
Nataliya Shakhovska, Roman Kaminskyy, Eugen Zasoba, Mykola Tsiutsiura / International Journal of Computing, 17(1) 2018, 25-32

 25

ASSOCIATION RULES MINING IN BIG DATA

Nataliya Shakhovska 1), Roman Kaminskyy 1), Eugen Zasoba 1), Mykola Tsiutsiura 2)

1) Lviv Polytechnic National University, S.Bandera str, 12, Lviv, 79013, Ukraine
nataliya.b.shakhovska@lpnu.ua

2) Kyiv National University of Construction and Architecture, Kyiv, Ukraine
tsiutsiura.mi@knuba.edu.ua

Paper history:
Received 16 October 2017
Received in revised form 27 February 2018
Accepted 14 March 2018
Available online 31 March 2018

Keywords:
Big data;
association rule;
data dependency;
Apriori;
Complexity;
parallel processing.

Abstract: The paper proposes a method for Big data analyzing in the presence of
different data sources and different methods of processing these data. The Big
data definition is given, the main problems of data mining process are described.
The concept of association rules is introduced and the method of association
rules searching for working with Big Data is modified. The method of finding
dependencies is developed, efficiency and possibility of its parallelization are
determined. The developed algorithm makes it possible to assert that the task of
detecting association dependencies in distributed databases belongs to the class
of P-tasks. The algorithm for finding association dependencies is well-solved
with MapReduce. The low asymptotic complexity of the developed association
rules mining algorithm and a wide set of data types supported for analysis allow
to apply the proposed algorithm in practically all subject areas working with
association dependencies in the data domain.

Copyright © Research Institute for Intelligent Computer Systems, 2018.
All rights reserved.

1. INTRODUCTION

Today, various uncoordinated information
resources processing (such as search, system
integration, etc.) is the problem that often arises. For
example, for university needs the integration process
is the formation of scientific reports, the definition
of indicators of success and quality of training, the
formation of the ranking of the department, etc.; for
local authorities one of the purposes is to determine
critical indicators of the region's development based
on data obtained from the state and non-
governmental organizations.

The processing of various types of uncoordinated
data has been carried out by researchers since 1970s.
Models and metalanguages for working out different
types of data have been developed. However,
existing models and methods today relate only to
pre-known types of data (mostly relational databases
or XML data) solving only part of the problem of
processing different types of data, for example,
indexing to speed up the search. But NoSQL
databases and availability of mostly semistructural
information require new methods and tools for data
processing [1].

Big Data information technology is the set of
methods and means of processing different types of
structured and unstructured dynamic large amounts
of data for their analysis and use for decision
support. There is an alternative to traditional
database management systems and Business
Intelligence solutions. This class attributes of
parallel data processing are the following ones:
NoSQL, algorithms MapReduce, Hadoop [2].

Big Data features are:
 unstructured and structured information

processing;
 orientation on the fast data processing;
 inefficiency of traditional query language

while working with data.
One of the adapting concepts, not only for

relational data, is NoSQL language. The followers of
the NoSQL concept emphasize that it is not a
complete negation of SQL and the relational model.
Their concept comes from the fact that SQL is
important and very useful tool, which cannot be
considered as universal. One issue for the classical
relational database is a problem of dealing with huge
data and high-load projects. The main objective of
the approach is to extend the database if SQL is

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

Nataliya Shakhovska, Roman Kaminskyy, Eugen Zasoba, Mykola Tsiutsiura / International Journal of Computing, 17(1) 2018, 25-32

 26

flexible enough, and not to displace it wherever it
performs its tasks.

The main ideas of the NoSQL are the following
[2]:

 non-relational data model,
 distribution,
 open output code,
 good horizontal scalability.

Therefore, there is a need to manage
discriminating information, namely, its presentation
in the form understood by users (even if they do not
know the specifics of the organization of the
structures of this data source) and the processing
(search, integration, extraction of new knowledge,
etc.).

2. RELATED WORKS

In [2, 3] it is determined that multidimensional
and object models are used to represent the Big data.
The multidimensional view of the data is well used
for data visualization and analysis tasks, but due to
the hypercube dissipation, the amount of data in this
case is bigger than the relational representation that
is not acceptable to the Big data. Object
representation allows to store objects in the form of
attributes, their characteristics and relationships
between characteristics. With some modifications, it
can be used for Big data. However, the problem of
the transformation of various types of data (text,
semi-structured data) into an object model remains
unresolved.

So, most of existing data analysis methods are
not suitable for Big data because:

 the data size is extremely large;
 we don’t know the type of data dependence;
 according to its structure and due to various

origin sources, the data are unclear, there are
many deviations and outliers;

 it is necessary to use parallel processing of
data.

Association rules and rule generation are widely
used and they are faced with many problems, the
main of them is the availability of Big data and
multivalued data sets [4]. The most popular
algorithms for association rules mining are: Apriori,
Apriori TID, Hybrid Apriori, FP-tree [7 – 14]. For
small datasets the performance of Apriori is bigger
than Apriori TID, but Hybrid Apriori can be used for
big datasets too. FP-tree allows us to find another
dependency than Apriori, because it creates
relationships between levels in the tree.

However, it’s very hard to use those algorithms
for Big data analysis. For example, time complexity
of Apriori is O(d2n), time complexity of FP-tree is
O(dn), where n is a number of records in dataset and
d is a number of frequent item sets [19]. Single-

processor systems with normal processor speed
cannot handle such data volume, which makes the
algorithm ineffective for the use. Recent
developments in network technology and especially
cloud platforms have provided some new ideas for
generating multi-attribute rules using a parallel
environment such as Hadoop [5]. MapReduce has
been popular and more used to calculate a large
amount of data since Google launched it on its
platform. The distributed file system Google (GFS)
and Amazon Web Services (AWS) use the Hadoop
and MapReduce platform to provide their services
[5].

In the case of generating association rules in
MapReduce, Mapper is responsible for assigning
various combinations of elements as “keys” and the
“value” are used to track the number of inputs or
sub-accounts of support. The task of the Reducer is
to decrease the Mapper received per each key value
and calculate the final support for all sets of
candidate data.

In this way, association rules can be created with
the maximum support and confidence.

The Apriori algorithm has big problems with
large volumes of Big data, since it scans the entire
database several times [6]. This means that the
execution time is increased according to the number
of transactions.

The purpose of the paper is to develop the
association rules mining algorithm for Big data
processing. To improve the Apriori algorithm
authors proposed to use the both Spark and a
hierarchical method for formulating rules.

3. PROPOSED METHOD FOR BIG DATA
ANALYSIS

3.1. ASSOCIATION RULES DEFENITTION

Let's define the association rule given as
dependence. We will search dependence on the
relation r. This relation can be formed both for
relational data sources and for non-relational
(NoSQL) by forming a pair of values such as the
name of the object and its characteristics.

That is why, the information model of Big data is
triple [1]

afeBigD ,, , (1)

where Ee is entity, Ff  is characteristic,

fena , is association between entity e and

characteristic f .

The difference between relational model and
model “entity-characteristic” is the association

attribute fena , with a value ranging from 0 to 1.

Nataliya Shakhovska, Roman Kaminskyy, Eugen Zasoba, Mykola Tsiutsiura / International Journal of Computing, 17(1) 2018, 25-32

 27

The relational model is a subclass of the model

“entity-characterization” with a value fena ,

equal to 1 for each entity and characteristics
associated with it.

Let us r is a set of entities and characteristics
with schema R. For different objects, the number of
characteristics may be different. In this case, the
ratio r will be formed as CROSS (r). The text below
will only use the symbol r.

Association Dependence (AD) is a productive
rule in the selection of the relation r, which is valid
for a significant number of objects of this selection.
The significance threshold must be determined by
expert means, or output from the calculation of the
probability of the false allocation of rule [7]:

        

       

      

; : ; ; ,

1.. , : ,

1.. , : ,

,

,

i

j

I S T

s i

T j

S S A

T T A

F S T s t r R r R

i n i A R

j n j A R

s r R r R

t r R s







  

  

 

 

(2)

where S , T are the predicates of the selection of the
conditional and the resulting part, respectively, s , t
are the results of selection operations for these

predicates from the table.   iS A means that

predicate is used for the set of attributes iA .

The level of trust (confidence) is the ratio of the
number of objects presented in AD to the number of
objects in the selection:

   
 
 

S T

S

r
Conf S T P S T

r






    . (3)

The level of support is the description of the
predicate of the selection on the ratio calculated as
the ratio of the number of objects satisfying the
predicate P to the total number of objects in relation
to

 
 P r

Supp P
r


 . (4)

Level of improvement is calculated as the ratio of
levels of trust and support to the AD:

 
 
 

 
   

Imp
Conf S T Supp S T

S T
Supp T Supp S Supp T

 
  


. (5)

The level of support and the level of
improvement are symmetrical,

   Sup X Y Sup Y X   and

   Imp X Y Imp Y X   . The level of truth is

ordered parameter, i.e.

   Conf X Y Conf Y X   .

3.2. ASSOCIATION RULES GENERATION

Let us build the method of AD mining [7].
Input data:

1. Relation CROSS(r), schema R is defined only
for analysis selection.

2. Hash-function for each attribute in R:  j jh A .

3. Threshold value of the confidence level of
dependencies is sought as

0p . Instead of this

parameter, the number of tuples for which the
desired dependence must be determined can be
used equally minSupport.

4. Threshold value of the confidence level of
dependencies that are taken into account when
new dependencies are formed = *p .

Output data:
A set of association dependencies that meets the

specified criteria:     0, :i i i iS T i Conf S T p   

I. Data analysis:
1. Create a tree of hash tables of statistics for

attribute value relationships. The hash table of each

attribute jA will match the values of this attribute to

the structure (the number of occurrences of the
value, the array of descriptions of the conditional
values of other attributes). Description of the
conditional values is a hash table of the attribute

values kA and the number of their repetitions on the

set of tuples
j i jA x A

X R
   

 . The vertices of the even

levels of the tree branch out by the name of the
attribute on which the projection is carried out; odd
levels are the value of the attribute of the parent's
vertex. Hash tables of odd tree levels use predefined
hash functions  j jh A ; for even levels, the internal

hash function of comparing attributes to equality is
used.

2. Fill in the data structure from step 1. Not the
whole tree is fully filled up, but only branches
corresponding to predefined criteria for the quality
of dependencies. Additional refinement of statistics
is possible using the principle of lazy calculations:

a) For each tuple  x r R ;

b) Initialize the current vertex of the statistics
tree v with the root of the tree: v a ;

Nataliya Shakhovska, Roman Kaminskyy, Eugen Zasoba, Mykola Tsiutsiura / International Journal of Computing, 17(1) 2018, 25-32

 28

c) Initialize 0startAttr  as number of
attribute, from which we start branching of the
tree;

d) For each attribute ,jA R j startAttr  ;

e) If a branch of statistics tree does not exist:

  jv j x A    
;

f) Create node  v j and   jv j x A    
;

g) Initialize attributes:

  . 0jv j x A count     
,

  .jv j x A childs      
,

  . 1jv j x A nextAttrId startAttr      
,

 if .v count splitThreshold ;

h) Go to 2d.
Thus, the structure of data contains elemental

dependencies  j i j k i kA x A A x A     , and

also provides the ability to calculate the number of
tuples of arbitrary projections

 
1 1 2 2

...i i i i i il l
A v A v A v r       .

3. Declare a list of dependencies

  : ; : ; : ; :z l S set T set NS N NT N . Each

dependence is a structure with attributes: S is the set
of values of the attributes of the conditional part of
the dependence on which it is defined; T is the set of
values of the attributes of the resulting part of the
dependence on which it is defined; NS is the number
of tuples for which the dependence is true; NT is a
number of tuples for which the conditional part of
the dependence is executed.

4. Add to the list all dependencies where

   0j i j k i kConf A x A A x A p     
.

II. Generate dependencies from existing
dependencies:

1. Copy the list Z to the list Aggr.

2. Create hash-table aggrh as a set of values

from created dependencies. This will allow
you to effectively search for AD, which can
be aggregated by each specific dependence

aggrd .

3. For each dependence
1z Aggr .

4. Create dependence 3 1 2z z z  .

5. If   *
3Conf z p , add 3z to the end of list

Aggr for the next dependences aggregation.

6. Add dependence 1z to the hash-table aggrh

with key   1 Prh z T .

III. Generate new dependencies:

1. Create the list of dependencies y.
2. Initialize Y Aggr .

3. Announce the hash table of the resulting parts
of the predicate pr to effectively search for the
set of dependencies having the same resultant
part of the predicate.

4. For each dependence
IF Y add AD

IF to

the list of hash-table:   PrIpr h F T 
 

.

The constructed algorithm of association
dependencies mining makes it possible to conduct an
effective analysis of the same type of data for the
presence of AD, the total complexity of which in
time is

The memory complexity of the algorithm is equal

 
 

 

1 log

1 log

.

avgD

avgD

stat aggr ma

m

aggr aggr ma ma

m

ma ma

M O M M M

n
O Z sz Z sz

minSupport

n
O Z sz

minSupport





   

  
          

  
       

The second component is larger than the third

component similarly to time complexity. It is
impossible to compare the first and third component
in the equation in the general case because their size
depends on the amount of data.

Low asymptotic complexity and different data
types supporting allow us to apply the developed
AD mining algorithm for different subject areas.

4. EXPERIMENTAL RESULTS

In order to compare the effectiveness of the
developed data analysis method, the three of the
most promising methods were selected: Apriori,
HybridApriori and the FP-tree method [8, 9, 14].

The quantitative criteria for methods comparison
show useful dependencies, the percentage of useful

Nataliya Shakhovska, Roman Kaminskyy, Eugen Zasoba, Mykola Tsiutsiura / International Journal of Computing, 17(1) 2018, 25-32

 29

dependencies in the set of discovered dependencies,
the time of data analysis.

Useful dependence is the dependence on the data,
which has a usefulness factor of not less than 0.5
when evaluated by the experts of the problem area.

1

1

0.5

en

i
ie

m markMin
n

markMax markMin



 
 

  




,

(6)

where m is i assessment of expert, ne is amount of
experts, markMin is minimum value of the
assessment scale, markMax is maximum value of the
assessment scale.

The useful dependencies are dependencies which
experts consider useful for f the subject area.

Obviously, in order to determine this assessment,
it is imperative for experts to analyze all the
dependencies found automatically. The need to
involve experts at this stage (interpretation of
results) is not a problem, since the task of automated
data analysis tools is precisely to suggest
assumptions about important regularities in the data,
rather than judging the importance of the
relationships found. The expert should interpret the
results of the analysis.

The percentage of useful dependencies is the
ratio of the number of dependencies that experts
consider to be useful to the total number of
dependencies found by the method. This criterion is
very important, since it defines the efficiency of the
experts in interpreting data. Obviously, the data
analysis method, known to thousands of important
dependencies, but “lost” among millions of obvious
facts, will not be useful and cannot be practical [10].

The data analysis speed is relatively simple to
measure the criterion and is determined by the time
required by the computing system to execute the
data analysis request.

We tested all methods on the same data set. The
data set used for this application is the Adult data set
in the Machine Learning Repository UCI [10]. It is
widely used for association rules mining [10 – 11].
We compared built-in Apriori and FP-tree
algorithms with the proposed method.

The data set contains about 2320000 observations
with 14 variables. Extraction was done by Barry
Becker from the 1994 Census database. A set of
reasonably clean records was extracted using the
following conditions: ((AAGE>16) && (AGI>100)
&& (AFNLWGT>1)&& (HRSWK>0)). Prediction
task is to determine whether a person makes over
50K a year: >50K, <=50K:

1. age: continuous.

2. workclass: Private, Self-emp-not-inc, Self-
emp-inc, Federal-gov, Local-gov, State-gov,
Without-pay, Never-worked.

3. fnlwgt: continuous.
4. education: Bachelors, Some-college, 11th,

HS-grad, Prof-school, Assoc-acdm, Assoc-
voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th,
Doctorate, 5th-6th, Preschool.

5. education-num: continuous.
6. marital-status: Married-civ-spouse, Divorced,

Never-married, Separated, Widowed,
Married-spouse-absent, Married-AF-spouse.

7. occupation: Tech-support, Craft-repair, Other-
service, Sales, Exec-managerial, Prof-
specialty, Handlers-cleaners, Machine-op-
inspct, Adm-clerical, Farming-fishing,
Transport-moving, Priv-house-serv,
Protective-serv, Armed-Forces.

8. relationship: Wife, Own-child, Husband, Not-
in-family, Other-relative, Unmarried.

9. race: White, Asian-Pac-Islander, Amer-
Indian-Eskimo, Other, Black.

10. sex: Female, Male.
11. capital-gain: continuous.
12. capital-loss: continuous.
13. hours-per-week: continuous.
14. native-country: United-States, Cambodia,

England, Puerto-Rico, Canada, Germany,
Outlying-US(Guam-USVI-etc), India, Japan,
Greece, South, China, Cuba, Iran, Honduras,
Philippines, Italy, Poland, Jamaica, Vietnam,
Mexico, Portugal, Ireland, France,
Dominican-Republic, Laos, Ecuador, Taiwan,
Haiti, Columbia, Hungary, Guatemala,
Nicaragua, Scotland, Thailand, Yugoslavia,
El-Salvador, Trinadad&Tobago, Peru, Hong,
Holand-Netherlands.

The results of visualizing the generated
association dependencies are given in Fig. 1 and
shown below.

Fig. 1 – Visualization of association dependencies.

Nataliya Shakhovska, Roman Kaminskyy, Eugen Zasoba, Mykola Tsiutsiura / International Journal of Computing, 17(1) 2018, 25-32

 30

install.packages("arules")
library(arules)
library(Matrix)
data("Adult")
find only frequent itemsets which do not contain small or
large income
is <- apriori(Adult, parameter = list(support= 0.1,
target="frequent"),
 appearance = list(none = c("income=small",
"income=large"),
 default="both"))
itemFrequency(items(is))["income=small"]

find itemsets that only contain small or large income and
young age
is <- apriori(Adult, parameter = list(support= 0.1,
target="frequent"),
 appearance = list(items = c("income=small",
"income=large", "age=Young"),
 default="none"))
inspect(head(is))
find only rules with small or large income in the right-hand-
side.
rules <- apriori(Adult, parameter = list(support=0.2, confidence
= 0.5),
 appearance = list(rhs = c("income=small",
"income=large"),
 default="lhs"))
inspect(head(rules))
install.packages("arulesViz")
library(arulesViz)
plot(rules, method="graph", control=list(type="items"))
plot(rules)
plot(rules, method="paracoord", control=list(reorder=TRUE))

The comparison of proposed methods and
another association rules mining algorithms is done
(Table 1). As it can be seen from the Table 1, the
number of founded dependencies does not
exponentially increase, depending on the size of the
input data, as we would have guessed. Moreover,
this grandfather seems to be limited above some
boundary. This can be explained by the fact that the
data analyzed was rather homogeneous. Therefore,
in each subsequent block of data, more and more
dependencies were repeated from previous blocks.
These data respectively did not determine the
generation of new dependencies, but increased only
the level of support of existing data. The
dependencies that match the search criteria were
added to the resulting set.

Table 1. The number of useful dependencies found by
different methods from the volume of the analyzed

data.

Amount of
records

Proposed
method

FP-
tree

Apriori
Hybrid-
Apriori

20000 2856 2199 720 849
40000 5220 3627 888 1008
60000 6657 4530 1011 1158
80000 7656 5136 1053 1278
100000 8043 5274 1104 1329
125000 8184 5382 1125 1377

Another factor that could affect the number of
dependencies was sorting the data by the date of
birth of the driver. Thus, each subsequent block of
data, in the meantime, introduced really new
dependencies that could not be detected in the
previous data blocks, depending on the age of the
driver. Therefore, we can assume that the number of
dependencies is unlimited from above with a clear
boundary, but goes to a directly proportional hall
with a fairly small angular coefficient of the number
of tuples of data.

For data of practical value, the number of
dependencies

aggrZ is no more than several

thousand, while the number of tuples n can be
calculated in billions. Therefore, in the case of
parallel computing on a large number of computers,

the second member of the function nt can be

neglected. For the same reasons

   2log n o minSupport .

Thus, the asymptotic estimation of the execution
time of the algorithm on a system with k computers
is

  logavgD m

nt O minSupport


 . (7)

The estimated time of execution of the algorithm

is sub-polynomial, and therefore, the developed
algorithm is an effective parallel algorithm.

The developed algorithm makes it possible to
assert that the task of detecting association
dependencies in distributed databases belongs to the
class of P-tasks. So, the algorithm for finding
association dependencies is well-solved with
MapReduce [16, 17].

In addition to several successive
implementations, parallel processing of Big data are
not widely available. One example of serial
implementation is the well-known statistical
computation with the package R, called “arules”.
Parallel implementation of the FP-Groth program is
available in the library for studying the open source
computer (MLlib) Apache Spark and Apache
Mahout [18, 19].

Association rules are used widely in a large
number of applications. A developed algorithm can
be used in many cases when traditional algorithms
are not viable because of the huge amount of
processed data. This can be very beneficial, for
example, in sensor networks that generate a huge
amount of data at short intervals or in social
networks which have millions of users. Moreover
procedures of the developed algorithm can be
generalized to other methods of data mining using
the rules of the association, such as exceptions and

Nataliya Shakhovska, Roman Kaminskyy, Eugen Zasoba, Mykola Tsiutsiura / International Journal of Computing, 17(1) 2018, 25-32

 31

anomalies [11], gradual dependencies [12, 13, 20],
and some others [21, 22].

6. CONCLUSION

The important scientific problem of associative
dependencies mining in relational and NoSQL
databases is solved in this paper. The received
results allow us to improve the quality of decision-
making in applied information systems by
discovering new dependencies in the data.

A new method and algorithm for the associative
dependencies mining were developed. It allowed
obtaining a polynomial estimation of algorithm time
complexity as well as carrying out the parallel
execution of the algorithm on Hadoop systems using
the map-reduce. It should be noted that the most
suitable method among existing ones is the FP-tree
method. The last one has exponential time-bound
complexity estimation and requires memory that
also exponentially depends on data attributes
number. Moreover the FP-tree method is not
designed for execution in distributed storage
environments.

Comparison of the developed method with
existing analogues (Apriori, FP-tree, Hybrid Apriori)
showed its advantages, in particular: in 27% higher
values of usefulness and time characteristics, a
robustness to data errors, the possibility of algorithm
parallelization and its execution in distributed
databases, the autonomy work and the ability to
operate in the streaming mode are observed. This
affirms the prospect of wide spreading the proposed
method in various domains.

7. REFERENCES

[1] N. Schahovska, “Datawarehouse and dataspace
– information base of decision support system,”
in Proceedings of the IEEE 11th International
Conference on CAD Systems in
Microelectronics (CADSM’2011), 2011.

[2] N. Shakhovska, M. Medykovsky, P. Stakhiv,
“Application of algorithms of classification for
uncertainty reduction,” Przeglad
Elektrotechniczny, vol. 89, no. 4, pp. 284-286,
2013.

[3] M. J. Zaki, “Scalable algorithms for association
mining,” IEEE Transactions on Knowledge and
Data Engineering, vol. 12, issue 3, pp. 372-
390, 2000.

[4] J. Han, J. Pei, Y. Yin, “Mining frequent
patterns without candidate generation,” in ACM
Sigmod Record, pp. 1-12, 2000.

[5] J. Woo, “Apriori-Map/Reduce algorithm,” in
Proceedings of the International Conference on
Parallel and Distributed Processing

Techniques and Applications (PDPTA), 2012,
pp. 1.

[6] X. Y. Yang, Z. Liu, Y. Fu, “MapReduce as a
programming model for association rules
algorithm on Hadoop,” in Proceedings of the
IEEE 3rd International Conference on
Information Sciences and Interaction Sciences
(ICIS’2010), 2010, pp. 99-102.

[7] R. Agrawal, T. Imieliński, A. Swami, “Mining
association rules between sets of items in large
databases,” in ACM Sigmod Record, pp. 207-
216, 1993.

[8] О. Yu. Pshenychnyj, “Data dependencies
mining,” Mathematical Machines and Systems,
vol. 1, no. 1, 2012. (in Ukrainian).

[9] M. Delgado, M. D. Ruiz, & D. Sánchez, “New
approaches for discovering exception and
anomalous rules,” International Journal of
Uncertainty, Fuzziness and Knowledge-Based
Systems, vol. 19, issue 2, pp. 361–399, 2011.

[10] M. Hahsler, C. Buchta, B. Grün, K. Hornik,
arules: Mining Association Rules and Frequent
Itemsets. R package version 1.0-3., 2010,
[Online]. Available: http://CRAN.R-
project.org/.

[11] F. Berzal, et al., “A new framework to assess
association rules,” in Advances in Intelligent
Data Analysis, Springer Berlin: Heidelberg,
pp. 95–104, 2001.

[12] E. Hüllermeier, “Association rules for
expressing gradual dependencies,” in
Principles of Data Mining and Knowledge
Discovery, Springer, Berlin: Heidelberg,
pp. 200–211, 2002.

[13] H. Srivastava, V. Kumar, S. Shiwani, “An
efficient enhancement of mining top-K
association rule,” International Journal of
Advanced Research in Computer Science and
Software Engineering, vol. 4, issue 6, June
2014.

[14] D. Hunyadi, “Performance comparison of
Apriori and FP-Growth algorithms in
generating association rules,” in Proceedings of
the European Computing Conference, 2011,
pp. 376-381.

[15] A. O. Ogunde, O. Folorunso, A. S. Sodiya, “A
partition enhanced mining algorithm for
distributed association rule mining systems,”
Egyptian Informatics Journal, vol. 16, no. 3,
pp. 297-307, 2015.

[16] R. Porkodi, B.L Shivakumar, “An improved
association rule mining technique for xml data
using Xquery and Apriori algorithm,”
pp. 1510-1514, March 2009.

[17] S. Rao, P. Gupta, “Implementing improved
algorithm over Apriori data mining association

Nataliya Shakhovska, Roman Kaminskyy, Eugen Zasoba, Mykola Tsiutsiura / International Journal of Computing, 17(1) 2018, 25-32

 32

rule algorithm”, IJCST, vol. 3, pp. 489-493,
2012.

[18] V. K. Shrivastava, P. Kumar, K. R. Pardasani,
“FP-tree and COFI based approach for mining
of multiple level association rules in large
databases,” arXiv preprint arXiv:1003.1821,
2010.

[19] K. Khurana, and S. Sharma, “A comparative
analysis of association rule mining algorithms,”
International Journal of Scientific and
Research Publications, vol. 3, issue 5, May
2013.

[20] N. Shakhovska, “Consolidated processing for
differential information products,” in
Proceedings of the IEEE VIIth International
Conference on Perspective Technologies and
Methods in MEMS Design
(MEMSTECH’2011), 2011.

[21] J. Chen, D. Dosyn, V. Lytvyn, A. Sachenko,
“Smart data integration by goal driven ontology
learning,” in Advances in Big Data.
Proceedings of the 2nd INNS Conference on
Big Data, Thessaloniki, Greece, October 23-25,
2016, pp. 283-292.

[22] I. Perova, Y. Bodyanskiy, “Fast medical
diagnostics using autoassociative neuro-fuzzy
memory,” International Journal of Computing,
vol. 16, issue 1, pp. 34-40, 2017. Retrieved
from http://computingonline.net/computing/
article/view/869.

Nataliya Shakhovska,
doctor of sciences, Prof.,
Head of Department of
Artificial Intelligence, Lviv
Polytechnic National
University.

Research interests:
Big data mining, data-
warehouses, intelligence
systems.

Roman Kaminskyy, doc-
tor of sciences, Prof.,
Professor of Department
of Artificial Intelligence,
Lviv Polytechnic National
University.

Research interests:
Numerical optimization,
Times series, intelligence
systems.

Zasoba Eugen, assistant of
Department of Artificial
Intelligence, Lviv Polytechnic
National University.

Research interest: robotics,
complexity of algorithms

Mykola Tsiutsiura has gradu-
ated from Kiev National
University of Civil Engineering
and Architecture. Now he is
working as Associated Profes-
sor at Information Technologies
Department of Kiev National
University of Civil Engineering
and Architecture.

Research interests: Object-
Oriented Programming; Software Design;
Algorithmization and programming; Cloud tech-
nologies; IT project management; Standardization
and certification in information systems; Models and
methods of project management.

