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Numerical simulation of droplets deformation and breakup in shearing flows 

 
A mathematical model is presented that describes the deformation of a single drop sus-

pended in another immiscible liquid under shear flow. The deformed droplet is assumed to be 

in the form of prolate ellipsoid of revolution. The drop deformation is regarded as motion of 

the centers mass of the half-drops, symmetrical with respect to the drop center. The effects of 

viscid and capillary forces on the drop deformation accounted for in modeling with the aid of 

the mechanical Voight’s model. A simple criterion for destruction of droplets in shear flows 

has been obtained. The results of numerical calculations for droplet deformation in shear 

flows are presented in comparison with experimental data of other authors. It is shown that 

the model allows the prediction of behavior of deformed drops in shear flows over a wide 

range of flow regimes and physical parameters of the both liquid phases. 

 

 

Introduction. The problem of drop deformation and breakup in shear and 

extensional flow is of academic and practical interest and was attracted close 

attention over the intervening decades. Drop breakup is important for a wide range of 

engineering, and biomedical applications including production and processing of 

emulsions, aerosols, and drug delivery systems. In addition to many of the practical 

concerns, the study of drop deformation remains a classical example of a free-

boundary problem in fluid mechanics. From the theoretical point of view, the 

problem of deformation of drops is extremely complicated. The equations of motion 

must be solved for flow inside and outside the drop with boundary conditions on their 

surfaces, the form of which is a priori unknown, but is defined as part of the solution. 

Since Taylor’s pioneer work in the 1930s [1], there have many valuable results 

on the deformation and breakup of single Newtonian drops in well-defined flow 

fields, Reviews [2-4] give useful summaries on both deformation and breakup stu-

dies. 

Novel useful results presented in resent works on this topic [5-9] are devoted to 

the modeling and optimization of the emulsification processes in relation to 

increasing the production efficiency of monodisperse emulsions. 

The physical problem is determined by three dimensionless numbers: the drop 

Reynolds number 2Re c cGR=ρ µ , the capillary number 
cCa GR= µ σ , and the 

viscosity ratio d cλ= µ µ . Here, R  is the undeformed drop radius, G  is the shear rate, 

cρ  is density of the continuous phase, dµ  and cµ  are the dynamic viscosities of 

dispersed and continuous phases, and σ  is the interfacial tension between the liquids.  

ГАЗОДИНАМІКА 
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The criteria for the droplet breakup in shear flows are usually associated with a 

critical capillary number crCa  [1-10]. At subcritical capillary numbers ( crCa Ca< ) 

the drop is stabilized in the final shape of prolate ellipsoid. At supercritical capillary 

numbers (
crCa Ca> ) the drop irreversibly stretches and rapidly breaks, forming 

daughter droplets and smallest fragments. It is known that 
crCa  is a complex function 

of 
d cλ = µ µ . Both experimental and theoretical studies have focused mainly on the 

determination of criteria for drop breakup under creeping shear flow conditions 

( ( )crCa f= λ ) and size-distribution of drop fragments resulting from breakup at the 

supercritical flow regime [1, 3-7, 10]. One of the main conclusions from the studies is 

that the drop breakup becomes difficult when 1<<λ  and impossible in laminar shear 

flow when 4>λ   

Numerical simulations of the problem are generally based on a boundary integral 

method, by which the creeping flow equations inside and outside the drop are trans-

formed into a form that only involves quantities at the drop surface [3, 4, 6, 8]. Drop-

let breakup was also studied with numerical simulations using a free energy lattice 

Boltzmann method [9]. In spite of the major accomplishments of numerous studies on 

the drop deformation and break up in shear flows, however, many important qualita-

tive questions so far remain to be answered. In particular, what are the mechanisms 

for breakup and how do they depend on the system parameters including the degree 

of deformation of the drop?  

 

Formulation of the problem. One objective of the given study is to examine in 

detail the time-dependent deformation of a single liquid droplet in shear flows with 

numerical simulations of the process. The study focuses on a deeper analysis of the 

critical conditions for the irreversible deformation of droplets, leading to their subse-

quent destruction. Below, we consider the principles of constructing a mathematical 

model, which describes the evolution of an initially spherical droplet in shear flow of 

another liquid over a wide range of flow regimes and physical parameters of the both 

liquid phases 

This model is based on the main points of the previously developed mathemati-

cal model [11], which adequately describes the deformation of droplets in non-

stationary accelerated liquid and gaseous flows. The basic position of that model is 

the assumption that at all stages of deformation the drop takes the form of an ellipsoid 

of revolution. In the model [11], deformation of a droplet was considered as the dis-

placement of the centers of mass of the half-drops, separated by a plane, passing 

through the center of the drop and orthogonal to the flow velocity direction x . When 

the centers of the half-drops move along the coordinate x  in the direction of the cen-

ter of the drop, the spherical drop deforms into an oblate ellipsoid, otherwise, into a 

prolate ellipsoid. These main principles are used in the development of the model of a 

drop behavior in shear flows,  

Let us consider a stationary shear flow of fluid with density cρ  and viscosity cµ . 

The velocity vector of the stream v
�

 is directed along the coordinate x , where as the 

velocity change occurs in the direction y , and the velocity gradient 
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constxG dv dy= = . Components of the flow velocity vector: yGvx ⋅=  and 0=yv . 

A drop, immersed in the liquid, moves with the flow in the direction x  with a veloci-

ty equal to flow velocity ( )0yvx , where 0y  is the y - coordinate of the drop center. 

Combining the origin of the Cartesian coordinates with drop center ( 00 =x , 00 =y ), 

one can consider the motion of the flow only relative to the drop, regarding it as 

quiescent. For a shear flow the flow velocity field relative to the drop 

( ) ( ) ( )0 0x x xw y y v y v y− = −  is symmetrical with respect to the drop center, and is in-

dependent of the position of the drop in the stream.  

The stream, flowing around the droplet, causes the total dynamic action on the 

drop of both inertial and viscous friction forces. Obviously, the distribution of pres-

sure along the drop surface must be symmetrical with respect to the origin ( 00 , yx ). 

The forces ζF  that act on each half-drop are equal in magnitude but opposite in di-

rection. 

The change in the drop shape, caused by the forces ζF  action, is counteracted 

by the capillary force Fσ , which tends to return the drop to its initial spherical shape, 

and also by the dissipative forces of the viscosity of the drop itself Fµ , which are pro-

portional to the rate of deformation. An analogue of this physical model, which takes 

into account the role of all these factors, is the mechanical Voigt’s model, describing 

the behavior of a visco-elastic body. This model, schematically shown in Fig.1, 

represents recurrent capillary forces σF  by action of an elastic spring, and dissipative 

viscous ones µF  by a damping element, when both the elements work in parallel. The 

half-drop mass 32 3 dm R= π ρ  is assumed to be concentrated in the geometrical center 

of the half-drop. The droplet deformation is regarded as the motion of the half-drops 

in the x  direction. Figure 2 shows the main parameters of our model.  

The deformed drop is considered as an ellipsoid of revolution with major semi-

axis a  and minor semi-axes aRb 3=  (Fig.2). As in the base model [11], the de-

gree of drop deformation is determined by the parameter Ra , which is often used in 

analyzing droplet deformation in shear flows [2,6,7,9]. In some cases it is more con-

venient to use the conventional definition ( ) ( )babaD +−=  which was the proposed 

by Taylor [1]. 

When the droplet is stretched in the direction x  the y - coordinate of the center of 

the half-drop is const0 == ss yy . The distance of the center of mass of each half-

drop from the geometrical center of the drop itself is determined by the equation 

( ) ( )2 2

0 3 8s s sr x y aτ = τ + = .    (1) 

The parameter ( )τsr  defines the current position of the center of each half-drop. 

It is not difficult to calculate that sr  is connected with the length of the semi-axis a  

by the relation 83ars = . For undeformed drop ( Ra = ), the position of the center of 

mass of hemi-sphere is determined by relation 830 Rrs = . 
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As follows from Eq. (1), the direction r
�

 never coincide with the flow direction 

x . The orientation of droplets is usually defined by the angle α  between the direc-

tion of the vector r
�

 and the positive direction of the axis y  [1-3, 5, 10]. The angle 

α , shown in Fig.2, is important parameter of the model, because the effectiveness of 

the particular shear flow in deforming a drop is strongly dependent on drop orienta-

tion in the flow.  

Both experiment and modeling show [1-4, 6, 7, 9] that infinitesimal deformation 

of an spherical drop in a simple shear flow occurs in the direction of 45° relative to 

the flow direction xv . Hence, the initial coordinates of the center of mass of half-

drops 0

0 0 sin 45 3 2 16s sx r R= ⋅ =  and 0

0 0 cos45 3 2 16s sy r R= ⋅ = . As drop elon-

gated, its principal axis a  rotates towards the flow direction x . In accordance with 

Fig.2, the orientation angle α  α  is related to the degree of drop deformation Ra  

and the position of sr  by the expressions:  

( ) ( )( ) ( )1

0
arctg arccos 2 3 2 8

s s s
x y a R R r

−
α = = = . 

As noted above, the process of drop deformation is determined by the combined 

effect of three forces. This are the hydrodynamic force Fζ , the capillary force Fσ  and 

the viscous force Fµ . Below we consider the influence of each of these forces on the 

process of deformation of a drop.  

 
 

Fig.1. Schematic drawing of the droplet 

deformation in shear flows in the framework 

of the Voight’s mechanical model for a visc-

ous- elastic body. 

Fig.2. Schematic representation of 

the position of center of mass of the 

half-drop sr  and the change in the 

orientation angle α  during the drop 

shear deformation. 
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Hydrodynamic force action. The force Fζ  that stretches the drop in the direc-

tion  x  is proportional to the drag of the half-drop to the stream, flowing around the 

droplet, and is determined by the relation 
x yz

F p Sζ = ζ ⋅ . Here, ζ  is the drag coeffi-

cient averaged over the drop surface, xp  is the hydrodynamic pressure averaged over 

the surface yzS  and yzS  is the area of the drop projection onto the plane, passing 

through the center of the drop, and orthogonal to the direction x . This projection is 

an ellipse with a minor axis b  and a major axis wy , which is described by equation 

221 wyybz −⋅= . Parameter wy  is the distance from the axis x  to the plane XZ  

that contacts the surface of this ellipsoid (Fig.2). At each point of the drop surface the 

local pressure ( ) ( ) ( )22 2 2x c x cp y w y G y= ρ = ρ ⋅ . Then the force Fζ  is defined as fol-

lows 

( ) ( ) ( )3 22
2

0

ζ ρ
2

2 8

w

xy

y

c wc
x zy zy

S

b y GG
F p S dS y z y dyζ

⋅ π ⋅ζρ
= ζ ⋅ = ⋅ =∫ ∫ ,  (2) 

where ( )( )3 2 2sin cos
w

y a R a= ⋅ α + α . The coefficient ζ  is valued by the equation 

0,5

3 16 2,2 1,5
0,6

2 Re Re

d c

d c

 µ + µ ζ = ⋅ + + ⋅    µ + µ   
.    (3) 

Reynolds number for shear flows is defined as 2Re c cGR= ρ µ .  

 

Viscous force action. The effect of viscosity forces on the deformation of drop-

lets streamlined by liquid flow has been analyzed in detail in [11], using the tensor 

equation for energy dissipation in unit volume of a viscous fluid. An equation had 

been obtained, which describes the rate of viscous energy dissipation dE dµ τ  as a 

function of viscosity 
dµ , droplet radius R , and velocity gradient v∇ . With reference 

to the problem at issue, the viscosity force is calculated by the equation 
3

2

4 effs s

s s

RdE dE dr dr
F

dr d d r d

µ µ
µ

π µ
= = = ⋅

τ τ τ
.   (4) 

Here 0.6eff d cµ = µ + µ  is the effective viscosity, which takes into account the con-

tribution of the attached mass of the continuous phase, adjacent to the drop surface, 

into the viscous force actions [11].  

 

Capillary force action. The capillary force Fσ  is considered as the ratio of the 

surface energy increment 
SdE dS= σ ⋅  caused by drop deformation, to the displace-

ment of the center of mass of the half- drop sdr . (
S s sF dE dr dS drσ = = σ ⋅ ). The 

analysis, carried out in [11], shows that when the spherical droplet is deformed into 

the shape of an oblate or elongated ellipsoid, the capillary force Fσ  is determined 

from equations: 
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( )33

3 2

1 0,2516 1 1,5
ln

3 1s

a RdS a R e
F

dr a e e e
σ

 − ⋅π σ +   = σ = − ⋅ +    −     
  (5a) 

for oblate ellipsoid, and 

( ) ( )( )3 2 3
3

2 3 2

0.5 1 4 arcsin16 1.5
1 .

3 es

R a R a edS R
F

dr a e
σ

 ⋅ − ⋅ ⋅π σ  = σ = + −
 
 

 (5b) 

for prolate ellipsoid, where 3322 11 aRabe −=−= is eccentricity of an ellipse 

with half-axes a and b. 

 

Criteria for droplet destruction. In the investigations of droplet behavior in 

shear flows the most difficult and least developed question is the justification of crite-

rion for the transition from the subcritical deformation mode, when the drop stabilizes 

in the finite form of prolate ellipsoid, to the supercritical mode, when an irreversible 

elongation of the droplet occurs, resulting in its destruction. As has been specified 

above, this transition is customary associated with the critical capillary number 
crCa , 

which is a very complex and analytically not described function of viscosity ratio λ  

and Reynolds number. 

Within the framework of this model, a simple criterion for the destruction of 

droplets in shear flows has been obtained.  

The dependence of the capillary force on the degree of drop deformation Ra , 

which has been calculated from the equations (5a) and (5b), is shown in Fig.3.  

The data presented reveal an important, previously unknown feature of the capil-

lary force influence on the drop deformation, when 1>Ra . From Fig.3 it can be ob-

served that, irrespective of the physical properties of both liquids, dependence 

( )F f a Rσ =  for elongated drops has a maximum at the strictly determined value 

( ) 2,2
cr

a R = , which can be considered as a physical constant. Exceeding this critical 

value must necessarily lead to irreversible deformation and the subsequent destruc-

 
Fig.3. The characteristic change in the 

capillary force σF  during the droplet trans-

formation into oblate (left branch) and into 

prolate (right branch) ellipsoid. 

 

Fig.4. The photos of sequence of droplet 

deformation and break-up in shear flow at 

subcritical (a) and supercritical capillary 

numbers (b), according to the data of [7]. 
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tion of the excessively elongated drop even after stopping the dynamic action of the 

flow [3]. 

The obtained result convincingly explains the mechanism of the so-called "burst", 

which denotes the flow conditions, corresponding to the onset of rapid continuous 

elongation of a droplet. This effect was first observed in the Taylor experiments [1] 

and was subsequently recorded by other researchers [2-4, 7, 10]. It should be noted 

that the critical value of the above Taylor deformation parameter D  corresponds to 

0.53crD = . 

As an illustration, Fig.4 shows photographs of dimethicone droplets during their 

successive expansion in the shear creeping flow of castor oil in the subcritical  

( 0.98 crCa Ca= ) (a) and the supercritical ( 1.01 crCa Ca= ) flow regime (b), according 

to the data of [7]. It can be seen from the photos in Fig.4a that the shape of the stabi-

lized drop corresponds to 2.2a R ≈ . It should be noted that the analyses of other 

photographs and graphical data on droplet deformation, given in works of various re-

searcher, also indicates that the shape of droplets, stabilized in the supercritical mode 

at Ca  close to crCa , corresponds to 2.0 2.3a R = ÷  [2, 6, 7, 9] or 0.5 0.55D = ÷  [3-

5, 10]. 

 

Drop deformation equations. The current shape of a drop during it stretching 

depends both on the elongation parameter ( )τsr  and orientation angle ( )τα . There-

fore, the problem of drop evolution is expedient to solve in the polar coordinate sys-

tem ( α,r ). The deformation of a drop in shear flows is determined by the displace-

ment of sr  under the combined action of the above forces. The equation of motion of 

the center of mass of the half-drop has the form 
2

2

s s
s

d r dr
m F F F C C r C

d d
µ σ ζ µ σ ζ⋅ = + + = ⋅ + ⋅ +

τ τ
.     (6) 

The values Cµ ,Cσ , and Cζ , are defined, respectively, from equations (4), (5) and 

(2), taking into account that, in accordance with Eq. (1), ( ) ( )3 8sr aτ = τ . The equa-

tion (6) is solved with the following initial conditions: ( )0 3 8sr R= , ( )
0

0sdr d
τ=

τ = . 

The change of the orientation angle ( )fα = τ  is determined by the equation  

( ) ( )1

arccos 2 3 2 8 sa R R r
− α = ⋅ = 

 
,   (7) 

which is solved jointly with equation (6) with the initial condition ( )0α = 45°C. 

Eqs. (6) and (7) are the basic equations for the mathematical model considered 

here. Unlike the most existing models, this rather simple model allows the prediction 

of behavior of deformed drops both in creeping (Re 1fl << ) and inertial 

( Re 0,01 100fl = ÷ ) shear flows with no adjustable parameters and additional assump-

tions. This study is limited to modeling the droplets deformation in the region ( 1≤λ ).  
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Results and analysis. Below, we discuss the results of numerical calculations for 

various regimes of flow around a liquid drop. A comparison is made with the known 

experimental data of other authors on the deformation of droplets in shear flows.  

To verify the reliability of the above model a computational experiment was car-

ried out that reproduced the conditions of the experiments, performed by Torca et. al. 

[10]. In those experiments, deformation of castor oil drops ( 0.15 0.8R = ÷  mm) in 

creeping shear flows ( Re 0.001,< 0.1 5G = ÷ s
-1

) of organic liquids was investigated. 

During each experiment, a change in the shape of the drop was recorded on the film, 

and its deformation degree was represented by the parameter ( ) ( )babaD +−= . The 

orientation angles α  were also determined. When comparing those experimental re-

gimes were picked, for which the viscosity ratio values 1<λ  have been used. 

Figs 5a,b show a comparison of the experimental and theoretical dependencies 

( )CafD =  и ( )Caf=α  for one of the regimes. It seen that the experimental points 

lie reasonably close to the theoretical lines. The model with good accuracy predicts 

the changes both in the deformation degree D  and the orientation angle α  with in-

creasing the capillary number Ca  in the indicated range of its variation. This range 

( 0.4Ca < ) refers to the subcritical flow regime ( crCa Ca< ), and so the values D , 

shown in Fig 5a, below the deformation critical value 0.53crD = . 

Those studies had focused primarily on relating the critical capillary number 
crCa  

and viscosity ratio λ . There was found that for all the systems studied the depen-

dence ( )crCa f= λ  has a minimum in the region 0.3÷0.9 [10]. In their experiments 

the critical number crCa  was evaluated as the arithmetic average of a highest subcrit-

ical Ca , when the drop does not still break and attains a steady state, and a lowest 

supercritical Ca , for which the drop breaks into fragments. In our model, the critical 

capillary number cr c crCa G R= µ σ  is calculated from Eq.(6) for given values of R , 

cµ  and σ , as a some value ( )GfCa = , for which the condition ( ) 2,2== crRaRa  

 
Fig.5. Dependences of drop deformation D  (a) and orientation angle α  (b) on the 

capillary number Ca (at )08,0=λ , as well as dependence ( )crCa f= λ  for low viscosity 

ratios ( 1<λ ). Quantitative comparison of the simulation results (solid curve) with expe-

rimental data of Torza at al. [10] (points) for R =0.3 mm, σ=4.1 mN/m. 
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is satisfied at a certain crG G= . Figure 5c shows the experimental [10] and calculated 

dependences ( )Cacr f= λ . The results calculated, using the model, are in good 

agreement with experiment in the range of values λ , for which the accepted assump-

tions 1<λ  are valid. 

The paper [10] does not give quantitative data on the time of stabilization of the 

deformed drop shape or the onset of the "drop burst" moment. It was previously es-

tablished that in carrying out this type of research, a value 1G−  should be used as the 

base temporal scale [2-4, 10]. For the interval of shear rates G , used in [10] (where 

0.1÷5 s
–1

), this corresponds exactly to the time scale of seconds.  

To assess the ability of this model to describe shear deformation in the wider 

range of shear rates G , special numerical investigations were performed. The objec-

tives of these investigations were to compare the droplet behavior in the creeping and 

inertial shear flow regimes, as well as to verify the validity of the assumption that the 

parameter 1G−  can be used as a base temporal scale not only for the Stokes flows 

around the droplet, but also for the inertial ones. 

The choice of model systems was determined by the possibility of varying, to a 

certain extent, the physical parameters of both the phases ( dρ , cρ , dµ , cµ , σ ) with 

keeping the condition that 1<λ . The following systems were investigated: 

1. Water drops in motor oil (
dρ =10

3
 kg/m

3
, 

cρ =0.8
.
10

3
 kg/m

3
, 

cµ =1 mPa
.
s, 

cµ =200 mPa
.
s, σ=29

.
10

-3
 N/m, λ=0,005, =R 1 mm). 

2. Toluen drop in water ( dρ =0.8
.
10

3
 kg/m

3
, cρ =10

3
 kg/m

3
, dµ =0.6 mPa

.
s, cµ =1 

mPa
.
s, σ=35

.
10

-3
 N/m, λ=0.6, =R 1 mm). 

For both the systems, drop deformations were considered with a gradual increas-

ing the shear rate G , up to an irreversible “burst” extension of the droplet, leading to 

its destruction. The kinetics of deformation of a drop was determined by the depen-

dences ( )τ= fRa  and ( )τ=α f .  

The results of the calculation, in the form of kinetic dependencies ( )τ= fRa  

and ( )τ=α f , are presented in Figs. 6a,b (system 1) and Figs.7a,b (system 2). 

In all cases, an increase in the shear rate G  necessarily leads to the burst elonga-

tion of the drop. The results of the modeling show that this is indeed a “burst” effect, 

since an insignificant increase in G  (of the order of 0.01%) drastically changes the 

droplet deformation regime (Fig. 6a).  

The peculiarity of drop deformation depends qualitatively on the value of Rey-

nolds number. In Fig. 6a,b, where the continuous phase is high viscous motor oil, the 

hydrodynamic action of the flow on the drop surface is not the inertial, but rather 

viscous effect ( Re 0.4< ). The stretching of droplets at low shear rates ( crG G< ) 

proceeds monotonically, so does their irreversible elongation at crG G> . 

In Figures 7a,b, where continuous phase is low-viscous water, the strictly iner-

tial flow regime (700) is realized. This mode is characterized by the presence of 

damped oscillations of the droplet shape as it stabilizes. Simultaneously with the os-

cillations of the shape, the oscillations of the drop orientation also occur. 
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Obviously, the physical nature of oscillations in the shape and orientation of low-

viscosity liquid droplets in inertial shear flows requires special discussion. 

Ii will be noted that up to present neither experiments nor simulations have been 

reported for the case of the time-depended drop deformation in inertial shear flows. 

According to some researchers, inertia can change the initial stages of droplet de-

formation [9]. Besides, in the inertial regime, drop deformation occurs under the ac-

tion of pressure fluctuations, created by the irregular velocity of the fluid [2, 3, 6, 8]. 

Consideration of the dynamic transition between the initial and final stages of 

droplet destruction in supercritical shear flows is not included in the tasks of this 

study. 

 

Conclusion. The results of the analysis confirm the reliability of the model and 

the validity of the physical provisions used in its development. The model is able to 

predict the character of droplet deformation and the conditions of their destruction in 

 
Fig.6. Change in the deformation degree Ra  (a) and in the orientation angle α  (b) 

during deformation of water droplets in inertial shear flow of motor oil at different values 

of the shear rate G . Operation parameters: 
dρ = 10

3
 кг/м

3
, 

cρ =0,8
.
10

3
 кг/м

3
,  

dµ = 1 mPa
.
s, cµ =200 mPa

.
s, σ= 29 mN/m, R =1 mm, 

crCa = 0,545; λ=0,005. 

 

 
Fig.7. Change in the deformation degree (a) and in the orientation angle α  (b) during 

deformation of toluene droplets in inertial shear flow of water. 1 – subcritical regime 

( crCaCa < ): G =938,0 s
-1

; 2 – supercritical regime (
crCa Ca> ): G =938.5 s

-1
. Operation 

parameters: R =1 mm. dρ = 0.8
.
10

3
 кг/м

3
, cρ =10

3
 кг/м

3
, dµ = 0.6 mPa

.
s, cµ =1 mPa

.
s, 

σ= 40 mN/m, crCa = 0.011; λ=0.6. 
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shear flows with known regime parameters with a greater degree of accuracy than ex-

isting empirical relationships. The results of the present study can find industrial ap-

plications, such as in creation and processing of emulsions and liquid-liquid disper-

sions. Knowledge of the conditions, when this breakup mechanism occurs, may im-

prove the efficiency of production of monodisperse emulsion.  
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Иваницкий Г. К. 

Численное моделирование деформации и дробления капель 

в сдвиговых течениях 

 
АННОТАЦИЯ 

Рассмотрены принципы построения модели, описывающей деформацию капель в 

сдвиговых потоках, в инерционном и в стоксовском режимах течения, в широком ин-

тервале режимных параметров процесса. Модель базируется на допущении, что де-

формируемая капля имеет форму вытянутого эллипсоида вращения. Обсуждается 

роль основных факторов, определяющих эволюцию капли в потоке под действием сдви-

говых напряжений. Установлен критерий начала перехода к необратимому удлинению 

капли, приводящему  к ее разрушению. Приведены результаты численных расчетов 

сдвиговой деформации капли при различных физических и режимных параметрах в 

сравнении с экспериментальными данными других авторов.  

 

 

Іваницький Г. К. 

Чисельне моделювання деформації і руйнування краплин  

в зсувних течіях 

 
АНОТАЦІЯ 

Розглянуто математичну модель, що описує деформацію крапель в зсувних потоках у 

широкому діапазоні зміни режимів течії та фізичних параметрів обох рідких фаз. Мо-

дель базується на припущенні, що деформована краплина має форму витягнутого еліп-

соїда обертання. Деформація краплі розглядається як переміщення центрів маси напів-

крапель, симетричних по відношенню до центру краплі. Вплив в'язких і капілярних сил на 

деформацію краплі розглянуто із застосуванням моделі Фойхта для в’язко пружних се-

редовищ. Отримано простий критерій початку руйнування краплини у зсувних течіях. 

Наведено результати чисельних розрахунків зсувної деформації краплі при різних фізич-

них і режимних параметрах в порівнянні з експериментальними даними інших авторів. 

 

 


