Shintani, Y. Aga [et al.] // Chem. Pharm. Bull. - 2000. - Vol. 48. - .

- 28. Rani S.A. Evaluation of antibacterial activity from rhizome of Acorus calamus (L.) / S.A. Rani, M. Satyakala, S. V. Devi, U.S. Murty // J. Sci. Ind. Res. - 2003. - Vol. 6(2). - . 623-625.

 29. Subha T.S. Combating oral candidiasis in albino rats using
- bioactive fraction of Acorus calamus / T.S. Subha, A. Gnanamani // J.

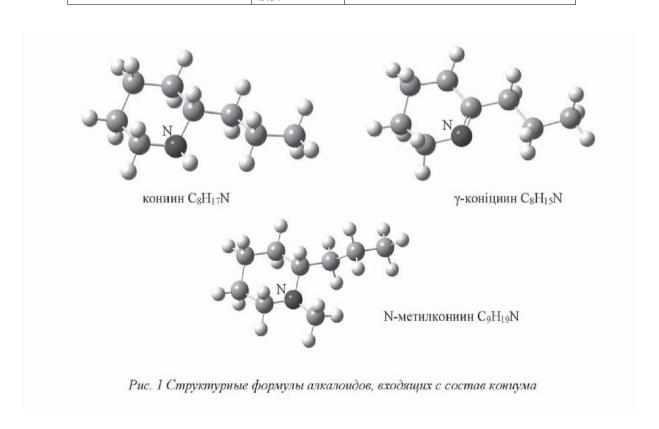
Appl. Biosci. - 2009. - Vol. 21. - . 1265-1276.

30. The inhibitory effect of triterpenoid glycosides originating from Sanguisorba officinalis on tissue factor activity and the production of TNF-a / J.Y. Cho, E.S. Yoo, B.C. Cha [et al.]//Planta Medica. - 2006. - Vol. 72. - . 1279-1284.

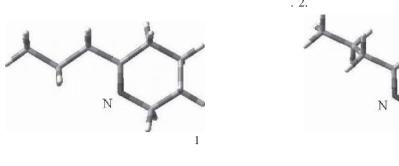
10.08.2011

: 615.32 : 616.31

L.I. Shulga THEORETICAL SUBSTANTIATION OF COMPOSITION OF THE HERB REMEDY FOR LOCAL APPLICATION IN STOMATOLOGY


Key words: medicinal plant raw materials, therapeutic stomatology

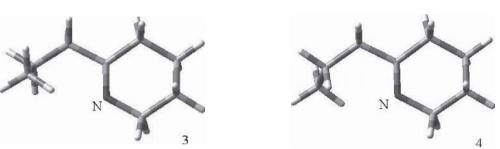
In this article the possibility of using of licorice roots, sedge cane rootstocks as well as burnet rootstocks with its roots for development of composition of the stomatological herb remedy were presented and perspectives of its application in therapy of inflammatory diseases of an oral cavity were adduced.

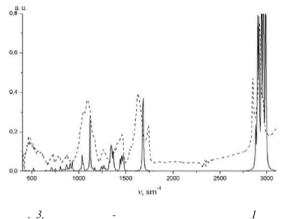

612.017.2;621.317

1 6 (^) de novo [1,3,4,6].40% (/

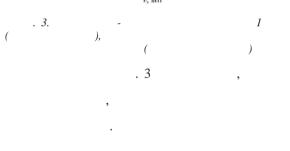
		, ()	()
		0.82	-369.84826676
N-	1	0.4423	-409.15251784
N-	2	0.4630	-409.15225083
-		1.77	-368.63751857
		1.28	
		2.37	

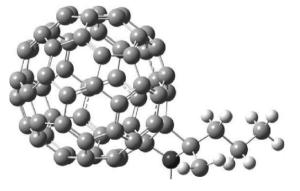
Gaussian, . 2.




Рис. 2. Конформационные формы молекулы ү-коншрина

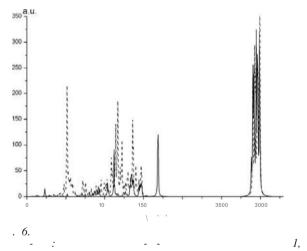
, - - 1,

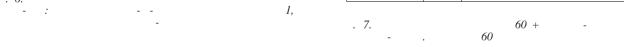

. 3


52

	E - Ei,			
i	0	0	1,7718	8.36774
2	0,034231649	0	1,7773	8.30145
3	0,022138541	0	1,8422	7.54672
4	0,02827639	0	1,8799	7.60537
5		i	1,6616	
6	0,134273463	0	1,9221	8.25083
7	0.053040306	0	1.7924	7.24937

, . 5.


80 - 60 - 40 - 20 - 1000 1100 1200 1300 1400 v, sm - (3)


, 2011 53

V W

- 60

		, and the second						
	-	-						
	-							
3-21G	3-2	-2258, 72019	-3 3,8 8 35	-2 22,540 83	-2 22,541273	0,00059049	0,01 0 82	
- 3-21G	6	2285,758509	-3 8,4130 59	-2 54,171575	-2 54,171111	-0,0004 35	-0,012 14	
	31							

, . 7, -- . 60, : , . , .

1. Gaussian , 60.

. **N**° , 2011

33/04. u 2009 08934; 33/76, 2 .0 .20 0, 6. Galey F.D., Holstege D.M., Fisher E.G., Toxicosis in dairy cattle to poison hemlock (Conium maculatum) in hay: isolation of Conium alkaloids in plants, hay, and urine, J. Vet. Diagn. Invest., 20.09.1996. 94042544/14. 2. 992, Vol.4, 60 - 64. 60 / 6. Kondoh M, Suzuki I, Nagashima F, Simizu S, Harada M, Fujii M, Osada H, Asakawa Y, Watanabe Y. Kaurene diterpene 201-: induces apoptosis in human leukemia cells partly through a caspase-2010, .677. 8-dependentpathway. J Pharmacol Exp Ther 2004; 3. 7. Stephen T. Lee, Benedict T. Green, Kevin D. Welch, James Pfister and Kip E. Panter, Stereoselective Potencies and Relative Toxicities of Coniine Enantiomers, Chem. Res. Toxicol., 2008, 2 . 21(2), *35-41*. (0), pp 206 -2064. . 48524 612.017.2; 621.317 Conium maculatum (Weieda). Conium -M.A. Zabolotny, A.I. Momot, N.V. Bashmakova, O.P. Dmytrenko, M.P. Kulish, G.I. Dovbeshko, G.I. Solyanyk, L.N. Kirkilevskaya, E.P. Gnatyuk, P. Scharf, U. Ritter MODIFICATION OF PROPERTIES OF ALKALOIDS OF **CONIUM MACULATUM D6 (WELEDA)** (Weieda). Key words: Fullerene water solution, nanocomposite, conium, - coniceine, optical ab-sorption, quantum -chemical calculation, IR In this work possibilities of bionanotecnology for the purpose of improvement of ofproperties of medicines are investigated. The interaction of a fullerene water solution with Conium maculatum (Weieda) drug was investigated by the UV - Vis absorption, IR absorption and quantum -chemical calculation using the density functional theory. It was showed the possibility of formation of a 6 complex between a fullerene molecule and one of the alkaloids of the drug conium y- coniceine through the breaking the double bond in alkaloid. 582.284.612.017.616-006.04. GANODERMA LUCIDUM

2000

20 [1]. 1.

365

55

. 28.08.2009;

30.08.20ii

, 2011

(Ganode ma lucidum) - «