperature changes 
per season are summarized in Fig.2c. Once further 
specification occurs, tendencies are not so clear [3, 
18]. For example, let us compare monthly ATV-
units over three successive time windows (Fig.2d): 
1901-1930 years; 1931-1960 years; 1961-1990 
years. Then different tendencies can be observed. 
For example, February (F) is the coldest and August 
(A) is the warmest over 1931-1960 years (zoom-in 
fragments in Fig.2d).  

And else one moment seems to be important – 
limits on duration of the reliable observations. For 
example, only three whole 30-year cycles occur over 
a century (Fig.1b), where it is impossible to build 
standard climate norms as before 1900 year (due to 
data before 1881 are absent, and these data are 
already irreplaceable)  as after 1990 year (due to it is 
necessary to wait the corresponding results of 
measurements during several years). That is why 
search of ways to get more useful information from 
the available data are pressing. 

 

3. RELATIVE SEASONALITY 

So, the traditional conception of regular windows 
is based on the assumptions and restrictions which 
become to be reconsidered and discussed [2, 3, 4, 
25]. For example, let us calculate the following 
(Fig.3a): mean daily values (white central line) and 
deviations (gray up and low lines to show ±3 
deviations from the means, where  is a standard 
deviation). Then a lot of statistical misses occur 
(black points beyond gray limits in zoom-in 
fragments to Fig.3a). It means that there is at least 
one qualitative change of local climate behavior over 
the considered period. Let us stretch the structure 
with daily resolution along time axis (Fig.3b) and 
estimate trends of annual maximums and minimums 
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(gray circles in Fig.3b and Fig.3c). Then the 
magnitudes of total temperature changes (Fig.3d) 
reconstructed in accordance with the trends (Fig.3c) 
are essentially different from the ones built on the 
basis of the seasonal trends over the same time 
(Fig.2c). The difference in wintry estimations is 
about 20% and the difference in summer estimations 
is about 70%; the difference in the annual 
amplitudes is about 50%. It initiates reasoning 
concerning alternative models and methods of the 
meteorological data analytics.   

 

 

Fig. 3 – Processing the temperature observations over 
1881-2015 years: result of the statistical presentation 
of 3D-structure (Fig.2a) with zoom-in fragments of 

misses (a); time series with minimax annual points (b) 
with its trends (c) and linear structure of the total 

shifts (d). 

 We paid attention on this moment from the 
practical considerations. If averaged per month 
(Fig.1a) or per day (Fig.3a) values are used, then 
ranges of wintry and summer temperatures are 
smaller than off-seasonal ranges. So, if essential 
increase in wintry temperature is observed, then the 
corresponding increment (+3.07C, Fig.3d) can be 
comparable with the wintry range (Fig.1a). In other 
words, the habitual “winter”-range can disappear, 
and rather bi-seasonality appears with another 
“summer” and another “off-season”. However, what 
does it mean “another”? Answer on this question is 
absent with the traditional viewpoint on one pattern 
of annual behavior with fixed seasonal ranges 
(Fig.1a). That is why we develop the tools (models, 
methods and software) for climate dynamics 
analytics in the context of bifurcation phenomena 
described by the model of the hysteresis regulator 
with double synchronization (HDS-model). 
Mathematical description of HDS-model and its 
verification by data of temperature observations 
were presented in [15, 25]. Let us comment briefly 
peculiarities of HDS-model dynamics which are 
significant for the discussion.  

The HDS-model is characterized by a variable 
structure, where the moments of structural changes 
are determined by four surfaces (Fig.4a): two 
surfaces (denoted by “1” and “3”) sew the phase 
trajectories by level; two surfaces (denoted by “2” 
and “4”) sew the phase trajectories by time. The 
time quantization is realized by F1- and F2-sequences 
with equal frequency (1/TS) and TS/2-shift in time, 
where TS corresponds to one year. Then, the baseline 
dynamics of a local climate system represents 
alternations between three elemental processes with 
the same periodicity (TS) and different orders of its  
structural changes (Fig.4a): “right”-process by 3-2-
4-3 sequence with k>0.5 (R-behavior); “central”-
process by 2-4-2- sequence with k0.5 (C-behavior); 
“left”-process by 2-1-4-2 sequence with k<0.5 (L-
behavior). Here k is a relative duration of a warming 
stage within each annual warming-cooling cycle 
(AWCC-unit [15]).  

So, in accordance with HDS-model, a local 
climate dynamics should be described by a multi-
behavior model, where three kinds of annual 
behavior should be collected (so-called, RLC-
ensemble (Fig.4b) in contrast to the traditional uni-
behavior model (Fig.1a). Let us use the multi-
behavior model for a novel method to estimate 
seasonal evolution.   

 
4. METHOD OF RELATIVE SCALES 

While description of seasonality in accordance 
with HDS-model, it becomes necessary to take into 
account relations between several scales: R-,L-,C-
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behaviors are caught by sewing surfaces (dash-dot 
lines in Fig.4b); AWCC-unit relates to the 
temperature minimum (black two-side arrow in 
Fig.4c); seasons relate to regular division in three 
months (Fig.4c, gray two-side arrows). Here the 
dimensional correlations used by schemes are based 
on generalization of the results of reconstruction of 
RLC-ensembles made for 39 local climate systems 
[3, 18]. Then R-,L-,C-behaviors form a seasonal 
domain (filled by gray in Fig.4c), where there are 
two wintry peaks and two summer peaks (denoted 
by ovals). Intersections between seasonal limits 
(gray vertical lines) and limits of a seasonal domain 
show seasonal temperature ranges (denoted by gray, 
white and black colored rectangles on the right of 
Fig.4c). Also, one moment should be taken into 
account, namely: RLC-ensemble can consist of 
stable and unstable behaviors. This situation likes 
multiple attractors which are typical for systems 
with a variable structure [21, 25]. Usually L-
behavior or R-behavior can be unrealized, and it 
means that the corresponding phase structure is 
rather unstable (denoted by dotted lines in Fig.4d,e 
correspondingly). However, such structure can 
initiate rare abnormal deviations from the observed 
annual norms.  

So, the idea of the method consists in the 
following: seasonal temperature ranges of different 
local climate systems can be compared with daily 
resolution. Then beginning dates of the same 
seasons are usually different in more or less extent. 
Taking into account that HDS-model operates with 
particular irregular time windows for each local 
climate system [15, 25], reconstruction of seasonal 
dynamics becomes nontrivial task. Nevertheless, 
such analytics could be formalized in general [3, 
18]. Of course, the algorithms of meteorological data 
processing become more complex in comparison 
with the ones traditionally used. For example, let 
compare the proposed main cycle (Fig.5) with the 
traditional one (Fig.1c). Per se, it is a point of two 
additional procedures (the specialized bifurcation 
analysis and ensemble clustering), extensions for 
existing statistical processing and formalization of 
the described idea of expert seasonal estimations.  

The specialized bifurcation analysis is made in 
the context of the peculiarities of HDS-model 
dynamics and its procedures are detailed in [25]. As 
a result, evolution of local climate systems becomes 
reasonably divided by irregular windows. In other 
words, a uniqueness of changes in dynamics of each 
local climate system is taken into account [18, 25]. 
For example, over the considered period, there are 
three regular windows and five irregular windows 
(Fig.1b). The ensemble clustering is used in order to 
build a unique RLC-ensemble for each time window. 
In particular, we use the clustering in the context of  

 
 

Fig. 4 – To peculiarities of HDS-dynamics (a); 
schemes to explain the ensemble estimating of 

seasonality: RLC-ensemble (b); seasonal pattern in 
relative scales (c); L-instability (d) and R-instability (e) 

in comparison with the general view (b). 
 

peculiarities of the linearized annual dynamics [18]. 
Since each ensemble is built for each time window, 
then the statistical processing repeats three times 
(the internal procedure in Fig.5). Last, the cycle 
includes the estimating in relative scales (Fig.4c) 
taking into account stable and unstable constituents 
of each RLC-ensemble (Figs.4d,e). So, we realize 
the procedures Fig.5 on MatLAB platform and fulfill 
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test calculations in order to get first seasonal 
estimations from HDS-model. 

Let us comment typical results of the test 
estimations (Fig.6) in comparison with the 
traditional viewpoint (Fig.2b,c,d). Let the first and 
last irregular windows (Fig.1b) be considered. Let 
the absolute scale be denoted by day-axis and 
relative seasons be denoted by abbreviation of its 
first letters in Fig.6. In the first case (Fig.6a) summer 
double peaks are practically reduced to one; in the 
second case the both peaks are distinguished quite 
clear (Fig.6b). Increase in temperature maximum is 
about 0.5…1C (Fig.6c) that is concordant with the 
observations (Fig.3d). Next, in the first case there 
are clear wintry double peaks (Fig.6a); in the second 
case such peaks reduced to one, which is shifted 
towards the end of January (Fig.6b). Increase in 
temperature minimum is about 3C (Fig.6c) that is 
concordant with the observations (Fig.3d). The 
dotted lines in Fig.6b denote the unstable limit cycle 
of L-behavior, to which the current annual warming-
cooling cycle can abruptly deviate during more or 
less time. Such double peaks and unstable 
abnormalities can not be originally estimated from 
the traditional viewpoint.  

 

 
Fig. 5 – The main cycle of data analysis in relative 

scales.  
 

At the same time, evolution of seasonal ranges 
can be visible by comparison of these cases (Fig.6c). 
First, the essential off-seasonal asymmetry is 
observed at present in comparison with the past. 
Next, abrupt falls of temperature can occur during 
Autumn and Winter (denoted by stripy domains). 
So, the difference between the astronomic year (the 
absolute scale) and each local “seasonal” year (the 

relative scale) can be visualized and estimated 
within the testing viewpoint and is latent for the 
traditional viewpoint (Fig.2b,c,d).  

 
 

Fig. 6 –Patters of relative seasons built for the begin 
(a) and for the end (b) of the 20 century with 
comparative estimation of its structures (c). 

 

5. CONCLUSION 

Per se, the paper discusses the new method of 
time series analysis which is oriented on specialized 
structuring and analysis of daily mean temperature 
observations (not simulations) in climate scale 
(during several decades and more). The 
specialization is theoretically grounded on the 
peculiarities of nonlinear dynamics of the HDS-
model which is recently used in order to describe 
conceptually local climate dynamics in various 
practice-oriented applications [3, 15, 18]. 
Concerning the discussed issue, the main advantage 
of the HDS-model is connected with the ability to 
increase analytical resolution. Here we presented 
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first test results on how to analyse seasonality in 
such context. With this purpose we propose and 
formalize the idea of relative scales, realize the 
necessary procedures on MatLAB platform and 
fulfill test calculations. The results demonstrate new 
useful information on qualitative and quantitative 
characteristics of seasonal evolution in comparison 
with the monthly mean seasonal model. Since HDS-
model is physically grounded and verified [15, 18, 
25], then we believe that the proposed method could 
be used in order to increase the confidence of 
estimations on coming climate change including 
generating unconventional abnormal scenaria which 
are theoretically possible. The main restriction on 
practical applications is connected with temperature 
analytics only.  
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