
Bernhard Großwindhager, Astrid Rupp, Martin Tappler et al. / International Journal of Computing, 16(4) 2017, 226-237

 226

DEPENDABLE INTERNET OF THINGS FOR NETWORKED CARS

Bernhard Großwindhager, Astrid Rupp, Martin Tappler, Markus Tranninger,
Samuel Weiser, Bernhard K. Aichernig, Carlo Alberto Boano, Martin Horn,

Gernot Kubin, Stefan Mangard, Martin Steinberger, Kay Römer

LEAD Project Dependable Internet of Things, TU Graz, Inffeldgasse 16, 8010 Graz, Austria
roemer@tugraz.at

Abstract: The Internet of Things (IoT) extends the Internet to include also wireless embedded computers that are often
equipped with sensors and actuators to monitor and control their physical environment. The IoT is increasingly used for
safety-critical applications such as smart factories or networked cars, where a failure of the IoT may lead to catastrophic
consequences. The IoT is therefore in urgent need of dependability, where reliability, availability, and security
properties can be guaranteed even in harsh environments (e.g., radio interference) and under deliberate attacks (e.g.,
exploiting side channels). In this paper we give an overview of recent research activities in the LEAD project
“Dependable Internet of Things in Adverse Environments” towards a dependable IoT, specifically dependable wireless
communication and localization using Ultra-Wide-Band technology, secure execution of real-time software, protocol
testing and verification, and dependable networked control. We also present the TruckLab testbed, where our research
results can be integrated and validated in a platooning use case. In this testbed, model trucks are automatically
controlled to follow a lead truck. Copyright © Research Institute for Intelligent Computer Systems, 2017. All rights
reserved.

Keywords: Dependability, Internet of Things, Car2X, UWB, Security, Testing, Networked Control.

1. INTRODUCTION

The Internet of Things extends the Internet to
include also wireless embedded computers that are
often equipped with sensors and actuators to monitor
and control their physical environment. The IoT is
increasingly used also for safety-critical applications
such as networked cars or smart factories, where a
failure of the IoT may lead to catastrophic
consequences. Due to harsh environments, deliberate
attacks, and the inherent scale and complexity of the
IoT, it is actually likely that such failures will occur.
Therefore, the LEAD project “Dependable Internet
of Things in Adverse Environments”1 at Graz
University of Technology in Austria investigates all
relevant aspects in order to make the IoT
dependable. The research questions are derived from
and validated by a platooning use case, where
multiple trucks automatically follow a leader truck.
For this, the distance among the trucks has to be
accurately estimated, reliable communication among
the trucks is needed, the protocols used for
communication need to be verified, real-time
software needs to be securely executed, and

1 http://dependablethings.tugraz.at

dependable networked control of the driving
parameters needs to be achieved.

Towards these goals, this paper gives an
overview of recent research activities in the project
towards dependable wireless communication and
location estimation using ultra-wideband (Sect. 2),
secure real-time computing (Sect. 3), automated
protocol testing and verification (Sect. 4), as well as
networked control (Sect. 5). We also present the
TruckLab testbed, which we use to integrate and
validate the individual research results.

2. DEPENDABLE UWB

COMMUNICATIONS

2.1 POTENTIAL OF UWB TECHNOLOGY

An integral part of a cleaner, safer, and more
efficient transportation is Car-2-X technology. It
enables vehicles to exchange information wirelessly
between each other and the infrastructure. Potential
Car-2-X wireless technologies such as IEEE 802.11p
are inherently narrowband and therefore highly
susceptible to multipath fading and multi-user
interference.

Shifting towards ultra-wideband (UWB) has the
potential to tackle these limitations. In contrast to

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Bernhard Großwindhager, Astrid Rupp, Martin Tappler et al. / International Journal of Computing, 16(4) 2017, 226-237

 227

narrowband transceivers, UWB radios spread the
signal over a much wider bandwidth (≥500MHz).
This results in (i) a higher immunity to multipath
fading, (ii) reduced interference, (iii) a high data
rate, as well as (iv) superior time-domain resolution
allowing for accurate ranging. The latter enables to
use the UWB transceiver not only to exchange
information, but also to estimate the distance
between trucks.

In the cooperative platooning use case presented
in Sect. 5, a reliable communication link has to be
provided in all scenarios independently of the
surrounding environment. Towards this goal, we
have developed a novel scheme to adapt UWB
physical layer (PHY) settings at runtime in order to
provide both reliable communication performance
and accurate distance estimation. First, we give an
overview of the adaption algorithm (Sect. 2.2). The
latter requires a clear understanding of the
performance of the PHY settings and which ones to
privilege (Sect. 2.3). As the derived ranking is
highly dependent on the surrounding environmental
conditions, we further characterize the environment
and link quality at runtime by using channel impulse
response information (Sect. 2.4). Finally, we
conclude with an evaluation of the proposed
algorithm (Sect. 2.5).

2.2 ADAPTING PHY SETTINGS AT
RUNTIME

To date, UWB deployments are using static
physical layer settings that remain unchanged over
time [1]. Therefore, the systems are unable to cope
with changes in the environment, which limits the
dependability of communication links. We present
an adaptive algorithm that determines at runtime the
optimal PHY settings (i.e., the one maximizing
reliability while minimizing energy consumption) to
be used for dependable communication. Fig. 1
shows the block diagram of the devised scheme.

Fig. 1 – Block diagram of the proposed adaptation
algorithm.

Based on the application requirements and a

characterization of the PHY settings that is presented
in Sect. 2.3, a ranking of the settings is determined.
The latter serves as an input to the adaptation logic.

The second input is the characterization of the
environment. In Section 2.4 we use the channel
impulse response provided by the UWB radio to
detect at runtime non-line-of-sight conditions, the
presence of destructive interference, and the
received signal strength. Based on this information,
the state of the link is derived and, in case of a
degrading link, the adaptation logic is triggered. The
appropriate PHY configuration is then loaded and
shared with neighboring nodes to maintain a highly
reliable communication link.

2.3 CHARACTERIZING UWB PHY
SETTINGS

Compared to other IoT technologies, UWB
transceivers provide not only a higher bandwidth,
but also several configurable PHY parameters. The
latter drastically affect the reliability and energy
consumption of UWB radios. In total, seven
different tuning knobs are provided at the physical
layer; among others, data rate, carrier frequency, and
preamble length. Unfortunately, an extensive
investigation of the settings is still missing in the
research community. Hence, we have first
characterized the performance of all seven UWB
PHY parameters experimentally. As an example,
Fig. 2 depicts the impact of data rate on packet
reception rate (PRR). The x-axis shows the
attenuation level of a tunable attenuator that we used
to simulate a degrading link. The figure shows that
decreasing the data rate from the maximum of
6.8Mbps to 110kbps increases the sensitivity of the
receiver by 5.5 dB. Thus, a receiver needs a 5.5 dB
weaker signal to sustain the same level of robustness
by simply decreasing the data rate. The increased
robustness comes at the cost of a longer duration of
the payload (64x) and hence a higher energy
consumption. The adaptation algorithm introduced
in Sect. 2.2 automatically finds a good tradeoff
between high reliability and low energy
consumption, hence optimizing the dependability of
an UWB link.

Fig. 2 – Packet reception rate for different attenuation
levels as a function of data rate.

2.4 CHARACTERIZING THE
ENVIRONMENT

UWB technology provides inherently a more
robust communication than narrowband

Bernhard Großwindhager, Astrid Rupp, Martin Tappler et al. / International Journal of Computing, 16(4) 2017, 226-237

 228

technologies. Still, a dynamic environment (e.g., the
sporadic presence of destructive interference or
obstacles blocking the line-of-sight (LOS) between
nodes), may highly affect the communication
performance. For this purpose, we make use of the
channel impulse response (CIR) derived by UWB
transceivers to detect such environmental changes
and react accordingly. The CIR provides information
about the multipath propagation, i.e., radio signals
arriving at the receiving antenna via different paths
due to reflections from walls and other objects.

The absence of a clear LOS between two
communicating devices or vehicles (for example at
crossroads or at hilly roads) severely affects the
quality of a link due to the reduced received signal
strength. Furthermore, in time-of-flight distance
measurements, the wrong classification of a non-
line-of-sight (NLOS) component as the LOS
component leads to positively biased range
estimations. Detecting the presence of NLOS
condition at run-time by employing the CIR allows
to correct these biased estimates [2]. Although UWB
transceivers are less affected by multipath fading
due to the higher bandwidth, at longer distance the
LOS component may still overlap with multipath
reflections. This can cause destructive interference
and hence heavily degrade a communication link.
Detecting the presence of destructive interference is
also possible by analyzing the CIR. Fig. 3 shows two
CIRs derived from the low-cost UWB transceiver
Decawave DW1000 [3]. One was acquired from a
highly reliable link (blue line) and the other one
inside a deep fade due to destructive interference
(green dashed line). In the case of destructive
interference, the amplitude of the LOS component
(first strong peak) drops significantly. However, the
amplitude of the multipath components does not
decrease as much as the LOS component, as they do
not suffer from destructive interference. Therefore,
keeping track of the ratio between the amplitude of
the LOS component and of multipath components
provides an efficient mechanism to detect
destructive interference in an UWB communication
link.

Fig. 3 – Channel impulse response obtained from a
Decawave DW1000 UWB transceiver.

Besides the detection of LOS/NLOS condition

and destructive interference, we also derive an
estimation of the received signal strength from the

CIR as an additional indicator of the link quality.
This is required as a trigger for the adaptation
algorithm presented in Sect. 2.2.

2.5 PERFORMANCE OF THE
ADAPTATION LOGIC

We extensively evaluated the performance of the
proposed algorithm in highly dynamic environments
(fluctuating signal strength) and in the case of
destructive interference. In situations of demanding
and degraded links (PRR ~ 10% with static PHY
configurations), the algorithm sustained a PRR
always higher than 98% without destructive
interference and of at least 90% in the presence of
destructive interference.

3. DETECTION OF SIDE-CHANNEL
LEAKAGE

Security is a key aspect of dependability when
facing not only environmental perturbation but an
explicitly malicious environment. Security usually
breaks down to (i) keeping sensitive information
secret, and (ii) maintaining its integrity. For
example, every Car-2-X communication link
demands strong integrity guarantees in order to put
trust into the exchanged data (e.g., vehicle positions,
velocities). Likewise, coordinated platooning using
global planning might expose vehicle positions and
identities to network operators or even cloud
providers, if resource intensive planning tasks are
outsourced to the cloud. This demands not only
confidentiality in the network, but also during
computation. Integrity and confidentiality can be
achieved by cryptographic algorithms with strong
security guarantees. However, their concrete
implementations often suffer from indirect
information leaks, called side-channels, which can
undermine all given guarantees.

3.1 Side-channel Attacks

Side-channel attacks range from mere time
observation of network packets to sophisticated CPU
attacks on the microarchitectural level. A whole
class of these side-channel attacks exploits leakage
within memory access patterns, that is, the address
locations in memory a microprocessor or CPU
accesses during computation. While such address-
based leakage can be avoided by defensive coding
paradigms, they are often not or improperly
implemented in practice. Manually analyzing the
side-channel resistance of software is both time
consuming and error-prone.

In this work, we implement a fully-automated
analysis framework for identifying arbitrary address-
based leakage in cryptographic software. We

Bernhard Großwindhager, Astrid Rupp, Martin Tappler et al. / International Journal of Computing, 16(4) 2017, 226-237

 229

achieve this by (i) executing the program multiple
times with differing input in a controlled
environment and collecting its execution traces, (ii)
analyzing the traces to find address differences, and
(iii) correlating the found ones to the program input
in case of non-deterministic program behaviour.
Compared to existing work, we on the one hand
precisely capture address leakage on a finest byte
granularity for data leaks as well as for control-flow
leaks. On the other hand, we explicitly address
probabilistic programs, whose execution depends on
some form of randomness. Using our tool, we
analyze widely-used cryptographic libraries like
OpenSSL and report known as well as previously
unknown side-channel vulnerabilities.

In the following, we give a short background in
Sect. 3.2, explain our methodology in Sect. 3.3,
comment on non-determinstic program behaviour in
Sect. 3.4 and conclude with results in Sect. 3.5.

3.2 Background

Address-based leakage occurs whenever a
program’s secret state is leaked through the memory
addresses it accesses. This affects data memory as
well as code memory. Consider the code snippet in
Fig. 4, where different values of a secret input
(line 2) access different table entries (line 1). If
secret is 0, entry A is accessed; for a secret
value of 1, entry B is accessed. Thus, the input leaks
via the data addresses during table lookup,
constituting a data leak.

1: int table[4] = { A, B, C, D };
2: int result = table[secret];

Fig. 4 – Data leakage.

Similar, the control-flow of a program can leak

information about the secret. In Fig. 5, the function
process() (line 2) is only executed if secret is
1 (line 1). This control-flow leak reveals one bit of
secret.

1: if (secret == 1)
2: process();

Fig. 5 – Control-flow leakage.

Whether a leak is exploitable in practice depends

on the computing architecture and the precise attack
methodology, which defines the granularity of
observable leakage. While in the past strong
assumptions were made about the possible
granularity of observations, new attacks completely
abrogated these assumptions [4]. Thus, in order to

cover all address-based leaks, it is essential to
operate on a finest byte granularity.

3.3 Methodology

Our approach to detect address leakage works in
two phases: In the first phase, we execute the
program, which is to be analyzed, multiple times
with different secret input values, chosen at random.
Execution is done in a controlled environment. We
used a binary instrumentation framework to record
all addresses (code and data) being accessed during
program execution on a byte granularity. The
addresses are stored in so-called address traces for
later analysis.

Varying the secret input aims at triggering the
vulnerable location in the program in order to show
up in the address traces. Although this approach
cannot guarantee exploring all possible control-flow
paths of the program (i.e., no false negatives), we
found that it is sufficient to detect a large number of
actual leaks. Specifically, cryptographic algorithms
tend to show strong diffusion of their input, which
amplifies the explorative power of a small input set.

Other approaches in literature rely on symbolic
execution with abstract interpretation of the
processed data [5]. That is, the data plane is
approximated to reduce otherwise exploding
analysis times. While symbolic execution is good for
maximizing coverage (i.e., minimize false
negatives), approximation can cause analysis to
wrongly report leaks where there are none (false
positives). In contrast, our approach only detects
actual address differences, thus avoiding false
positives by design.

The second phase analyses the collected traces
with respect to address differences. Since we operate
in a controlled environment, we suppress any noise
the operating system might induce on the memory
addresses (e.g., address randomization techniques
like ASLR). Hence, in order to find information
leaks, it suffices to sequentially compare address
traces. Any found difference constitutes a true
information leak, assuming the analyzed program is
purely deterministic. However, in practice, certain
programs show non-deterministic behavior, which
demands special treatment.

3.4 Detecting non-determinism

Many modern cryptographic algorithms rely on
probabilistic methods to achieve certain security
goals such as indistinguishability of cryptograms.
When analyzing such implementations, their usage
of randomness during the computation might spill
over to the address traces as non-deterministic
observation. That is, executing the program multiple
times with one and the same input value can yield

Bernhard Großwindhager, Astrid Rupp, Martin Tappler et al. / International Journal of Computing, 16(4) 2017, 226-237

 230

differences in the address traces. To distill true leaks
with a dependency on the secret input from non-
determinism we first collect several execution traces
under the same secret input. We then use the
sequential trace comparison mentioned before to
uncover non-deterministic leaks. Finally, we repeat
the whole procedure for varying input values, as
mentioned in Sect. 3.3 and subtract non-
deterministic leaks in order to uncover true leaks.

3.5 Results & Discussion

We evaluated our analysis method on the widely-
used OpenSSL library. We observed that most
symmetric algorithms can be analyzed with already
two executions. Only in one case were three traces
necessary. Asymmetric algorithms of OpenSSL, on
the other hand, require approximately 10 traces in
order to achieve good coverage. We observed that a
higher number of executions (we tested up to 30
traces) only uncovered very few additional leaks,
which correspond to the same vulnerabilities we
already found with fewer traces.

With our analysis, we re-confirmed known
leakage in almost all symmetric ciphers of
OpenSSL, which is due to a vulnerable lookup-table
implementation. Moreover, we found previously
unknown leakage in the initialization phase of RSA
and DSA, which could allow an attacker to recover
full cryptographic keys. We responsibly reported the
vulnerabilities and provided appropriate patches to
fix them in the source code.

4. PROTOCOL TESTING

In platooning, we see subsystems communicating
at various levels to achieve some common goal. At a
low level, networks of components inside vehicles
communicate via bus systems. These components
may, for example, control airbags. At a higher level,
vehicles communicate among each other and with
their environment via Car-2-X technology. All these
forms of communication follow communication
protocols, on which the involved parties agree. Since
vehicles and their constituent components serve
safety-critical functions, it is of utmost importance
to ensure that they implement protocols correctly.

Therefore, we will discuss testing for functional
correctness of communication protocols in the
following. Protocol testing often uses as a basis
finite state machines (FSMs) [6], which model
expected responses to message transactions. In
practice, this requires skilled engineers formalizing
standards documents given in natural language.
These documents often contain complex or even
conflicting requirements, but may also leave
scenarios unspecified. Protocol extensions and
versions further add to the inherent complexity of

such documents. This complexity makes complete
formalizations difficult, labor-intensive, and error-
prone.

Model-learning offers a solution to this problem
by automatically learning formal models. In our
work, we apply active automata learning [7,12],
which learns FSM models via testing. In a case
study, we applied this kind of learning for protocol
testing in the context of the IoT [8]. Using the
approach detailed in Sect. 4.2, we analyzed five
implementations of MQTT [11], a publish-subscribe
protocol for resource-constrained devices like IoT
nodes.

4.1 Background

We will now briefly discuss the type of FSMs we
use, and automata learning. Mealy machines serve
as models in our work. These models have a finite
number of states, inputs, and outputs. One of the
states is designated as the initial state. The execution
of a Mealy machine starts in the initial state. Upon
the execution of an input, a Mealy machine changes
its state and produces exactly one output. Fig. 6
shows an example of such a Mealy machine. It
models parts of the behavior of the Mosquitto [13]
MQTT broker. Its initial state is s0 and transitions
between states are labeled by inputs and
corresponding outputs separated by slashes. For
example, if we perform a connection input (Con) in
s0, an acknowledgement output (C_Ack) will be
produced and we move to state s1.

Fig. 6 – FSM model of the Mosquitto MQTT broker.

There are several approaches to learn such

models from black-box systems. We applied active
automata learning [7,12], which interacts with
systems via testing. This style of learning usually
iterates two phases. In an exploration phase,
information is gathered via membership queries.
Such a query executes a single input sequence and
records the corresponding output sequence. Once we

Bernhard Großwindhager, Astrid Rupp, Martin Tappler et al. / International Journal of Computing, 16(4) 2017, 226-237

 231

have enough information to form a hypothesis
model, we issue an equivalence query. In practice,
this query tests for equivalence between the
hypothesis and the black-box system. If we find an
input sequence s demonstrating non-equivalence, we
start with a new round of learning, exploring
behavior related to s. Otherwise, we stop learning
and output the last hypothesis as the learned model.

4.2 Learning-based Protocol Testing

The learning-based testing approach [8] that we
discuss in the following, enables protocol testing
without prior modeling of the desired behavior.
Fig. 7 shows an overview of the approach, in which
we examine pairs of protocol implementations and
compare their observable behavior. The rationale
behind this approach is that observable differences
are likely to expose implementation errors.

Fig. 7 – Overview of learning-based protocol testing.

First, we learn FSM models representing the
implementations. Then, we check for observable
equivalence between those models, i.e., we check
whether they produce the same output sequences for
all possible input sequences. During this procedure,
we record all differences.

Each detected difference is further examined.
First, we test the protocol implementations with the
input sequence exposing the difference in model
behavior. By that, we test whether this sequence
leads to observably different behavior in the actual
implementations. If such a test shows no observable
difference, we know that at least one learned model
is incomplete and we consequently extend it via
more thorough learning. If a difference in model
behavior corresponds to an actual difference, we
check the standards document to determine whether
the difference points to an implementation error.

Basically, we perform differential testing on model
level via equivalence checking and test systems only
during learning and for analyzing differences.

The main benefit with respect to manual effort is
that we do not need to formalize the complete
standards document. It allows us to concentrate only
on those parts that are implemented differently by
various vendors. By following a bottom-up
approach, from systems to models, we slightly
change the objective of testing. We do not test
against a standard, but we rather test whether two
systems implement the standard in the same way.
For this reason, the approach does not detect
specification violations present in both examined
systems. To detect a larger range of errors, we tested
pairs of five systems in our case study.

4.3 Case Study: Testing MQTT Brokers

We investigated the behavior of five open-source
implementations of MQTT brokers. These brokers
are responsible for managing client connections,
processing subscriptions, and for relaying published
messages. Therefore, testing focused on various
modes of connections and subscriptions, and types
of messages. In the case study, we performed the
following sequential steps:

1. We identified types of messages transmitted
from clients to brokers.

2. For each of the types, we defined a
corresponding abstract FSM input.

3. We grouped inputs with interdependencies
among each other, forming seven groups of
inputs.

4. For each of the groups and for each pair of
brokers, we performed the learning-based
testing approach discussed above.

Each group covers a certain aspect of MQTT,
like processing invalid messages. This grouping
helped to reduce model sizes, thereby reduce
learning time while still covering a large portion of
the MQTT functionality. Altogether, our
experiments revealed 18 errors in four of the
examined implementations.

One of the errors is highlighted in red in Fig. 6
and Fig. 8, which show models of the Mosquitto
[13] and the HBMQTT [14] broker, respectively.
They react differently if we try to connect again
while being already connected. Mosquitto closes the
network connection upon the second connection
attempt. HBMQTT ignores this second connection
attempt. According to the MQTT specification [11],
HBMQTT behaves incorrectly – the network
connection must be closed.

Bernhard Großwindhager, Astrid Rupp, Martin Tappler et al. / International Journal of Computing, 16(4) 2017, 226-237

 232

Fig. 8 – FSM model of the HBMQTT broker.

4.4 Discussion and Outlook

We were able to semi-automatically find errors in
protocol implementations that are actively used. In
addition to setting up the learning environment, we
only needed to manually analyze the detected
differences. While this shows that learning-based
testing can effectively be applied, we also identified
short-comings: (1) learning requires the execution of
a large amount tests resulting in long execution
times, and (2) FSMs cannot capture all relevant
aspects, like stochastic and time-dependent behavior.

In subsequent work, we tackled the first issue by
developing an equivalence test generation technique
tailored toward learning [9]. This technique reduces
the required number of test executions while still
learning reliably. As a first step to mitigate the
second issue, we developed a learning-based testing
technique for stochastic systems [10]. Our current
work focuses on learning timing behavior from tests.
Ultimately, we plan to bring these techniques
together to automatically test systems involving both
stochasticity and time-dependent behavior.

5. NETWORKED CONTROL

5.1 Introduction

In the last decades conventional control systems
are more and more replaced by networked feedback
loops. The advantages of closing the control loop via
(wireless) communication networks are increased
flexibility and reduced wiring costs. Applications
like automated driving or advanced production
systems and robotics foster the development of
methods for Networked Control Systems (NCS).
The typical structure of an NCS is shown in Fig. 9. It
consists of plant, sensors, actuators, the

communication network, controllers and, if required,
observers.

Fig. 9 – Structure of a Networked Control System.

Due to the heterogeneity of such systems, several

disciplines need to cooperate in their design, see
Fig. 10.

Fig. 10 – This figure shows how several aspects of
control theory, networking and signal processing

interact in the design of dependable networked control
systems.

5.2 Challenges in Networked Control

The communication system renders analysis and
design of NCS complex and makes it necessary to
re-evaluate conventional control theories. Major
challenges of NCS are the network impairments that
can jeopardize the performance and stability of
feedback loops. Among them are time varying
delays and transmission intervals, packet dropouts,
communication constraints and cyber attacks. The
control algorithms should be able to cope with these
uncertainties to allow dependable control of e.g.
safety-critical systems. This is the motivation for the
platooning scenario as described in Sect. 6, where
the developed algorithms should be tested together

Bernhard Großwindhager, Astrid Rupp, Martin Tappler et al. / International Journal of Computing, 16(4) 2017, 226-237

 233

with the communication solutions provided in
Sect. 2.

5.3 Sliding Mode Control for NCS

Sliding mode control (SMC) is a feedback
control strategy, which allows to drive and then
constrain the system state to a certain subspace of
the state space (sliding manifold). Once the system
state is on this surface, the closed loop response is
insensitive to bounded perturbations occurring in the
input channel of the plant (so called matched
perturbations). However, SMC concepts are very
sensitive to time delays leading to undesired
dynamic phenomena and reduced control
performance.

Based on the assumption that the sampling time
is constant, a discrete time SMC algorithm is
designed ensuring stability even in the presence of
variable time delays. To overcome the fluctuations
in the delay, we use buffering methods at the cost of
an increased overall delay [15].

In a first step, a suitable discrete time model of
the plant taking into account the constant buffer
delay is derived. Then, a discrete time SMC
algorithm based on the so-called reaching law
approach is designed. It can be shown by simulation
and experiment that the proposed control approach is
superior to conventional SMC techniques.
Experimental data can be found in [15]. There it is
shown that the design of an SMC without
considering the uncertainties of the communication
system might even lead to instability of the closed
loop system. With the approach proposed in [15] it
is possible to guarantee a stable closed loop
behaviour even if time varying delays are present.

From a practical point it could be regarded as a
disadvantage that all state variables have to be
measureable. This drawback can be overcome by
using suitable state observers.

5.4 Robust Observers for NCS

So-called Unknown Input Observers (UIO) are
capable of estimating the plant states correctly
despite the presence of matched perturbations. Even
more, these perturbations can be reconstructed.
However, in the case of measurement dropouts, the
functionality of UIOs cannot be guaranteed
anymore. This motivates research in the field of UIO
design for NCS.

We are working on novel concepts, which allow
the use of UIOs in a networked environment. In a
first step, only dropouts in the communication
channel connecting sensor and observer are taken
into account. A simple stochastic model for
modeling the lossy transmission channel is the so-

called Gilbert-Elliot Markov Chain model, see
Fig. 11.

Fig. 11 – Gilbert-Elliot model.

Based on this dropout model, an UIO with

guaranteed stability properties up to a certain
dropout probability can be designed. The developed
concept shows promising performance in simulation
and experiment.

5.5 Outlook

Future research will focus on the combination of
the two above presented NCS methods. The
respective algorithms will be extensively evaluated
in the Truck Testbed presented in Sect. 6.

6. TRUCK TESTBED

In order to investigate the concepts discussed in
the previous sections, a testbed with small-scale
vehicles (see Fig. 12) for automated driving is used.
The following requirements on the testbed are
fulfilled:

 scalability: the testbed must be scalable so
that multiple vehicles can be used

 distribution: the software is implemented on
embedded systems mounted on trucks

 real-time capability: the execution times of
different tasks must be ensured

 flexibility: easy and affordable changes of
hardware and software are possible.

Fig. 12 – The model trucks are equipped with a
BeagleBone Black board to test different scenarios on

the testbed.

Bernhard Großwindhager, Astrid Rupp, Martin Tappler et al. / International Journal of Computing, 16(4) 2017, 226-237

 234

For platooning applications, small-scale trucks in
scale 1:14 [16] have been built up. The setup of the
testbed is shown in Fig. 13, where the relation

between hardware and software is depicted. These
components are described subsequently.

Fig. 13 – Setup of the testbed using small-scale vehicles and communication.

6.1 Small-scale Vehicles

Each vehicle is equipped with a BeagleBone
Black board [17], which executes different advanced
driver assistance systems (ADAS). These ADAS
functionalities can be modeled in
MATLAB/Simulink and code is generated
automatically on an ADAS Computer using
appropriate MATLAB packages [18, 19]. The code
is then downloaded and compiled on the
BeagleBone Black (using a real-time capable
operating system [20]), and the execution of the
ADAS on this on-board computer is triggered via
SSH connection.

6.2 Position Tracking and Communication

For motion planning in automated driving, the
positions of the vehicles need to be measured. For
this purpose, an inexpensive and easy to use indoor
localization was built up using off-the-shelf
webcams [21]. The positions and orientations of the
trucks are detected via AprilTags [22] that are
mounted on top of the vehicles. The position
tracking code is based on the open source AprilTags
C++ Library [23]. The tag detection algorithm is
executed on the Position Tracking Computer as
indicated in Fig. 13. The road coordinates are stored
on the trucks and can be displayed additionally on
the images of the webcams on this computer. The
detection algorithm calculates the vehicles’ positions
with a rate of 10Hz and broadcasts the information

via WiFi using UDP. An accuracy of approximately
0.03m can be achieved, which is sufficient for many
tests.

In addition to the position data, environmental or
tactical information can be sent via UDP broadcast
to the vehicles, emulating Car-to-Infrastructure
(C2X) communication. Moreover, the trucks can
receive UDP packets from other vehicles, i.e., Car-
to-Car (C2C) communication is possible. Note that
automated driving functionalities such as Platooning
rely on communication between the trucks.

6.3 Platooning

Platooning is currently the focus of cooperative
automated driving, see, e.g., [24], [25]. In platooning
scenarios, the aim is to decrease the air drag of
several trucks in order to reduce fuel consumption.
For this purpose, the trucks maintain very small
distances with respect to the preceding vehicle,
which also increases the capacity of the roads. In
order to guarantee safety for small intervehicle
distances, communication between the vehicles is
necessary. The results of the platooning experiment
on the testbeds are shown in Fig. 14. If the Car-2-car
communication can be ensured as in a), maintaining
very small inter-vehicle distances is possible.
However, if no communication is available, the
distances must be much larger as in b) due to the
delayed reaction that can be observed in the
velocities.

Bernhard Großwindhager, Astrid Rupp, Martin Tappler et al. / International Journal of Computing, 16(4) 2017, 226-237

 235

a) constant distance spacing with C2C communication

b) constant time-headway spacing without C2C

communication

Fig. 14 – Inter-vehicle spacings of the two following
trucks. C2C communication allows for smaller

distances while still guaranteeing safety. Note that the
peaks in the distances arise due to sensor faults.

7. CONCLUSION

In order to enable safety-critical applications of
the IoT, substantial research is needed to bring
dependability to the IoT. In this paper we have
presented recent research towards dependable
communication, security, protocol verification, and
networked control. Ultimately, these contributions
will be integrated into a common framework to
facilitate giving performance guarantees also in
harsh environments, thus also enabling an informed
decision if a given IoT application matches the
safety requirements of the application.

8. ACKNOWLEDGEMENTS

This work has been performed within the LEAD
project “Dependable Internet of Things in Adverse
Environments” funded by Graz University of
Technology. The authors want to thank M. Rotulo
and A. Luppi for their contributions to the section on
networked control.

REFERENCES

[1] B. Kempke, et al., “SurePoint: Exploiting ultra
wideband flooding and diversity to provide

robust, scalable, high-fidelity indoor
localization,” Proceedings of the 14th ACM
Conference on Embedded Network Sensor
Systems, 2016.

[2] S. Marano, W. M. Gifford, H. Wymeersch and
M. Z. Win, “NLOS identification and
mitigation for localization based on UWB
experimental data,” IEEE Journal on Selected
Areas in Communications, Vol. 28, No. 7,
pp. 1026-1035, 2010.

[3] Decawave, [Online]. Available:
http://www.decawave.com.

[4] Y. Yarom, D. Genkin and N. Heninger,
“CacheBleed: a timing attack on OpenSSL
constant-time RSA,” Journal of Cryptographic
Engineering, Vol. 7, No. 2, pp. 99-112, 2017.

[5] G. Doychev, B. Köpf, L. Mauborgne and
J. Reineke, “CacheAudit: A tool for the static
analysis of cache side channels,” ACM
Transactions on Information and System
Security, Vol. 18, No. 1, pp. 4:1-4:32, 2015.

[6] G. V. Bochmann and A. Petrenko, “Protocol
testing: review of methods and relevance for
software testing,” Proceedings of the 1994
ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 109-124,
1994.

[7] B. Steffen, F. Howar, and M. Merten,
“Introduction to active automata learning from
a practical perspective,” Lecture Notes in
Computer Science, Vol. 6659, pp. 256–296,
2011.

[8] M. Tappler, B. K. Aichernig, and R. Bloem,
“Model-based testing IoT communication via
active automata learning,” Proceedings of the
IEEE International Conference on Software
Testing, Verification and Validation, ICST 2017,
pp. 276–287, 2017.

[9] B. K. Aichernig, M. Tappler, “Learning from
faults: Mutation testing in active automata
learning,” Lecture Notes in Computer Science,
Vol. 10227, pp. 19–34, 2017

[10] B. K. Aichernig, M. Tappler, “Probabilistic
black-box reachability checking,” Lecture
Notes in Computer Science, Vol. 10548, 2017.

[11] Edited by Andrew Banks and Rahul Gupta,
“MQTT Version 3.1.1. OASIS Standard”,
October 2014.

[12] D. Angluin, “Learning regular sets from queries
and counterexamples,” Inf. Comput., Vol. 75,
No. 2, pp. 87–106, 1987.

[13] Mosquitto, [Online]. Available:
https://mosquitto.org/.

[14] HBMQTT, [Online]. Available:
https://github.com/beerfactory/hbmqtt.

[15] J. Ludwiger, et. al., “Towards networked
sliding mode control,” Proceedings of the 56th

Bernhard Großwindhager, Astrid Rupp, Martin Tappler et al. / International Journal of Computing, 16(4) 2017, 226-237

 236

IEEE Conference on Decision and Control,
2017.

[16] Tamiya Modelltrucks, [Online]. Available:
http://www.tamiya.de/de/produkte/rcmodelltruc
ks.htm.

[17] BeagleBone Black Board, [Online]. Available:
https://beagleboard.org/black.

[18] MATLAB Support Package for BeagleBone
Black Hardware, [Online]. Available:
https://de.mathworks.com/help/supportpkg/bea
gleboneio/.

[19] A. Manecy, N. Marchand, and S. Viollet. “RT-
MaG: An open-source SIMULINK toolbox for
linux-based real-time robotic applications,”
Proceedings of the IEEE International
Conference on Robotics and Biomimetics
(ROBIO 2014), 2014.

[20] RT PREEMPT patch for BeagleBone, [Online].
Available: http://elinux.org/BeagleBoardDebian
#Mainline_.284.4.x_lts.29.

[21] Logitech WebCam C930e, [Online]. Available:
http://www.logitech.com/de-at/product/c930e-
webcam

[22] E. Olson. “AprilTag: A robust and flexible
visual fiducial system,” Proceedings of the
IEEE International Conference on Robotics
and Automation, 2011.

[23] AprilTags C++ Library, [Online]. Available:
http://people.csail.mit.edu/kaess/apriltags/

[24] European truck platooning challenge, [Online].
Available: https://www.eutruckplatooning.com.

[25] A. Alam, J. Mårtensson, and K.H. Johansson.
“Experimental evaluation of decentralized
cooperative cruise control for heavy-duty
vehicle platooning,” Control Engineering
Practice, Vol. 38, pp. 11–25, 2015.

Bernhard Großwindhager recei-
ved the B.Sc. and Dipl.-Ing.
degrees in Electrical Engineering
from Graz University of
Technology, Austria, in 2012 and
2014, respectively. Since 2016 he
is a PhD student at the Networked
Embedded Systems group of the
Institute for Technical Informatics

at TU Graz. His research interests include reliable
and efficient ultra-wideband wireless communication
and localization.

Astrid Rupp is a PhD student and
project assistant at the Institute of
Automation and Control at Graz
University of Technology, Austria.
She received the master’s degree
in Information and Computer
Engineering at Graz University of
Technology in 2013. Her research

focuses on automated driving, multi-agent systems,
formation control, and sliding mode control.

Martin Tappler is a PhD student
and project assistant at the
Institute of Software Technology at
Graz University of Technology,
Austria.

He received a bachelor's and a
master's degree in computer
science from Graz University of
Technology. His research focuses
on model-based testing, test-

based model learning, and combinations thereof.

Markus Tranninger is a research
assistant at the Institute of
Automation and Control at Graz
University of Technology, Austria.

His research interests include
networked control, robust control
and estimation, and real-time co-
simulation.

Samuel Weiser is a PhD student
at the Secure Systems group at
Graz University of Technology,
Austria. He received his master's
degree in Information and
Computer Engineering at TU Graz
in 2016. His research focuses on
software side-channels and
secure computing architectures.

Bernhard K. Aichernig is a
tenured associate professor at
Graz University of Technology,
Austria. He investigates the
foundations of software engi-
neering for realising dependable
computer-based systems. Bern-
hard is an expert in formal
methods and testing. His research

covers a variety of areas combining falsification,
verification and abstraction techniques. Current
topics include the Internet of Things, model learning,
and statistical model checking. Since 2006, he
participated in four European projects. From 2004-
2016 Bernhard served as a board member of Formal
Methods Europe, the association that organises the
Formal Methods symposia. From 2002 to 2006 he
had a faculty position at the United Nations
University in Macao S.A.R., China. Bernhard holds a
habilitation in Practical Computer Science and
Formal Methods, a doctorate, and a diploma
engineer degree from Graz University of
Technology.

Bernhard Großwindhager, Astrid Rupp, Martin Tappler et al. / International Journal of Computing, 16(4) 2017, 226-237

 237

Carlo Alberto Boano is an
assistant professor at the Institute
for Technical Informatics of Graz
University of Technology, Austria.
He received a doctoral degree
sub-auspiciis praesidentis from TU
Graz in 2016 with a thesis on
dependable wireless sensor
networks. Carlo Alberto's research

interests encompass the design of dependable
networked embedded systems, with emphasis on
the energy-efficiency and reliability of low-power
wireless communications, as well as on the
robustness of networking protocols against
environmental influences.

Martin Horn is professor at and
director of the Institute for
Automation and Control at Graz
University of Technology, Austria.
His research interests encompass
networked control, variable
structure control, modeling of
mechatronic systems and
automotive applications.

Gernot Kubin was born in Vienna,
Austria. He received the Dipl.-Ing.
degree in 1982 and the Dr.techn.
degree (sub auspiciis praesidentis) in
1990 in Electrical Engineering from
Vienna University of Technology,
Austria. He is a Professor of
Nonlinear Signal Processing and has

been Head of the Signal Processing and Speech
Communication Laboratory at Graz University of
Technology, Austria, since 2000. At TU Graz, he has
been Dean of Studies in Electrical and Audio
Engineering 2004-2007, Coordinator of the Doctoral
School in Information and Communications
Engineering since 2007, and Chair of the Senate
2007-2010 and again since 2013. His research
interests are in nonlinear signals and systems,
computational intelligence, as well as speech and
audio communication. Dr. Kubin has been a Member
of the Board Austrian Acoustics Association (since
2000), an elected member of the Speech and

Language Processing Technical Committee of the
IEEE (since 2011), an elected member of the
Speech Acoustics and Speech Processing
committees of the German Information Technology
Society ITG (since 2015).

Stefan Mangard is professor at
Graz University of Technology,
where he heads the Secure
Systems group. His research
interests include security
architectures, software side-
channels, hardware attacks and
countermeasures, cryptography
as well as secure and efficient

hardware and software implementations of
cryptography. He obtained an ERC consolidator
grant in 2015 to research countermeasures in
hardware and software to protect software execution
against all types of side-channel and fault attacks.

Martin Steinberger was born in
Leoben, Austria. He received the
master in electrical engineering
and the PhD in technical sciences
from Graz University of
Technology, Graz, Austria, in
2005 and 2011, respectively. He
has been assistant professor at
the Institute of Automation and

Control since 2016, Graz University of Technology.
His research is mainly focused on sliding mode
control and networked control.

Kay Römer is professor at and
director of the Institute for
Technical Informatics at Graz
University of Technology, Austria.
He received a PhD in computer
science from ETH Zurich,
Switzerland in 2005. His research
interests encompass wireless
networking, fundamental services,
operating systems, programming

models, dependability, and deployment methodology
of networked embedded systems.

