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Abstract: Computational decision making is discussed in application to seasonal temperature forecasts taking into 
account inevitable nonlinear nature of local climate systems and deficiency of data on reliable observations. We focus 
on temperature extremes in terms of daily means and first involve the alternative conceptual model of local climate 
dynamics (the model of hysteresis regulation with double synchronization, so-called HDS-model) into such analytics. 
Recent years the HDS-model is describing successfully abnormal interannual temperature variability, on the basis of 
which it becomes potentially possible to extend forecasts of local daily means up to more than 1 year in future. In this 
connection the novel method of bifurcation traps is proposed, realized and tested. Results of processing the time series 
of temperature observations on daily mean surface air temperature illustrate peculiarities of this method in comparison 
with the traditional viewpoint on the forecasts. We believe that the discussion could be interesting in science and 
practice in order to increase the confidence of estimations on coming climate changes. Copyright © Research Institute 
for Intelligent Computer Systems, 2017. All rights reserved. 
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1. INTRODUCTION 

Research in the field of the present-day 
climatology seems to be impossible to realize 
without attracting information technologies starting 
with local meteorological observations [1, 2, 3] 
towards analytics concerning regional [4, 5, 6] and 
global [7, 8, 9] climate processes and practice-
oriented services [10, 11, 12]. Among great many of 
the current tasks, forecasting of dynamics evolution 
of local climate systems seems to be one of the main 
challenges, especially, in seasonal terms 
[13, 14, 15]. Such particular attention occurs since 
any practical activity depends on weather and 
climate effects in more or less extent. At the same 
time, local climate systems can demonstrate too high 
variability in their behaviors [6, 8, 16, 17]. So, the 
more coming local climate changes become clear, 
the more chances will be to adapt activities to them.  

Historically, the habitual statements of weather 
forecasting and climate prediction not include some 
practice-oriented contexts which are up-to-date 
[13, 15, 18]. In particular, tools of weather 
forecasting are not enough in order to cover the 
seasonal horizon with daily resolution; tools of 
climate prediction are not enough to consider 
seasonal details in a decadal scale. So, the existing 
methods of estimations towards future do not 

suppose to consider seasonal forecasting with local 
daily means for extended time horizons (more than 1 
year). The corresponding remarks to the problem 
statement we introduce in section 2. However, it is 
only one of third problems which are fundamental 
obstacles to realize the practice-oriented local 
forecasting discussed in the paper. The rest two 
problems concern the following well-known 
questions: how to get enough reliable data?; and 
how to distinguish reasonably qualitative and 
quantitative changes in dynamics evolution?  

Concerning the data, let us emphasize two items: 
too short historical horizons (no more than 150 years 
for typical climate estimations in several decades); 
uniqueness of the analyzed nonlinear system (there 
are not abilities to get a lot of experimental data on 
Earth dynamics as it could be for an experimental 
setup). As a result, really irreparable data shortage 
remains. Concerning climate changes, let us 
emphasize the physical features of local climate 
system regulation [19, 20, 21]: natural feedbacks 
with quantization in time and in level, as a result of 
which hysteresis phenomena, esential interannual 
variability and bimodality of statistical distributions 
inevitably appear.  

These questions are caused by integral features of 
nonlinear phenomena observed in local climate 
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systems [6] and should be encapsulated in a 
conceptual model used while weather and climate 
analytics. Traditionally, only one normal periodic-
like annual behavior is built-in to the climate model 
[19, 20, 22], and such viewpoint can meets troubles 
while its use [16, 17, 18]. The conceptual model of 
the hysteresis regulation with double 
synchronization (so-called HDS-model) has opened 
a way to the bifurcation analysis of the local 
dynamics by the specilized processing the 
meteorological observations and proposed an 
alternative viewpoint on normal behaviors [21].  

Thus, at present, there is a variant on how to 
distinguish reasonably qualitative and quantitative 
changes. Also, the HDS-model allows to derive 
some constituents of regional (i.e. external) impacts 
on a local climate system by analysis of its 
temperature observations, that could be promising to 
reconstruct missing data [23, 24]. Since the HDS-
model presents local behaviors in terms of nonlinear 
dynamics, then we include brief comments to 
specify the differences of this viewpoint relatively 
the discussed subject (section 3). Next, we present 
the novel method of forecasting “traps” to evolution 
of maximums and minimums of local daily mean 
temperature (section 4) and results of its testing 
(section 5). Main outcomes and future outlook are 
summarized in section 6.  

 
2. PROBLEM STATEMENT 

Since the discussion relates to the 
interdisciplinary field, let us make the necessary 
remarks. The notion of “forecasting” means that the 
necessary information from the future should be 
known at present. Let time interval from such future 
to the present will be denoted as an “advance time”. 
In general, there are two variants on how it could be 
achieved for each time scale: by a model which 
should generate desirable solutions; by processing 
the data of meteorological observations and/or 
paleo-data to make desirable estimations towards 
future. In particular, forecasts of annual temperature 
maximums and minimums touch the weather, 
seasonal and climate scales more or less.  

For example, confidence of weather forecasting 
could be preferable, however, such confidence is 
accompanied by the advance time of no more than 7-
10 days long that remains inevitably restricted by the 
“butterfly effect” [25, 26]. And the weather models 
become more and more deprived of the support 
provided by climate norms due to the accelerated 
climate changes [27, 28, 29]. Interpolations of 
climate tendencies made on the basis of already 
realized temperature observations relate to desirable 
advance time of several years long; however, such 
interpolations remains quite cautious [19, 22, 29]. 

Nevertheless, we involve this direction into 
discussion due to it supposes certain statistical 
confidence.  

Decadal predictions made by the advanced 
climate models relate to global or regional mean 
temperatures without necessary details, for example 
[5, 6, 19, 22]. Seasonal models are specialized for 
regional estimations formulated in terms of “above 
average”, “near average” or “below average” 
concerning monthly and even seasonal means with 
confidence about 40-80%. Usually, the 
corresponding advance time is from month to three 
months long [30, 31, 32]; in some cases, seasonal 
forecasts are extended to 6 months [33]; and only 
experimental seasonal forecasts allow to cover 1 
year [34] that becomes consistent with the aim 
formulated in 2012 by [35]. In this context the 
discussed extension of the advanced time under 
increase in daily confidence represents a novel 
problem statement for seasonal forecasting. 

 

3. FUNDAMENTALS 

Any method of forecasting is based on the 
corresponding conceptual model which describes the 
spectrum of events and phenomena supposed to be 
forecasted. In particular, the conceptual model of 
annual temperature variation (ATV-model) remains 
the basic one in order to determine climate norms, to 
analyze climate changes and to assess climate risks, 
for example [19, 22, 36]. The ATV-model describes 
the observed variability by one averaged annual 
behavior, where deviations from mean values 
excused by chaotic nature and are statistically 
determined. Such uni-behavior model has serious 
disadvantages which have been discussed [16, 17, 
37]. Let us focus on the aspects which are crucial for 
the discussion, and let us consider a linearized view, 
where maximums and minimums become the main 
elements to determine ATV-model. 

Each such element is calculated as average 
temperature (T) over 30-year window with daily, or 
monthly, or seasonal resolution (Fig. 1, a, b, c 
correspondingly); and differences between these 
averaging scales can be essential (several tens 
percents) for annual extremes (Tmin and Tmax). Also, 
the averaging creates significant difficulties for 
sewing weather and climate notions [18, 27] and 
creates statistical misses (for example, see below 
Fig. 4a) which indicate formally heterogeneity of the 
analyzed data [16, 17, 21]. So, these circumstances 
lead to the necessity of additional research 
concerning conditions on how to provide correctness 
and truthfulness of the statistical analysis and, 
correspondingly, trend estimations which really 
remain the basic tool to realize successful 
forecasting. 
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Fig. 1 –Difference in temperature extremes 

averaged over 1981-2010 years with daily (a), monthly 
(b) and seasonal (c) resolution (non-average maximum 

and minimum are equal to 30.1C and -33.6C 
correspondingly).  

 
The HDS-model represents a dynamical system 

with a variable structure and is recently used as an 
alternative model to determine climate norms, to 
analyze climate changes and to assess climate risks. 
Description of the mathematical view of HDS-model 
(including the hysteresis built-in regulator), 
peculiarities and regularities of HDS-dynamics, 
building bifurcation diagrams and reconstruction of 
HDS-model parameters were presented in detail in 
[18, 21, 27]. The main differences of this model 
from the ATV-model can be covered by the 
following three items: multi-behavior; relative scales 
in time and in temperature; variety of local 
evolutional scenarios (including variety of time 
windows, where heterogeneity of dynamics is kept). 
Let us specify briefly these items.  

From the HDS-model viewpoint, any local 
climate system can choice one of three kinds of 
behaviors each year (Fig. 2, a), where L-behavior is 
comparatively “warm”, R-behavior is comparatively 
“cold”, and C-behavior is comparatively neutral 
(warmer than R-behavior and colder than L-
behavior). These behaviors are characterized by 1-

year periodicity but different annual patterns 
concerning the vertical centerline (dash-dot red lines 
in Fig. 2, a). The notion of “comparatively” appears 
due to each ensemble of R-,L-,C-behaviors (Fig. 2, 
b) is encapsulated in the context of the moving 
temperature hysteresis (Fig. 2, c) determined by 
unique local H-limit, Tref-horizontal centerline and 
two synchronization surfaces (F1 and F2) with a half 
year shift. The last was discussed in detail in [23, 
24]. So, in the case of the ATV-model, a built-in 
regulator is absent and both time and temperature 
coordinates are fixed and adjusted (Fig. 1, a, b, c). 
At the same time, there are two fact, in accordance 
to which this uni-behavior model remains the most 
widespread and convenient for the habitual thinking 
till now. First, C-behavior looks like ATV-model 
behavior most of all; second, C-behavior is 
dominant in local climate dynamics [6, 21, 27]. 

 
Fig. 2 – Scheme to R-,L-,C-behaviors (a); an example 
of one of RLC-ensembles over 1981-2010 years (b) in 

comparison with annual cycles in Fig.1; scheme to 
RLC-ensemble placed in the relative coordinate (c). 

 
Strictly speaking, the qualitative changes in local 

climate dynamics should be identified by the 
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bifurcation analysis [21]. Results of such analysis 
demonstrate the phenomenon of “likely periodicity” 
[27]: each sunspot extremum provides the possibility 
to change qualitatively the dynamics of local climate 
systems, but each local climate system can realize 
such possibility or can ignore it. We pay attention to 
this result due to the practical viewpoint. Namely, 
the bifurcation analysis is realized by tens of 
specialized numerical computer procedures which 
are integrated with built-in interactive expert choices 
and approvals. So, any reasonable variant on how to 
simplify and/or formalize these procedure seems to 
be interesting. The “likely periodicity” excludes 
quite expensive analytics by the assumption on 11-
year window sliding in 1 year. In this case, of course 
R,L,C-ensembles become reconstructed in outline, 
however tendencies of dynamics evolution can be 
accepted for pilot testing and we first use this 
simplification (see below Fig. 5, b). 

 
4. METHOD OF BIFURCATION TRAPS 

Let us focus on the novelty of the proposed 
method and IT-tools to realize it. We started from 
the HDS-model to decompose intricate dynamics of 
a local climate system into a set of behaviors (R-, L-, 
C-behaviors illustrated in Fig. 2, a, b, c). In this 
connection each T-time series is divided into three 
corresponding sets. So, evolution of the behaviors 
can be statistically analyzed due to each of them 
represents a homogeneous set. With this purpose, we 
use the approach on how to reconstruct the RLC-
ensemble presented in details in [27]. For example 
(Fig. 3, a), if 1973-year is associated with L-
behavior and 1974-year is associated with R-
behavior, then the first T-time series fragment 
belongs to the set of L-behavior and the second one 
belongs to the set of R-behavior. The proposed 
method of forecasting is focused on how to provide 
novel abilities of forecasts on the basis of such 
disassembling? And we restrict the research by 
annual maximums and minimums in daily terms 
(Fig. 1, a).  

What is the origin of the novel abilities? When a 
local climate norm is built in accordance with the 
ATV-model (Fig. 1, a), then both average maximum 
(Tmax av) and average minimum (Tmin av) are estimated 
with the corresponding standard deviations (σmax av 

and σmin av). However, from the HDS-model, these 
characteristics represent resultant notions, where 
ensemble of R-,L-,C-behaviors should be considered 
in the context of the moving temperature hysteresis 
(Fig. 2, c). It means, that Tmax av is a results of a 
superposition of T(L)

max av, T(C)
max av, and T(R)

max av, 
where indexes in brackets denote the corresponding 
kind of the behavior (Fig. 3, a). The same situation 
occurs in the cases of Tmin av, σmax av, and σmin av 

(Fig. 3, a, b), where each average value is linked 
with one standard deviation of the same kind 
(denoted by two-sided arrows). For example, let us 
consider a fragment of T-time series about 1974 year 
(Fig. 3, b): the annual temperature maximum 
(denoted by a red circle) is the same for ATV-model 
(Tmax) and for HDS-model (T(R)

max), however T(R)
max-

value belongs to the set of R-behavior only; at the 
same time, the annual temperature minimums are 
significantly different (denoted by a green circle for 
ATV-model and by a blue circle for HDS-model), 
and T(R)

min-value belongs to the set of R-behavior 
only. Correspondingly, the first main procedure of 
the proposed method (denoted by bold letters in 
Fig. 4, a) is aimed at calculation of 12 basic 
characteristics of HDS-model encapsulated within 
the braces in Fig. 3, a, b.  

 
Fig. 3 – Differences between ATV- and HDS-models 
illustrated by a fragment of T-time series over 1973-

1974 years (a) and ensembles of characteristics for the 
temperature maximum (b) and minimum (c). 

 
The second main procedure (Fig. 4, a) is aimed at 

building the extremely possible temperature limits 
for each year, similar to upper and lower limits of 
the temperature maximum (Tmax av + σmax av and Tmax 

av – σmax av, Fig. 1, a) and the temperature minimum 
(Tmin av + σmin av and Tmin av – σmin av,Fig. 1, a) 
determined for ATV-model. Strictly speaking, we 
calculate all the possible combinations grounded on 
12 basic characteristics mentioned before (Fig. 3, a, 
b), and then select the maximal and minimal values. 
Usually, the upper and lower limits are associated 
with L- and R-behaviors (red and blue circles in 
Fig. 2, b correspondingly): T(L)

max av and T(R)
max av in 

the case of the temperature maximum; T(L)
min av and 
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T(R)
min av in the case of the temperature minimum. 

However, we check all the cases (including C-
behavior) due to the following variant can appear 
sometimes: C-behavior can be very close to L- or R-
behavior and its standard deviation (σ(C)

max av or 
σ(C)

min av) can even exceed the L- or R-standard 
deviation. In other words, C-behavior, which is like 
ATV-model behavior most of all, is slightly used 
that illustrates the original difference between the 
proposed and traditional processing.  

The third main procedure is aimed at decision-
making on how to forecast the dynamics of the 
identified upper and lower temperature limits and 
how to estimate the accuracy of the forecasting in 
(year, T)-space in comparison with the traditional 
viewpoint. In this connection we introduce the 
notion of a “temperature trap” – a geometrical figure 
in (year, T)-space, into which all future events 
should hit without misses. Then, first, if even one 
miss occurs, then this forecast is false. Second, 
comparing results of several forecasts show the 
comparing sizes of margins within the 
corresponding traps: the smaller margin is, the better 
forecast is. These two conditions shift the accent 
from probabilistic estimations with more or less 
confidence to estimations of the margins within the 
traps under 100% probability. Building the 
temperature traps (Fig. 4, a) includes several steps 
(described by the next section), and, finally, the 
rectangular traps are built towards future (Tmax- and 
Tmin-traps denoted by red and blue dotted contours in 
Fig. 5, a, b) to caught future events (black circles).  

Software to realize and test the proposed method 
in comparison with the traditional statistical 
estimations is designed on MatLAB-platform. The 
research follows to the main cycle shown in Fig. 4, 
and is integrated into the analytical system intended 
for estimating the severity level of imminent danger 
caused by local climate changes. This specilized 
system provides realization of the novel interrelated 
computations in accordance with HDS-model 
conceptions. These computations are logically 
divided within six functional modules (Fig. 4, b): 
data collection and translation; data banks; dynamics 
modeling (computer-based simulations); time series 
analysis (processing the observations); dynamics 
reconstruction, where measured and simulated 
results are synthesized; risk assessment. The 
procedures of the earlier designed software are 
denoted by gray in Fig. 4, a, the procedures of the 
new designed software are denoted by white in 
Fig. 4, a. Data transfer between the modules is 
realized by means of built-in SAVE/LOAD 
functions and MAT-files created by the 
corresponding executed programs. Integration is 
specified by data flows (Fig. 4, c), where T-time 
series and RLC-encembles are transferred for testing 

from the modules of data banks and dynamics 
reconstruction correspondingly.  

 
Fig. 4 – The main cycle of testing (a), the logical 

scheme of the analytical system (a), involved data 
flows (b) to realize the testing. 

 

5. EXAMPLE OF TESTING 

The method of forecasting traps were tested by 
processing the open-access data of the 
meteorological observation on daily mean surface 
air temperature provided by Russian Research 
Institute of Hydrometeorological Information – 
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World Data Center [38], where time series of only more than 100 years are considered. 
 

 

Fig. 5 – Example of the test made for statistical (a) and bifurcation (b) traps made for St.-Petersburg. 
 

Let us illustrate typical differences between the 
results made from the traditional and proposed 
viewpoints. In this connection let us consider the 
temperature observations made in St.-Petersburg 
(WMO-code 26063 [38]) over 1900-2015 years as 
an example (Fig. 5, a, b). Let us imitate the 
estimations towards future based on the available 
data. Then, let 2010 year is accepted as the “present” 
(the corresponding “known” Tmin- and Tmax-time 
series are denoted by black triangles); let the 
advance time is equal to 5 years (Tmin- and Tmax-time 
series in “future” are denoted by black circles). The 
traps are denoted by red and blue dotted outlines (for 
annual maximum and minimum correspondingly) on 
the right of the “present” and provide comparing two 
viewpoints. 

The traditional viewpoint based on the ATV-
model supposes interval and trend estimations 
towards future [19, 22, 29]. The interval estimations 
suppose averaging over the accepted time window 
(one or several decades). For example, let us use the 
conventional 30-year division relatively 1961-1990 
reference, including 1981-2010 years to fill the gap 

after 1990 year. So, in application to the considered 
issue, Tmin-evolution is determined for each window 
by Tmin av ± 3σmin av (Fig. 1, a), where Tmin av and σmin av 
are a mean square value and a standard deviation 
correspondingly; Tmax-evolution is similarly 
determined. Then four pairs of the interval 
estimations occur to 2010 year (each pair is denoted 
by two-way hatching in Fig. 5, a).  

Here it is necessary to note that the observed 
temperature extremes (Tmin- and Tmax-time series) 
occur at various dates within a year; so, Tmin av and 
Tmax av deviate inevitably from these dates. Thus, 
interval estimations can lead to the following results 
(statistical Tmax- and Tmin-traps in Fig. 5, a): sizes of 
the traps for annual maximum and minimum can be 
essentially different, and the extremes can be 
expected in future throughout whole temperature 
range without gaps. At the same time, these 
estimations can show incorrect result due to 
statistical misses (for example, misses over 1981-
2010 years are denoted by ovals in Fig. 5, a). It 
indicates that the sampling includes heterogeneous 
data at least. In the context of the ATV-model such 
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situations can not be excused; in the context of the 
HDS-model such situations are excused by extended 
deviations within RLC-ensembles consisting of three 
kinds of annual temperature patterns [27, 38].  

Trend estimations seem to be more defined 
regarding the future events in comparison with the 
interval estimations (Tmax- and Tmin-trends denoted 
by black arrows in Fig. 5, a, b). However, such trend 
dissembles significant deviations from the basic 
tendency which are typical from time to time, 
especially, over half-century and more. For example, 
it occurs for evolution of Tmin-time series over the 
nineties of the XX-th century (Fig. 5, a): if the 
temperature jump has happened, then the basic 
tendency smoothes this fact. So, the nearest 
estimations towards future can include an additional 
asymmetry (for example, Tmin-values over 2011-
2015 years are more asymmetrical regarding Tmin-
trend in comparison with Tmax-values over 2011-
2015 years regarding Tmax-trend).  

From the HDS-model, Tmin-and Tmax-channels are 
determined in order to identify tendency of Tmin-and 
Tmax-evolution correspondingly (channels restricted 
by grey broken curves in Fig. 5, b). These channels 
show the upper and lower limits associated with L- 
and R-behaviors (T(L)

max av and T(R)
max av in the case of 

the temperature maximum; T(L)
min av and T(R)

min av in 
the case of the temperature minimum) which were 
considered in the previous section. Per se, each of 
the channels combines the main advantages of the 
interval and trend estimations, namely: an interval 
description of the tendency observed in annual 
variation. The traps (hereafter bifurcation traps) are 
built as linearized boundaries of these channels 
(trends of the upper and lower limits denoted by 
black lines in Fig. 5, b).  

Within the considered advance time (5 years), the 
centerlines of these traps (denoted by dashed lines) 
are noticeably closer to Tmin- and Tmax-observations 
than the ones determined for the statistical Tmin- and 
Tmax-traps (Fig. 5, a). The bifurcation Tmax- and Tmin-
traps are comparable in size and leave the significant 
temperature range, where the expected temperature 
extremes are absent (T-reserve, Fig. 5, b) in spite 
of the statistical Tmin- and Tmax-traps (Fig. 5, a). The 
misses are absent and margins are less than the ones 
built from the ATV-model (the traps shown by 
Fig. 5, b in comparison with Fig. 5, a) 

The results made on a set of the available 
meteorological data confirm the following items 
concerning the proposed method: homogeneity of 
samplings and, correspondingly, correctness of the 
statistical estimations can be provided; the logical 
linkage between evolution of several qualitatively 
different dynamical processes can be established; 
increase in quality of the seasonal forecasting due to 
decrease in margins of the Tmin-and Tmax-traps can be 

achieved. So, the novel statement on the seasonal 
forecasting could be promising for further research 
on the basis of the proposed method of bifurcation 
traps.  

 
6. CONCLUSION 

The results presented here and in [23, 24] 
represent a preview on the practice-oriented methods 
of the computer-based analytics of the temperature 
observations based on the contemporary scientific 
hypothesis, in accordance to which evolution of 
local climate dynamics is formed under the specific 
kind of feedbacks (hysteresis regulation with double 
synchronization). In this connection these methods 
are united by an attempt to find variants on how to 
apply the reconstructions of local climate behaviors 
from the corresponding conceptual model (HDS-
model) for real practical tasks.  

As a result, the methods differ from the existing 
analogues in the combination of three important 
details: processing real observations over century 
and more; attracting the results of the bifurcation 
analysis; heightened time and space resolution of 
results (local daily means). This combination gives 
the following novel abilities: to reveal seasonal 
regularities of local climate dynamics with rather 
“weather resolution” in rather “climate scale” (here 
and in [24]); to derive constituents of regional (i.e. 
external) impacts on a local climate system by 
processing local temperature time series [23, 24].  

Development of these abilities could reduce the 
deficiency of meteorological data thanks to 
additional useful information. Also, it could suggest 
other viewpoint on unsolved problems. In particular, 
it concerns the problem of the seasonal forecasting, 
were only advanced experimental works research 
forecasting of monthly means up to 1 year in future 
[34]. We demonstrate that the change of the 
conceptual model could potentially open a way to 
provide forecasting of local daily means up to more 
than 1 year in future.  

The main disadvantages of the considered 
methods are connected with the necessary expert 
support to formalize analysis under the unusual 
conceptual models. Nevertheless, we believe that 
development of the methods should be continued. In 
what extent such research seems to be pressing? The 
answer could be the following: the more IT-tools are 
to research different viewpoints on coming climate 
changes, the more chances are to be ready to the 
nearest future.  
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