A.V. KUCHER, candidate of pedagogical sciences, competitor for doctor`s degree National Scientific Center «Institute of Agrarian Economics»

Management of soil rational use in the context of european integration

Scientific problem. In terms of scope of application the term «management» can be considered the most common, as I. V. Koshkalda noted, it is used to characterize any system – economic, social, technological, biological and so on. In the case of land management, this process aims to ensure the rational use and protection of lands. Probably we should accept the fact that currently Ukraine does not have any effective mechanism for land management and land use, which lowers efficiency and competitiveness not only of the individual but also the national economy as a whole [1].

Analysis of recent researches and publications. In world practice, the system of land management (Land Administration Systems -LAS) is divided into three types: classic (implements the principle «from general to specific»), transitional period (based on the principle «from the particular to the general») and integrated multifunction [2]. Experts of Global Soil Partnership (GSP) developed and offered to participating countries, including Ukraine, which joined the partnership in 2014, a program for sustainable management of soil resources (Sustainable Soil Management - SSM). Obviously, the sustainable management of soil can be considered as a subsystem of Land Management. The main purpose of soil fertility management system is a suspension of degradation processes, increasing productive and ecological functions of land, targeting modern transformation of soil into the mainstream of development and extended fertility reproduction, contributing to sustainable development of land use [3].

The objective of the article – to highlight the results of the study on management of the

rational soil use in the context of European integration on the basis of benchmarking intensification of land use.

Statement of the main results of the study. In the basis of management of rational soil use in the context of European integration we suggest a conceptual approach to competitiveness management on the basis of the latest benchmarking as a new vision of process of focused system influence on the formation, maintenance and development of competitive advantages based on the ideology of permanent comparison with the standards of the subject, detected by monitoring the competitive environment that allows viewing of content characteristics of the main objects of strategic management, continuously improve themselves and move from methods of situational competitiveness management to management of trends [4, p. 5].

Actually benchmarking – is an alternative method of strategic planning, which is defined by analyzing the performance of competitors. Benchmarking technology combines into a single system development strategy, industry analysis and competitor analysis. While benchmarking is a useful and effective tool for management at all levels (micro, meso, macro level), it is not used enogh, mainly because little idea about it or complete ignorance of its methods [5].

Therefore, in this study we examine the main indicators of the effectiveness and efficiency of intensification of land use in the agricultural sector in comparison with international benchmarks. The purpose of this comparison – to determine Ukraine's place in relation to the most effective («world leaders») and medium («standard») countries on the development of the agricultural sector. In particular, for the benchmarking study it was selected advanced countries such as the UK, Germany, Poland, the USA and France. The experience of the EU and

[©] A.V. Kucher, 2016

USA in this regard is not only a scientific interest, but also a number of practical features, especially towards effective intensification of land use and reproduction of soil fertility in agribusiness. The program of benchmarking is aimed at introducing best practices and to draw management attention to measures to improve the effectiveness (resultant) and efficiency of intensification of land use (Table 1).

 Table 1. International benchmarking of the effectiveness (resultant) of land use intensification in some countries

	Year									
Indicators	2000	2005	2008	2009	2010	2011	2012	2013	Trend	
				Great Brit	ain		-			
Productivity, c/ha:	(0.4	71.0	70.0	(0.4	(7.0	(0.5	(0.((10	72.5 1.02.4	
grain	69.4	/1.9	/2.8	68.4	67.8	68.5	60.6	64.8	y = /3.5 - 1.22 t	
sugar beets	539.6	574.3	626.8	700.0	553.1	752.6	607.6	683.8	y = 554.4 + 16.74 t	
potatoes	399.8	424.5	416.6	431.1	438.8	432.2	305.6	401.4	y = 434.6 - 6.30 t	
Produced on 100 ha of agr.										
land, c: meat of all kinds in	205.9	194.1	192.1	202.3	191.9	209.3	209.3	209.3	y = 194.2 + 1.68 t	
slaughter weight										
milk	852.9	858.8	774.0	763.0	814.0	825.6	808.1	808.1	y = 832.4 - 4.30 t	
Produced on 100 ha of	4202.4	2726.9	4150.0	2016 7	26167	2622.0	2258 1	22226	$x = 4270 + 122.1 \pm$	
arable land, c: grain	4203.4	3730.8	4130.0	3810.7	5010.7	3023.0	5256.1	3322.0	y = 4270 - 123.1 t	
sugar beets	1576.3	1491.2	1250.0	1383.3	1083.3	1393.4	1177.4	1290.3	y = 1515 - 41.00 t	
Produced eggs on 100 ha	181.8	206.9	181.8	103 5	200.0	225.8	103 5	225.8	$v = 180.8 \pm 4.52 t$	
of grain crops, c	101.0	200.9	101.0	195.5	200.0	223.0	195.5	223.0	y = 100.0 + 4.52 t	
				German	y					
Productivity, c/ha:	63.8	66.2	70.7	71.6	66.6	64.0	68 5	72 7	$v = 65.4 \pm 0.580 t$	
grain	05.0	00.2	/0./	/1.0	00.0	01.0	00.5	12.1	y 05.1 0.500 t	
sunflower	24.7	24.8	19.6	24.1	18.9	19.9	23.8	21.0	y = 24.0 - 0.42 t	
sugar beets	616.6	601.9	622.9	675.7	638.5	743.0	688.6	638.7	y = 604.4 + 10.8 t	
potatoes	449.9	419.8	437.6	440.6	399.8	456.1	447.6	398.3	y = 442.3 - 2.47 t	
Produced on 100 ha of agr.										
land, c: meat of all kinds in	368.4	405.9	455.6	461.5	491.0	503.0	491.0	491.0	y = 380.5 + 17.3 t	
slaughter weight	1.((0,0)	1 (22 5	1 (00.0	16560	1550.4	10144	100(0	10(2.2	1505 - 04.5	
milk	1660.8	1623.5	1698.2	1656.8	17/8.4	1814.4	1826.3	1862.3	y = 1585 + 34.5 t	
Produced on 100 ha of	3872.9	3873.9	4226.9	4201.7	3788.1	3546.2	3830.5	4067.8	y = 3996 - 15.6 t	
arable land, c: grain	2264.4	1074.0	1022.0	0176.5	1002.1	2407.4	00.47.5	1022.2	0100 + 0.67.4	
sugar beets	2364.4	1974.8	1932.8	2176.5	1983.1	2487.4	2347.5	1932.2	y = 2133 + 3.6/t	
Produced eggs on 100 ha	128.6	117.6	114.3	101.4	106.1	123.1	123.1	138.5	y = 112.0 + 1.52 t	
of grain crops, c				D.1					2	
Dro du stivite s/less		1		Polanc						
Productivity, c/na:	25.2	31.4	32.1	34.6	32.2	33.3	36.8	37.7	y = 26.7 + 1.38 t	
giain	15.0	171	17.9	10.1	15.1	19.7	176	17.5	$x = 165 \pm 0.160 t$	
summower	204.2	1/.1	1/.0	542.6	10.1	572.6	592.5	546.9	$y = 10.3 \pm 0.100 t$ $y = 271.5 \pm 27.7 t$	
sugar beets	102.8	185.2	107.6	108.5	178.6	204.7	242.5	197.9	y = 3/1.3 + 2/.7t y = 185.2 + 3.00t	
Produced on 100 ha of agr	195.0	165.2	197.0	190.5	178.0	204.7	243.0	107.0	y = 105.2 + 5.00 t	
land c meat of all kinds in	157.6	207.5	1914	205.0	239.7	243.2	262.1	262.1	v = 157.1 + 14.2 t	
slaughter weight	157.0	207.5	171.7	205.0	237.1	273.2	202.1	202.1	y 137.1 + 14.2 t	
milk	646.7	779.9	765.4	7764	842 5	837.8	875.9	875.9	v = 6732 + 282t	
Produced on 100 ha of	010.7	112.2	700.1	770.1	012.5	037.0	010.9	010.9	y 075.2 · 20.2 t	
arable land c. grain	1614.3	2181.8	2222.2	2416.0	2513.8	2351.4	2642.2	2642.2	y = 1788 + 118.8 t	
sugar beets	9357	909.1	690.5	864.0	9174	10541	11284	972.5	v = 800.1 + 29.7 t	
Produced eggs on 100 ha	,	,,,,,							j 00000 <u>_</u> ,	
of grain crops, c	45.5	60.2	69.8	70.6	75.9	77.9	65.8	78.9	y = 52.5 + 3.47 t	
				USA					1	
Productivity, c/ha:	50.0	(2.5	(5 A	71 4	(0.((7.5	50 F	70.4		
grain	58.0	63.5	65.4	/1.4	68.6	67.5	58.5	/2.4	y = 61.4 + 0.944 t	
sunflower	15.0	17.3	16.0	17.4	16.4	15.7	17.0	15.5	y = 16.3 + 0.012 t	

Continuation of table 1

								0 0 11 111	
sugar beets	531.3	500.4	599.9	576.1	621.1	533.9	655.8	637.4	y = 508.8 + 16.3 t
potatoes	427.1	434.9	444.4	462.7	443.1	421.7	458.2	466.1	y = 428.6 + 3.6 t
Produced on 100 ha of									
agr. land, c: meat of all	90.7	96.2	103.1	101.1	102.7	103.3	104.0	104.2	y = 93.4 + 1.62 t
kinds in slaughter weight									
milk	183.4	195.0	208.1	208.7	212.9	216.4	222.4	223.4	y = 184.9 + 5.31 t
Produced on 100 ha of	1062.0	2226.5	2485.6	2620.0	2530.0	2422.8	2216.6	2820.1	$x = 2002 \pm 74.2 \pm$
arable land, c: grain	1902.9	2220.3	2403.0	2029.9	2330.0	2423.8	2310.0	2029.1	y = 2092 + 74.2 t
sugar beets	168.2	152.0	149.6	167.0	182.1	163.5	206.3	193.4	y = 145.7 + 6.00 t
Produced eggs on 100 ha	85.5	03.3	86.0	01/	03.0	05.2	80.7	03.0	$y = 87.8 \pm 0.737 t$
of grain crops, c	65.5	95.5	80.9	91.4	93.9	93.2	09.7	93.0	y = 87.8 + 0.757 t
				France					•
Productivity, c/ha:	71.0	67.1	72.4	73.9	69.5	67.0	74.4	70.0	$y = 70.2 \pm 0.106 t$
grain	/1.0	07.1	/2.4	15.7	07.5	07.0	/	70.0	y 70.2 + 0.100 t
sunflower	25.2	23.4	25.4	23.7	23.6	25.4	23.1	20.5	y = 25.6 - 0.411 t
sugar beets	759.0	773.2	868.2	937.6	830.6	969.3	864.8	854.0	y = 786.4 + 15.7 t
potatoes	395.6	420.6	417.3	420.6	397.5	485.6	411.1	434.0	y = 401.2 + 4.80 t
Produced on 100 ha of									
agr. land, c: meat of all	118.4	112.9	100.2	100.2	105.6	103.8	103.8	102.0	y = 113.6 - 1.72 t
kinds in slaughter weight									
milk	468.1	475.4	460.8	440.8	440.8	460.8	453.6	448.1	y = 469.4 - 2.96 t
Produced on 100 ha of	2267.6	21824	2/10.8	2426.6	22127	2288 7	2406.5	2271.5	$x = 2250 \pm 21.3 \pm$
arable land, c: grain	2207.0	2102.4	2419.0	2420.0	2312.7	2200.7	2490.3	2371.3	y = 2230 + 21.3 t
sugar beets	1040.1	989.9	1034.1	1198.0	1096.2	1309.3	1170.1	1166.7	y = 991.0 + 29.9 t
Produced eggs on 100 ha	100.0	109.7	02.8	05.7	01.9	825	05.7	05.7	$x = 107.6 + 2.41 \pm$
of grain crops, c	109.9	106.7	95.0	95.7	91.0	02.3	93.7	93.7	y - 107.0 - 2.41 t
				Ukrain	e				
Productivity, c/ha:	10.4	26.0	34.6	20.8	26.0	37.0	21.2	20.0	$x = 21.2 \pm 2.07 t$
grain	19.4	20.0	54.0	29.0	20.9	57.0	51.2	39.9	y = 21.3 + 2.07 t
sunflower	12.2	12.8	15.3	15.2	15.0	18.4	16.5	21.7	y = 10.8 + 1.12 t
sugar beets	176.7	248.2	356.2	314.9	279.5	363.3	410.8	399.0	y = 192.4 + 28.0 t
potatoes	121.6	128.4	138.7	139.3	132.5	168.0	161.0	159.7	y = 116.3 + 6.02 t
Produced on 100 ha of									
agr. land, c: meat of all	40.9	38.5	45.7	45.7	50.5	50.5	53.0	57.8	y = 36.6 + 2.5 t
kinds in slaughter weight									
milk	305.3	329.3	283.7	278.8	269.2	266.8	274.7	277.1	y = 314.0 - 6.32 t
Produced on 100 ha of	751.5	11(0.2	1640.0	1415 4	1200.2	17446	1401.5	1041.5	
arable land, c: grain	/31.3	1109.2	1040.0	1413.4	1209.2	1/44.0	1421.3	1941.3	$y = 692.0 \pm 115.5$ t
sugar beets	404.9	476.9	412.3	310.8	421.5	575.4	566.2	332.3	y = 408.7 + 6.41 t
Produced eggs on 100 ha	26.0	52.2	577	57.0	66.2	70.1	71.4	71 4	$x = 40.2 \pm 4.51.4$
of grain crops, c	30.8	33.5	57.7	57.0	00.2	/0.1	/1.4	/1.4	y = 40.2 + 4.51 t

Source: Author's calculations based on [6; 7].

Analyzing the effectiveness (resultant) of land use intensification in the leading countries, we note that in terms of grain yield the intensification is the most effective in France and Germany; the lowest – in Poland; USA and Britain occupy the middle position. In Poland annual grain yield increased to 1.38 c/ha, in the USA – to 0.94, in France – 0.11, in Germany – at 0.58, while in the UK – decreased by 1,22 c/ha. The yield of sunflower in Germany and France remained at a similar level (about 24 c/ha), and in both countries it declined by 0.42 and 0.41 c/ha per year respectively, while in Poland and in the USA it grew 0.16 and

0.01 c/ha per year on average and reached around 17 c/ha in 2013. By the yield of sugar beet France was the absolute leader (759– 969 c/ha in different years), by the rate of growth Poland occupied leading position (an average of 27.7 c/ha per year), although by the absolute value it is still inferior to all surveyed countries. High yields of potatoes is reached by the United States, Germany and France, it remains the lowest in Poland.

In Ukraine, judging by the positive dynamics of the yield parameters of studied crops it was an increase in efficiency of land use intensification. Thus, the yield of grain grew on average per year to 2.1 c/ha ($R^2 = 0,590$), or for the period 2.1 times and amounted in 2013 to 39.9 c/ha. Sunflower yield for the period increased to 77.9 %, or an average per year of 1.1 c/ha ($R^2 = 0,808$) and was 21.7 c/ha in 2013. The yield of sugar beet in 2013 amounted to 399.0 c/ha, which was 2.3 times more than in 2000, that year it increased by an average of 28.0 c/ha ($R^2 = 0,733$). Over the period the yield of potatoes increased by 31.3 % and in 2013 amounted to 159.7 c/ha, which was provided by the annual growth rate of 6.0 c/ha (R^2 = 0,762).

In recent years Ukraine has a significant increase in productivity of major crops, which allowed collecting a record harvest of grain and oil, and actually it allows equating some yields parameters to the leading countries of the world. However, the current trend of growth was characterized for most developed countries 5–10 years ago. For the last five years, the yield of maize in Ukraine increased from 4.5 t/ha to 6.05 t/ha, sunflower – from 1.5 t/ha to 1.92 t/ha, rapeseed -1.5 t/ha to 2.4 t/ha. These figures were in Europe in 2000–2005. The main reason for this development is the slow rate of use of modern technological approaches and highperformance varieties and hybrid seeds. Therefore, what has long been used in Europe for Ukraine is something completely new.

In terms of meat of all kinds in slaughter weight per 100 hectares of agricultural lands most productive intensification of land use is in Germany, and the growth rate of this index is 17.3 c on average per year, second place is occupied by Poland, where the rate increased by an average of 14.2 c per year, and the least effective it was in USA and France, where the rate in 2013 was about 104.2 c, and if the USA every year increased it by 1.62 c, in France it decreased by 1.72 c. The absolute leader in terms of milk production parameter on 100 hectares of agriculture is Germany where it was 1862.3 c in 2013 that was in 8.3 times more than in the USA, where the figure was the lowest. It should be noted also some factors that may play a role in limiting the growth of livestock production, including milk in the EU. The important ones are environmental restrictions on emissions of greenhouse gases; another factor - the increase in production of biofuels,

which allows more efficient use of land resources than dairy farming (this trend is the most noticeable in Germany and France) [9].

In Ukraine, livestock production per unit of land area had almost opposite trends. For example, in 2013 on 100 hectares of agricultural land it was obtained 57.8 c of meat of all kinds in slaughter weight, which is 41.3 % more than in 2000, ie an average year parameter increased to 2.5 c/ha 100 ($R^2 = 0.923$). However, milk production per 100 hectares of agricultural land for the period decreased by 9.2 %, or an average per year of 6.3 c ($R^2 = 0.530$), and was in the year 277.1 c. According to these figures Ukraine, unfortunately, is significantly inferior to the advanced countries of the world, competing on equal terms with the United States only, which produce milk per 100 hectares of agricultural lands by 19.4 % less than in our country.

The most amounts of eggs per 100 hectares of grain crops are produced in the UK, and the least – in Poland, and in these countries, as in the USA, this parameter is increasing, while in Germany and France it is decreasing. In Ukraine, egg production per 100 hectares of grain crops increased during 2000–2013 to 94.0 % and was 71.4 c, which is close to that of Poland. Thus, the effectiveness (resultant) of the intensification of land use in the studied countries in the production of various types of products was formed in different ways. So the next step in the research was the calculation of certain cost intensification of economic efficiency (Table 2).

Given the limited statistics, the economic efficiency of an intensification of land use in the studied countries was identified on the basis of relative indicator of gross output at current prices. To calculate average prices in related products were used. They formed on the European market in 2012, namely: grain – 300 USD/t, sugar beet – 35, potatoes – 345, meat – 3350, milk – 340, eggs – 5091 USD/t [10–13]. When determining the price of eggs came from the fact that one egg mass roughly equal to 55 g [14, p. 39], and the price is 2.8 USD for ten [15], the price of eggs was 5091 USD/t.

The analysis of the production of conventional gross production in the prices of 2012, including crop production per unit of land area indicates their positive trend that is the intensification of land use in Ukraine was effective, and cost-effectiveness increased, reaching by these performance levels of France and even slightly ahead of the United States. However, it should be noted that such leadership is somewhat arbitrary because it is based only on the analyzed types of products and does not include the industrial structure of agricultural production and the quality of products in these countries, as in the case taking into account the structure of commodity production and quality results may be different. At the same time the analyzed indicators of economic efficiency Ukraine is weaker than countries such as Britain, Poland and Germany.

 Table 2. International benchmarking of economic efficiency of land use intensification in some countries, ths. USD

Year									
Indicators	2000	2005	2008	2009	2010	2011	2012	2013	Trend
	2000	2000	<u></u> G	reat Britz	ain	2011	2012	2015	
Obtained on 100 ha of agr									
land, conventional gross	175.0	163.3	163.3	165.5	160.9	171.4	161.3	167.1	v = 168.4 - 0.54 t
production in prices of 2012	- /					- ,			J
including crop production	59.1	51.1	55.4	54.2	51.2	52.5	45.9	48.8	v = 58.2 - 1.31 t
Obtained on 100 ha of arab-									
le land, conventional gross	504.3	487.1	481.8	477.3	461.3	483.3	447.5	463.6	v = 502.3 - 5.88 t
production in prices of 2012									5
including crop production	170.2	152.4	163.4	156.1	146.8	148.1	127.5	135.4	v = 172.7 - 5.04 t
	1	1		Germany	/		1	1	
Obtained on 100 ha of agr.									
land, conventional gross	320.2	324.9	351.8	349.8	352.6	361.0	360.1	366.3	v = 320.0 + 6.30 t
production in prices of 2012									j
including crop production	113.5	109.7	117.3	117.8	106.3	106.4	109.1	111.0	v = 114.8 - 0.77 t
Obtained on 100 ha of arab-									
le land, conventional gross	464.0	464.1	499.6	496.8	499.0	506.6	509.6	518.4	y = 460.9 + 7.52 t
production in prices of 2012									5
including crop production	164.5	156.8	166.6	167.3	150.4	149.3	154.4	157.2	y = 165.4 - 1.57 t
				Poland					
Obtained on 100 ha of agr.									
land, conventional gross	170.6	188.2	185.1	193.4	209.4	205.4	219.3	215.8	y = 169.0 + 6.53 t
production in prices of 2012									
including crop production	84.7	76.1	76.1	79.4	79.5	74.8	84.2	77.1	y = 79.9 - 0.196 t
Obtained on 100 ha of arab-									
le land, conventional gross	224.2	247.2	238.0	249.2	280.4	273.9	291.8	287.0	y = 218.5 + 9.5 t
production in prices of 2012									
including crop production	1113.4	1000.0	978.3	1022.8	1064.8	997.2	1120.2	1026.1	y = 1036 + 1.05 t
				USA					
Obtained on 100 ha of agr.									
land, conventional gross	69.9	74.0	79.3	80.1	79.6	78.8	77.5	83.6	y = 71.9 + 1.33 t
production in prices of 2012									
including crop production	27.1	28.6	31.1	32.6	31.3	30.2	28.4	34.1	y = 28.1 + 0.52 t
Obtained on 100 ha of arab-									
le land, conventional gross	165.1	184.6	201.3	205.5	204.7	202.4	204.3	220.4	y = 172.4 + 5.81 t
production in prices of 2012									
including crop production	64.1	71.3	79.1	83.7	80.4	77.5	74.9	90.0	y = 67.4 + 2.28 t
			r	France	1	r			1
Obtained on 100 ha of agr.									
land, conventional gross	107.9	104.6	102.6	102.5	101.7	101.7	103.9	101.6	y = 106.1 - 0.608 t
production in prices of 2012									
including crop production	43.1	41.3	45.0	45.6	43.0	43.8	45.4	43.9	y = 42.8 + 0.237 t
Obtained on 100 ha of arab-	100.1	1010	100.0	100 1	101.0	101.0	100.1	102 -	104 6 0 105
le land, conventional gross	198.1	194.0	192.2	192.1	191.8	191.9	198.1	193.7	y = 194.6 - 0.137 t
production in prices of 2012			04.7	0.5.5	01.0	0.0 -	0.6 -	0.0	
including crop production	/9.1	/6.6	84.3	85.5	0.18	82.7	86.5	83.6	$v = \frac{1}{8.6} + 0.854 t$

Ukraine									
Obtained on 100 ha of agr. land, conventional gross production in prices of 2012	65.4	78.8	91.7	86.2	83.3	102.0	94.9	107.4	y = 67.2 + 4.79 t
including crop production	35.2	44.9	55.7	50.4	45.0	62.5	54.3	65.1	y=37.1+3.23 t
Obtained on 100 ha of arab- le land, conventional gross production in prices of 2012	83.4	100.8	117.4	110.3	106.6	130.5	121.2	137.1	y = 85.9 + 6.11 t
including crop production	44.9	57.4	71.3	64.5	57.6	80.0	69.4	83.1	y = 47.4 + 4.13 t

Source: Author's calculations based on previous table.

The highest economic efficiency of land use intensification was in Germany, where per 100 hectares of agricultural land in 2013 was received 366.3 thousand USD of conventional gross products, that was 4.4 times more than the same parameter of the USA, while in Germany the parameter increased by an average of 6.30 thousand USD per year, and the USA – 1.33 thousand USD. The largest volume of increment in gross production per 100 hectares of agricultural lands was observed in Poland (6.53 thousand USD), and it happened in the first place, due to animal products, as crop production per 100 hectares of agricultural grounds had downward trend.

At the same per 100 hectares of arable land both a production of conventional gross products in general, and in particular crop production, increased quite rapidly (9.5 and 1.1 thousand USD, respectively), indicating a clear trend to increasing economic efficiency of land use intensification. In the UK there is an adverse trend, in the dynamics of change in gross output as per 100 hectares of agricultural land and per 100 hectares of arable land, and especially of the economic efficiency of intensification of land use was due to plant growing. In France there was a trend to lower gross output as on 100 hectares of agricultural land and arable land (0.61 and 0.14 thousand USD respectively on average per year). But it was by the livestock industry as crop production had a positive trend.

In general, we can note that countries such as Poland and Germany, which are similar to Ukraine climatic conditions, achieved high parameters and cost-effectiveness of intensification of land use and can serve as a strategic guide for our country (Table 3). Thus, the best parameters in Poland can be defined as strategic objectives in the short term (until 2020), and Germany's best parameters – as strategic intensification objectives of land use in Ukraine in the medium term (until 2025).

0										
Indicators	Forecasts	indicators	In % to i in Ukrain	indicator e in 2013	In % to average indicator to EU in 2013*					
	2020 year	2025 year	2020 year	2025 year	2020 year	2025 year				
Productivity, c/ha: grain	60.0	70.0	162.2	189.2	85.7	131.8				
sunflower	25.0	30.0	135.9	163.0	83.3	147.8				
sugar beets	550.0	650.0	151.4	178.9	84.6	95.1				
potatoes	250.0	400.0	148.8	238.1	62.5	134.5				
Produced on 100 ha of agr. land, c: meat of all kinds in slaughter weight	100.0	120.0	198.0	237.6	83.3	33.8				
milk	400.0	800.0	149.9	299.9	50.0	95.7				
Produced eggs on 100 ha of grain crops, c	90.0	125.0	128.4	178.3	72.0	121.8				

Table 3. Strategic targets increasing the effectiveness of intensifying land use in agricultural enterprises of Ukraine are determined based on international benchmarking

* On average in the EU countries in 2013 year productivity grain amounted 53,1 c/ha, sunflower – 20,3 c/ha, sugar beets –

683,4 c/ha, potatoes – 297,4 c/ha, produced on 100 ha of agricultural land meat of all kinds in slaughter weight 355 c and 836 c milk, on 100 ha of grain crops – 56.4 c eggs.

Thus, the general purpose (mission) of management of the soil rational use in Ukraine in the context of European integration can be defined as improving the competitiveness of land resources usage to bring the key parameters of land use efficiency to modern level in advanced EU countries through sustainable intensification of land use on the innovation basis, provided at least, reproduction of potential soil fertility. The main quantitative target indicators of this mission can be considered parameters of intensification of land use and reproduction of organic matter in the soil as the main indicator of its potential fertility [16, p. 27].

Realistic achievement of the strategic goals of intensification of land use is evidenced by the fact that under the «Agri benchmark», a partner from Ukraine for recent years is Association «Ukrainian Agribusiness Club» (UCAB), it was found that our state can increase the yield of most crops only by 50–55 % due to the assumption of weak agricultural enterprises the best practices of successful farms. For example, a substantial increase in production efficiency of grain and oilseeds could be achieved by improving production processes, systems, application of fertilizers, the use of quality seeds, improving quality of execution of manufacturing operations, improving management of the farms [17].

Great potential of grain and oilseeds production intensification shows, for example, that now effective farms receive 60-70 c/ha of wheat, corn -90-110 c/ha, sunflower -30-35 c/ha, which is 50 % higher than the average farms. Comparing the average yield of main crops in Ukraine with other developed countries we have much lower rates, but domestic advanced enterprise reached its level not inferior to the leading countries of the world. With livestock production per unit of land area corresponding situation is somewhat more complicated than in the crop production, but taking into consideration the experience of advanced enterprises [13; 14; 18], achievement of strategic objectives can be considered possible, but we need to put much more effort and financial resources. But the result in this case due to synergistic effect can be more significant: in the economic sphere – the production of products with higher added value, in the social sphere – the preservation of existing and creation of new jobs, in the environmental field – the preservation and restoration of fertility, especially organic matter in soil.

In general it can be noted that in the average Ukrainian agricultural enterprises on productivity of land use are close to the least efficient companies that currently operate in Europe and other developed countries but in micro level the situation is formed differently. Given the identified macroeconomic trends, it is reasonable to expect in the future growth of productivity rates and economic efficiency of land use intensification in agricultural enterprises. The approach to modern business leaders through sustainable intensification of land use on the innovation basis in Ukraine will significantly improve the competitiveness of enterprises of the agricultural sector.

Conclusions. In terms of global competition one economic instrument for management of rational soil use is benchmarking, which allows by application-based permanent comparison subject with the standards identifying what others are doing better than us, and, borrowing the best practices, outline areas of bridging the gap between what we have, and competitors' achieved level. As a result of the benchmarking study it was defined mission of management of rational soil use in Ukraine in the context of European integration and strategic goals of increasing the effectiveness of intensification of land use in agricultural enterprises of Ukraine in the short (2020) and medium-term (2025) perspective. The use of research results can improve management efficiency of the rational use of soil and competitiveness of the agricultural sector.

References

^{1.} Кошкалда І. В. Нові підходи щодо управління земельними ресурсами / І. В. Кошкалда // Економічні, соціальні та екологічні проблеми розвитку агропродовольчої сфери : матер. Міжнар. наук.-практ. конф., 19 лютого 2016 р. – Х. : ХНАУ, 2016. – С. 131–134.

^{2.} *Третяк Н*. Актуальні проблеми управління земельним ресурсами і землекористуванням та шляхи їх подолання в умовах децентралізації влади / Н. Третяк // Землевпорядний вісник. – 2015. – № 9. – С. 36–40.

3. Балюк С. А. Системне управління трансформаційною спрямованістю та родючістю грунтів / С. А. Балюк, Р. С. Трускавецький. – 2015. – № 10. – С. 10–16.

4. *Прус Л. Р.* Управління конкурентоспроможністю вищих навчальних закладів на засадах бенчмаркінгу : автореф. дис. на здобуття наук. ступеня канд. екон. наук : спец. 08.00.04 «Економіка та управління підприємствами (за видами економічної діяльності)» / Л. Р. Прус. – Тернопіль, 2008. – 20 с.

5. *Таран О. М.* Бенчмаркінг як інструмент конкурентного аналізу підприємства / О. М. Таран // Зб. наук. пр. ТДАУ (екон. науки). – Мелітополь, 2010. – № 9. – С. 333–337.

6. The World Bank [Electronic resource]. - Mode of access : http://www.worldbank.org.

7. Food and nutrition in numbers 2014 [Electronic resource]. - Mode of access : http://www.fao.org/3/a-i4175e.pdf.

 8. Україна на 10 років відстає від розвинених країн за темпами приросту врожайності основних культур [Електронний ресурс].
 –
 Режим доступу : http://ucab.ua/ua/pres_sluzhba/novosti/ukraina_na_10_rokiv_vidstae_vid_rozvinenikh_krain_za_tempami_prirostu_vrozhayn osti osnovnikh kultur/.

9. Бондаренко Т. Рынок молока и молочных продуктов в странах Европейского союза / Т. Бондаренко, С. Аржанцев, А. Фролова // АПК : экономика, управление. – 2015. – № 6. – С. 83–87.

10. Конъюнктура мирового, европейского и внутреннего рынка сельскохозяйственной продукции и продовольствия (Аналитический обзор) [Электронный ресурс]. – Минск, 2013. – 64 с. – Режим доступа: http://www.refor.by/images/cms/Mecячный%20отчет%20за%20февраль.pdf.

11. Ринок цукру. Солодке диво на світовому ринку [Електронний ресурс]. – Режим доступу : http://propozitsiya.com/?page=146&itemid=3251.

12. Ціна на картоплю 2013 [Електронний ресурс]. – Режим доступу : http://potatoclub.com.ua/index.php?option=com_content&view=article&id=187:2012-08-31-11-56-25&catid=23:2011-05-31-15-06-49&Itemid=19.

13. Гуторов О. І. Економічні засади формування прибутковості виробництва молока в аграрних підприємствах : теоретико-прикладний аспект : моногр. / О. І. Гуторов, Л. Ю. Кучер, А. В. Кучер. – Х. : Точка, 2013. – 490 с.

14. Організаційно-економічні засади ефективного розвитку яєчного птахівництва : моногр. / О. В. Ульянченко, О. В. Анісімова, А. В. Кучер, Д. Д. Чертков. – Х. : Цифрова друкарня № 1, 2012. – 340 с.

15. На клеточном уровне [Электронный ресурс]. – Режим доступа : http://www.dragoncapital.com/ru/about/media/dragon_v_presse/na_kletochnom_urovne.html.

16. Раціональне використання грунтових ресурсів і відтворення родючості грунтів : організаційно-економічні, екологічні й нормативно-правові аспекти : кол. моногр. / за ред. акад. НААН С. А. Балюка, чл.-кор. АЕНУ А. В. Кучера. – Х. : Смугаста типографія, 2015. – 432 с.

17. Україна може на 50 % збільшити урожайність більшості культур [Електронний ресурс]. – Режим доступу : http://www.agribusiness.kiev.ua/uk/press/1340198532.

18. Економічне обґрунтування модернізації молочних ферм й ефективність використання землі агропромислових формувань : моногр. / В. І. Артеменко, А. В. Кучер, Л. Ю. Кучер, Є. І. Чигринов ; за ред. чл.-кор. АЕНУ А. В. Кучера. – Х. : ХНАУ, 2014. – 244 с.

The article has been received 28.03.2016

Новини АПК

11 областей завершили сівбу ранніх ярих зернових культур

На даний час 11 регіонів завершили сівбу ранніх ярих зернових: це Одеська, Вінницька, Тернопільська, Хмельницька, Чернівецька, Волинська, Житомирська, Закарпатська, Івано-Франківська, Рівненська та Чернігівська області. Про це повідомив Міністр аграрної політики та продовольства України Тарас Кутовий.

За його словами, зернових культур висіяно на площі 2,3 млн га, або 94% до прогнозу, в т. ч.: пшениці – 159 тис. га, або 92%, ячменю – 1,8 млн га, або 92%, вівса – 208 тис. га, або 95% та гороху – 223 тис. га, або 116.

«Цукрові буряки посіяно на 269 тис. га, або 100% до прогнозу, соняшнику – 2,0 млн га, або 40%. Сівбу кукурудзи на зерно проведено на площі 1,3 млн га, або 30% до прогнозу. Також розпочато висів сої, який проведено на площі 222 тис. га, або 11% до прогнозу», – наголосив Міністр

Довідково:

За узагальненими даними регіонів уся посівна площа сільськогосподарських культур у всіх категоріях господарств під урожай 2016 року очікується в межах 26,5 млн га, або на рівні 2015 року.

Зернові культури в усіх категоріях господарств прогнозується висіяти на площі 14,4 млн га, або 54% у структурі посівних площ, що відповідає нормативам оптимального співвідношення культур у сівозмінах.

Посів ярих зернових культур прогнозується на площі 7,5 млн га. При цьому структура зернового клину під урожай 2016 року може дещо зрости за рахунок оптимізації площ кукурудзи на зерно та пізніх круп'яних культур.

Прес-служба Мінагрополітики України