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Numerical simulation of droplets deformation and breakup in shearing flows

A mathematical model is presented that describes the deformation of a single drop sus-
pended in another immiscible liquid under shear flow. The deformed droplet is assumed to be
in the form of prolate ellipsoid of revolution. The drop deformation is regarded as motion of
the centers mass of the half-drops, symmetrical with respect to the drop center. The effects of
viscid and capillary forces on the drop deformation accounted for in modeling with the aid of
the mechanical Voight’s model. A simple criterion for destruction of droplets in shear flows
has been obtained. The results of numerical calculations for droplet deformation in shear
flows are presented in comparison with experimental data of other authors. It is shown that
the model allows the prediction of behavior of deformed drops in shear flows over a wide
range of flow regimes and physical parameters of the both liquid phases.

Introduction. The problem of drop deformation and breakup in shear and
extensional flow is of academic and practical interest and was attracted close
attention over the intervening decades. Drop breakup is important for a wide range of
engineering, and biomedical applications including production and processing of
emulsions, aerosols, and drug delivery systems. In addition to many of the practical
concerns, the study of drop deformation remains a classical example of a free-
boundary problem in fluid mechanics. From the theoretical point of view, the
problem of deformation of drops is extremely complicated. The equations of motion
must be solved for flow inside and outside the drop with boundary conditions on their
surfaces, the form of which is a priori unknown, but is defined as part of the solution.

Since Taylor’s pioneer work in the 1930s [1], there have many valuable results
on the deformation and breakup of single Newtonian drops in well-defined flow
fields, Reviews [2-4] give useful summaries on both deformation and breakup stu-
dies.

Novel useful results presented in resent works on this topic [5-9] are devoted to
the modeling and optimization of the emulsification processes in relation to
increasing the production efficiency of monodisperse emulsions.

The physical problem is determined by three dimensionless numbers: the drop
Reynolds number Re=p ,GR*/u,, the capillary number Ca=p GR/c, and the
viscosity ratio A=p, /p, . Here, R is the undeformed drop radius, G is the shear rate,
p, is density of the continuous phase, p, and p, are the dynamic viscosities of

dispersed and continuous phases, and o is the interfacial tension between the liquids.
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The criteria for the droplet breakup in shear flows are usually associated with a
critical capillary number Ca, [1-10]. At subcritical capillary numbers (Ca < Ca,,)

the drop is stabilized in the final shape of prolate ellipsoid. At supercritical capillary
numbers (Ca >Ca, ) the drop irreversibly stretches and rapidly breaks, forming

daughter droplets and smallest fragments. It is known that Ca,, is a complex function
of A=p,/p, . Both experimental and theoretical studies have focused mainly on the
determination of criteria for drop breakup under creeping shear flow conditions
(Ca,=f (7»)) and size-distribution of drop fragments resulting from breakup at the

supercritical flow regime [1, 3-7, 10]. One of the main conclusions from the studies is
that the drop breakup becomes difficult when A <<1 and impossible in laminar shear
flow when A >4

Numerical simulations of the problem are generally based on a boundary integral
method, by which the creeping flow equations inside and outside the drop are trans-
formed into a form that only involves quantities at the drop surface [3, 4, 6, §]. Drop-
let breakup was also studied with numerical simulations using a free energy lattice
Boltzmann method [9]. In spite of the major accomplishments of numerous studies on
the drop deformation and break up in shear flows, however, many important qualita-
tive questions so far remain to be answered. In particular, what are the mechanisms
for breakup and how do they depend on the system parameters including the degree
of deformation of the drop?

Formulation of the problem. One objective of the given study is to examine in
detail the time-dependent deformation of a single liquid droplet in shear flows with
numerical simulations of the process. The study focuses on a deeper analysis of the
critical conditions for the irreversible deformation of droplets, leading to their subse-
quent destruction. Below, we consider the principles of constructing a mathematical
model, which describes the evolution of an initially spherical droplet in shear flow of
another liquid over a wide range of flow regimes and physical parameters of the both
liquid phases

This model is based on the main points of the previously developed mathemati-
cal model [11], which adequately describes the deformation of droplets in non-
stationary accelerated liquid and gaseous flows. The basic position of that model is
the assumption that at all stages of deformation the drop takes the form of an ellipsoid
of revolution. In the model [11], deformation of a droplet was considered as the dis-
placement of the centers of mass of the half-drops, separated by a plane, passing
through the center of the drop and orthogonal to the flow velocity direction x. When
the centers of the half-drops move along the coordinate x in the direction of the cen-
ter of the drop, the spherical drop deforms into an oblate ellipsoid, otherwise, into a
prolate ellipsoid. These main principles are used in the development of the model of a
drop behavior in shear flows,

Let us consider a stationary shear flow of fluid with density p, and viscosity p, .

The velocity vector of the stream v is directed along the coordinate x, where as the
velocity change occurs in the direction y, and the velocity gradient
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G =dv,/dy = const. Components of the flow velocity vector: v, =G -y and vy, =0.
A drop, immersed in the liquid, moves with the flow in the direction x with a veloci-
ty equal to flow velocity v, (y()), where yq is the y- coordinate of the drop center.
Combining the origin of the Cartesian coordinates with drop center (xy =0, yy =0),
one can consider the motion of the flow only relative to the drop, regarding it as
quiescent. For a shear flow the flow velocity field relative to the drop
w,(y=,)=v.(¥)—v.(»,) is symmetrical with respect to the drop center, and is in-

dependent of the position of the drop in the stream.

The stream, flowing around the droplet, causes the total dynamic action on the
drop of both inertial and viscous friction forces. Obviously, the distribution of pres-
sure along the drop surface must be symmetrical with respect to the origin (xg, ¥ )

The forces Fr that act on each half-drop are equal in magnitude but opposite in di-
rection.

The change in the drop shape, caused by the forces /7 action, is counteracted
by the capillary force £, which tends to return the drop to its initial spherical shape,
and also by the dissipative forces of the viscosity of the drop itself £, which are pro-
portional to the rate of deformation. An analogue of this physical model, which takes
into account the role of all these factors, is the mechanical Voigt’s model, describing

the behavior of a visco-elastic body. This model, schematically shown in Fig.1,
represents recurrent capillary forces F; by action of an elastic spring, and dissipative

viscous ones Fy by a damping element, when both the elements work in parallel. The

half-drop mass m =2/3nR’p, is assumed to be concentrated in the geometrical center
of the half-drop. The droplet deformation is regarded as the motion of the half-drops
in the x direction. Figure 2 shows the main parameters of our model.

The deformed drop is considered as an ellipsoid of revolution with major semi-
axis a and minor semi-axes b= \IR3/a (Fig.2). As in the base model [11], the de-
gree of drop deformation is determined by the parameter a/R , which is often used in

analyzing droplet deformation in shear flows [2,6,7,9]. In some cases it is more con-
venient to use the conventional definition D =(a —b)/(a +b) which was the proposed

by Taylor [1].

When the droplet is stretched in the direction x the y - coordinate of the center of
the half-drop is y; =y, =const. The distance of the center of mass of each half-
drop from the geometrical center of the drop itself is determined by the equation

(1) = (1) + 0 =3a/8. (1)

The parameter 7,(t) defines the current position of the center of each half-drop.
It is not difficult to calculate that 7 is connected with the length of the semi-axis a
by the relation r; =3a/8. For undeformed drop (a = R), the position of the center of
mass of hemi-sphere is determined by relation ryy =3R/8.
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ous- elastic body. orientation angle o during the drop

shear deformation.

As follows from Eq. (1), the direction 7 never coincide with the flow direction
x. The orientation of droplets is usually defined by the angle o between the direc-
tion of the vector 7 and the positive direction of the axis y [1-3, 5, 10]. The angle

o, shown in Fig.2, is important parameter of the model, because the effectiveness of
the particular shear flow in deforming a drop is strongly dependent on drop orienta-
tion in the flow.

Both experiment and modeling show [1-4, 6, 7, 9] that infinitesimal deformation
of an spherical drop in a simple shear flow occurs in the direction of 45° relative to
the flow direction v,. Hence, the initial coordinates of the center of mass of half-
drops x.,=r,-sin45" =3v2R/16 and y,, =r,-cos45’ =3v2R/16 . As drop elon-
gated, its principal axis a rotates towards the flow direction x. In accordance with
Fig.2, the orientation angle o o is related to the degree of drop deformation a/R
and the position of 7 by the expressions:

a=arctg(x,/y, )= arccos(\/z(a/R)fl) = (3\/§R/81’S )

As noted above, the process of drop deformation is determined by the combined
effect of three forces. This are the hydrodynamic force £, the capillary force F, and
the viscous force F,. Below we consider the influence of each of these forces on the
process of deformation of a drop.
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Hydrodynamic force action. The force F, that stretches the drop in the direc-
tion x is proportional to the drag of the half-drop to the stream, flowing around the
droplet, and is determined by the relation £ :E-Z)XS_VZ. Here, ¢ is the drag coeffi-

cient averaged over the drop surface, p, is the hydrodynamic pressure averaged over
the surface S, and S, is the area of the drop projection onto the plane, passing
through the center of the drop, and orthogonal to the direction x. This projection is
an ellipse with a minor axis » and a major axis y,,, which is described by equation
z=b-4/1 —yz/ygv . Parameter y,, is the distance from the axis x to the plane XZ
that contacts the surface of this ellipsoid (Fig.2). At each point of the drop surface the
local pressure px( ) pW: / 2= pC G y / 2. Then the force F; is defined as fol-

lows
[ T(5.)-ds, =0 o). gy m SR (0) G @
[T (s, s = [ar) = RS
where y, =a- ((R/a)3 sin” o + cos’ (x). The coefficient ¢ is valued by the equation
(=3 (16 2025 0’6) LSw, +p, | 3)
R R l"l'd + l"l'c

Reynolds number for shear flows is defined as Re = p,GR? /u, .

Viscous force action. The effect of viscosity forces on the deformation of drop-
lets streamlined by liquid flow has been analyzed in detail in [11], using the tensor
equation for energy dissipation in unit volume of a viscous fluid. An equation had
been obtained, which describes the rate of viscous energy dissipation dE, / dt as a
function of viscosity p,, droplet radius R, and velocity gradient Vv. With reference
to the problem at issue, the viscosity force is calculated by the equation

3
_ dEll _ dE“ dr, _ 4nR [T ﬂ @
Y odr,  dtodr r dt
Here p,, =p, +0.6p, is the effective viscosity, which takes into account the con-

tribution of the attached mass of the continuous phase, adjacent to the drop surface,
into the viscous force actions [11].

Capillary force action. The capillary force F, is considered as the ratio of the
surface energy increment dE; =c-dS caused by drop deformation, to the displace-
ment of the center of mass of the half- drop dry. (F, =dE,/dr,=c-dS/dr,). The

analysis, carried out in [11], shows that when the spherical droplet is deformed into
the shape of an oblate or elongated ellipsoid, the capillary force F, is determined

from equations:
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3 3
1-0,25-(a/R
F =8 _16mao (ﬁj 12025 (a/R) .h{“e}ﬁ (52)
dr, 3 a e l-e) e

for oblate ellipsoid, and

s | 0.5-(R/a)(1-4-(R/a)’)-arcsin e
b dS _16nR's (Rla)"(1-4-(R/a)’) IRE T .
e

° dr,  3d e

for prolate ellipsoid, where e = \/ 1-b2 / a’ = \/ 1-R3 / ais eccentricity of an ellipse
with half-axes a and b.

Criteria for droplet destruction. In the investigations of droplet behavior in
shear flows the most difficult and least developed question is the justification of crite-
rion for the transition from the subcritical deformation mode, when the drop stabilizes
in the finite form of prolate ellipsoid, to the supercritical mode, when an irreversible
elongation of the droplet occurs, resulting in its destruction. As has been specified
above, this transition is customary associated with the critical capillary number Ca,,,
which is a very complex and analytically not described function of viscosity ratio A
and Reynolds number.

Within the framework of this model, a simple criterion for the destruction of
droplets in shear flows has been obtained.

The dependence of the capillary force on the degree of drop deformation a/R,
which has been calculated from the equations (5a) and (5b), is shown in Fig.3.

The data presented reveal an important, previously unknown feature of the capil-
lary force influence on the drop deformation, when a/R > 1. From Fig.3 it can be ob-

served that, irrespective of the physical properties of both liquids, dependence
F=f (a/ R) for elongated drops has a maximum at the strictly determined value

(a/R), =2,2, which can be considered as a physical constant. Exceeding this critical
value must necessarily lead to irreversible deformation and the subsequent destruc-
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tion of the excessively elongated drop even after stopping the dynamic action of the
flow [3].

The obtained result convincingly explains the mechanism of the so-called "burst",
which denotes the flow conditions, corresponding to the onset of rapid continuous
elongation of a droplet. This effect was first observed in the Taylor experiments [1]
and was subsequently recorded by other researchers [2-4, 7, 10]. It should be noted
that the critical value of the above Taylor deformation parameter D corresponds to
D, =0.53.

As an illustration, Fig.4 shows photographs of dimethicone droplets during their
successive expansion in the shear creeping flow of castor oil in the subcritical
(Ca=0.98Ca,) (a) and the supercritical (Ca =1.01Ca,,) flow regime (b), according

to the data of [7]. It can be seen from the photos in Fig.4a that the shape of the stabi-
lized drop corresponds to a/R~2.2. It should be noted that the analyses of other
photographs and graphical data on droplet deformation, given in works of various re-
searcher, also indicates that the shape of droplets, stabilized in the supercritical mode
at Ca close to Ca,,, corresponds to a/R=2.0+2.3 [2,6,7,9] or D=0.5+0.55 [3-

5,10].

cr?

Drop deformation equations. The current shape of a drop during it stretching
depends both on the elongation parameter r,(t) and orientation angle o(t). There-

fore, the problem of drop evolution is expedient to solve in the polar coordinate sys-
tem (7,0 ). The deformation of a drop in shear flows is determined by the displace-

ment of 7, under the combined action of the above forces. The equation of motion of
the center of mass of the half-drop has the form

d’r, dr,
S =R R =C o G+ G (©)

The values C,,C,, and C,, are defined, respectively, from equations (4), (5) and
(2), taking into account that, in accordance with Eq. (1), r,(t)=3a(t)/8. The equa-
tion (6) is solved with the following initial conditions: ,(0)=3R/8, (dr,/dt)_, =0.
The change of the orientation angle o = f (r) is determined by the equation

oc:arccos((ﬁ-a/R)_l):(fﬁx/ER/S;;), @)

which is solved jointly with equation (6) with the initial condition oc(O): 45°C.

Egs. (6) and (7) are the basic equations for the mathematical model considered
here. Unlike the most existing models, this rather simple model allows the prediction
of behavior of deformed drops both in creeping (Re,<<1) and inertial

(Re, =0,01+100) shear flows with no adjustable parameters and additional assump-
tions. This study is limited to modeling the droplets deformation in the region (A <1).
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Fig.5. Dependences of drop deformation D (a) and orientation angle o (b) on the
capillary number Ca (at A =0,08), as well as dependence Ca,, = f (k) for low viscosity

ratios (A <1). Quantitative comparison of the simulation results (solid curve) with expe-
rimental data of Torza at al. [10] (points) for R=0.3 mm, c=4.1 mN/m.

Results and analysis. Below, we discuss the results of numerical calculations for
various regimes of flow around a liquid drop. A comparison is made with the known
experimental data of other authors on the deformation of droplets in shear flows.

To verify the reliability of the above model a computational experiment was car-
ried out that reproduced the conditions of the experiments, performed by Torca et. al.
[10]. In those experiments, deformation of castor oil drops (R =0.15+0.8 mm) in
creeping shear flows (Re <0.001, G=0.1+5s™) of organic liquids was investigated.
During each experiment, a change in the shape of the drop was recorded on the film,
and its deformation degree was represented by the parameter D = (a — b)/(a + b). The
orientation angles o were also determined. When comparing those experimental re-
gimes were picked, for which the viscosity ratio values A <1 have been used.

Figs 5a,b show a comparison of the experimental and theoretical dependencies
D= f(Ca) n o= f(Ca) for one of the regimes. It seen that the experimental points
lie reasonably close to the theoretical lines. The model with good accuracy predicts
the changes both in the deformation degree D and the orientation angle o with in-
creasing the capillary number Ca in the indicated range of its variation. This range
(Ca<0.4) refers to the subcritical flow regime (Ca < Ca,,), and so the values D,

shown in Fig 5a, below the deformation critical value D, =0.53.

Those studies had focused primarily on relating the critical capillary number Ca,,
and viscosity ratio A. There was found that for all the systems studied the depen-
dence Ca, = f (7») has a minimum in the region 0.3+0.9 [10]. In their experiments
the critical number Ca, was evaluated as the arithmetic average of a highest subcrit-

ical Ca, when the drop does not still break and attains a steady state, and a lowest
supercritical Ca, for which the drop breaks into fragments. In our model, the critical
capillary number Ca, =p G R/c is calculated from Eq.(6) for given values of R,

i and o, as a some value Ca = f(G), for which the condition a/R =(a/R),, =2.2
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is satisfied at a certainG = G,, . Figure 5c shows the experimental [10] and calculated
dependences Ca, = f (X) The results calculated, using the model, are in good

agreement with experiment in the range of values A, for which the accepted assump-
tions A <1 are valid.

The paper [10] does not give quantitative data on the time of stabilization of the
deformed drop shape or the onset of the "drop burst" moment. It was previously es-
tablished that in carrying out this type of research, a value G™' should be used as the
base temporal scale [2-4, 10]. For the interval of shear rates G, used in [10] (where
0.1+5s™"), this corresponds exactly to the time scale of seconds.

To assess the ability of this model to describe shear deformation in the wider
range of shear rates G, special numerical investigations were performed. The objec-
tives of these investigations were to compare the droplet behavior in the creeping and
inertial shear flow regimes, as well as to verify the validity of the assumption that the
parameter G~ can be used as a base temporal scale not only for the Stokes flows
around the droplet, but also for the inertial ones.

The choice of model systems was determined by the possibility of varying, to a
certain extent, the physical parameters of both the phases (p,, p., 1, M., ©) with

keeping the condition that A <1. The following systems were investigated:

1. Water drops in motor oil (pd=103 kg/m’, pc=0.8‘103 kg/m’, p, =1 mPas,
1, =200 mPass, c=29'10" N/m, A=0,005, R =1 mm).

2. Toluen drop in water (pd=0.8'103 kg/m’, pc=103 kg/m’, p,=0.6 mPass, p =1
mPas, 6=3510" N/m, 1,=0.6, R =1 mm).

For both the systems, drop deformations were considered with a gradual increas-
ing the shear rate G, up to an irreversible “burst” extension of the droplet, leading to
its destruction. The kinetics of deformation of a drop was determined by the depen-
dences a/R = f(t) and o= f(1).

The results of the calculation, in the form of kinetic dependencies a/R = f/(t)
and a = f(t), are presented in Figs. 6a,b (system 1) and Figs.7a,b (system 2).

In all cases, an increase in the shear rate G necessarily leads to the burst elonga-
tion of the drop. The results of the modeling show that this is indeed a “burst” effect,
since an insignificant increase in G (of the order of 0.01%) drastically changes the
droplet deformation regime (Fig. 6a).

The peculiarity of drop deformation depends qualitatively on the value of Rey-
nolds number. In Fig. 6a,b, where the continuous phase is high viscous motor oil, the
hydrodynamic action of the flow on the drop surface is not the inertial, but rather
viscous effect (Re<0.4). The stretching of droplets at low shear rates (G <G,,)

proceeds monotonically, so does their irreversible elongationat G> G,

In Figures 7a,b, where continuous phase is low-viscous water, the strictly iner-
tial flow regime (700) is realized. This mode is characterized by the presence of
damped oscillations of the droplet shape as it stabilizes. Simultaneously with the os-
cillations of the shape, the oscillations of the drop orientation also occur.
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Fig.7. Change in the deformation degree (a) and in the orientation angle o (b) during
deformation of toluene droplets in inertial shear flow of water. 1 — subcritical regime
(Ca<Ca,): G=938,0s""; 2 - supercritical regime (Ca > Ca,,): G=938.5s™". Operation
parameters: R=1 mm. p = 0.810° kr/m’, p.=10° kr/m’, py= 0.6 mPas, u.=1 mPas,
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Obviously, the physical nature of oscillations in the shape and orientation of low-
viscosity liquid droplets in inertial shear flows requires special discussion.

Ii will be noted that up to present neither experiments nor simulations have been
reported for the case of the time-depended drop deformation in inertial shear flows.

According to some researchers, inertia can change the initial stages of droplet de-
formation [9]. Besides, in the inertial regime, drop deformation occurs under the ac-
tion of pressure fluctuations, created by the irregular velocity of the fluid [2, 3, 6, 8].

Consideration of the dynamic transition between the initial and final stages of
droplet destruction in supercritical shear flows is not included in the tasks of this
study.

Conclusion. The results of the analysis confirm the reliability of the model and
the validity of the physical provisions used in its development. The model is able to
predict the character of droplet deformation and the conditions of their destruction in
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shear flows with known regime parameters with a greater degree of accuracy than ex-
isting empirical relationships. The results of the present study can find industrial ap-
plications, such as in creation and processing of emulsions and liquid-liquid disper-
sions. Knowledge of the conditions, when this breakup mechanism occurs, may im-
prove the efficiency of production of monodisperse emulsion.
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Heanuyxun I'. K.

YucneHHoe MoeiupoBaHme AepopManuu U ApodJieHusl Kanelb
B CIBUTOBbLIX TEYEHHAX

AHHOTALIUA

Paccmompensi npunyunsl nocmpoenus Mooenu, onucvigaioueli deopmayuro Kaneiv 8
COBLI206bIX NOMOKAX, 8 UHEPYUOHHOM U 6 CHOKCOBCKOM PEHCUMAX MeYeHUs, 8 UWUPOKOM UH-
mepeane pexicumMHbix napamempos npoyecca. Modenv 6azupyemcs Ha OONYujeHuU, 4mo oe-
Gopmupyeman xanna umeem Gopmy vimsaHymozo snnuncouda sepaujenus. Obcyxcoaemcs
POIb OCHOBHBIX (DAKMOPOE, ONPeOesLIoWUX I60IOYUIO KANIU 8 NOMOKe NOO 0ellcmeuem co8u-
206bIX HANPAX*CEHU. YCMAaHOBIeH Kpumepuil Ha4ana nepexooa K Heoopamumomy YOTUuHeHUIO
Kanau, npueodswemy K ee paspyuienuto. IIpugedenvl pe3yibmanmvl YUCIEHHbIX PACHENO8
€O8U20601 depopmayuu Kanau npu pasiuyHblX QU3UYECKUX U PENCUMHBIX NApAMempax 6
CpasHeHuU ¢ IKCNEPUMEHMATLHLIMU OAHHbIMU OPY2UX ABIMOPOS.

Ieanuuvkui I'. K.

YucesbHe MoeTIOBaHHs JedopMmallii i pyiiHyBaHHS KpamiMH
B 3CYBHMX TeUisIx

AHOTAIIA

Poszensinymo mamemamuyny mooens, wo onucye deghpopmayiio Kpanensb 8 3cyGHUX NOMOKAX Y
WUPOKOMy OlanaszoHi 3MIiHU pedcumie meyii ma Qizuunux napamempis 060x piokux ¢gasz. Mo-
denb basyemvcs HA NpunyujeHHi, wo 0eghopMosana KpaniuHa mae Gopmy umaznymozo enin-
coioa obepmanns. [lechopmayis kpanii po3ensioaemvpcs K nepemiujeHHs. YeHmpie Macu Hani-
Kpaneib, CUMEMPUYHUX RO GIOHOWIEHHIO 00 YeHmpYy Kpanii. Bnaue 6'si3xux i Kaninapnux cun na
Oepopmayiio Kpanii po3ensiHymo i3 3acmocy8anam mooeni @ouxma 0ns 8 A3KO NPYIHCHUX Ce-
pedosury. Ompumano npocmutl Kpumepiti NOYAMKY PYUHY8AHHA KPANIUHU Y 3CYGHUX MEUIsX.
Hageoerno pesynibmamu uucenvbHux po3paxyHkie 3cyeHoi oeghopmayii kpanii npu pisHux Qizuu-
HUX § PeIICUMHUX NAPAMEMPAX 6 NOPIBHAHNI 3 eKCNEPUMEHMATbHUMY OAHUMY THULUX A8MOPIE.
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