О.Ю. Андресва, О.О. Солдатов

Функціональна морфологія ядерних еритроцитів в умовах гіпоксії (експерименти *in vitro*)

Досліджено зміни морфофункціональних характеристик ядерних еритроцитів в умовах експериментальної гіпоксії іп vitro. Показано, що при концентрації кисню в інкубаційному середовиці в діапазоні 1,76–4,03 мгO₂ · π^{-1} об'єм еритроцитів та їхніх ядер зменшується на 1,5–5,0 і 9–15 % відповідно. В умовах глибокої гіпоксії (0,57–1,76 мгO₂ · π^{-1}) ці показники, навпаки, вірогідно збільшуються при збереженні ядерно-плазматичного відношення. При цьому еритроцити набувають форми подальшого еліпса за рахунок збільшення довжини великої осі клітини (C₁) і товщини (h). При екстремальній гіпоксії (0,57–1,76 мгO₂ · π^{-1}) поряд зі збільшенням об'єму ядра еритроцитів посилюються флуоресценція SYBR Green I, інтенсивність якої корелює з показниками об'єму цієї структури (R² = 0,81).

Ключові слова: гіпоксія, експерименти іп vitro, ядерні еритроцити, морфологія клітини, цитометрія.

вступ

Ядерні еритроцити нижчих хребетних – зручний об'єкт для проведення досліджень у галузі клітинної фізіології. В них виявлені мітохондрії, ферменти циклу Кребса [8, 21], що робить їх функціонально ближчими до клітин соматичних тканин.

Особливий інтерес представляють процеси регуляції клітинного об'єму в умовах зовнішнього дефіциту кисню. Було показано, що еритроцити риб, які є толерантними до гіпоксії, здатні до збалансованого пригнічення мембранних і метаболічних функцій [1]. При цьому спостерігаються закономірні морфологічні зміни клітин [1] і підвищується їх здатність до деформації [11]. У більшості робіт констатується факт зростання клітинного об'єму [10, 17, 28]. Процес контролюється катехоламінами (переважно норадреналіном) [20, 25], що взаємодіють з поверхневими β-адренорецепторами еритроцитів [15, 22] і активують Na⁺-H⁺ і HCO₃⁻-Cl⁻-антипорти клітин [17, 29]. Дія катехоламінів опосередковується через циклічний аденозинмонофосфат [11]. Загальне призначення процесу © О.Ю. Андреєва, О.О. Солдатов

контроль значення внутрішньоклітинного pH
і показників спорідненості гемоглобіну до кисню. Вважається, що ця послідовність реакцій має адаптивне значення і може бути реалізована тільки на системному рівні. Участь ізольованих клітинних систем в цих процесах без регулювальних впливів вивчена вкрай слабо.

Мета нашої роботи – дослідити вплив гіпоксії на морфофункціональні та цитометричні характеристики ядерних еритроцитів в умовах *in vitro*.

МЕТОДИКА

Об'єктом дослідження були еритроцити Scorpaena porcus L. Кров отримували з хвостової артерії скорпени. Як антикоагулянт застосовували гепарин («Richter», Угорщина). Еритроцити відділяли від плазми за допомогою центрифугування при 1000 g протягом 15 хв і тричі відмивали в еквівалентному об'ємі ізотонічного розчину (ммоль/л): NaCl – 128, KCl – 3, CaCl₂ – 1,5, MgCl₂ – 1,5, тріс –15, D-глюкози – 2,2 (pH 7,8) [26].

Інкубація еритроцитів у гіпоксичному середовищі тривала 4 год при 14–16 °С. Зни-

ження концентрації кисню досягалося барботажем ізотонічного розчину газоподібним нітрогеном. Досліджували концентраційний діапазон 0,57–8,17 мгО₂ · л⁻¹. Інкубацію клітин проводили в герметичних вакуумних пробірках «Vacuette» ("Greiner Bio-One GmbH", Німеччина).

Після закінчення експозиції ядра еритроцитів протягом 20 хв фарбували вітальним барвником SYBR Green I (Molecular probes), який, зв'язуючись з дволанцюговою молекулою ДНК, флюоресціював зеленим кольором у видимій частині спектра.

Еритроцити фотографували за допомогою камери Ikegami ICD-848Р на інвертованому мікроскопі Nikon Eclipse TS100 для світлого поля та флуоресценції в світловому (світле і темне поле) та люмінесцентному режимах (набір світлофільтрів для збудження SYBR Green I у синій зоні спектра). Паралельно оцінювали інтенсивність флуоресценції SYBR Green I на проточному цитофлуориметрі Cytomics FC-500.

Значення великої та малої осей клітин та їх ядер вимірювали на цифрових фотографіях у програмі ImageJ 1.44р [12]. Об'єм клітин (V_c) розраховували за рівнянням [13] з урахуванням об'єму ядра (V_n) [4]:

$$V_c = 0.7012 \times \left(\frac{C_1 + C_2}{2}\right)^2 \times h + V_n,$$
$$V_n = \frac{\pi \times N_1 \times N_2^2}{6},$$

де: C_1 – довжина великої осі клітини, C_2 – довжина малої осі клітини, h – товщина клітини ($h = 1.8 + 0.0915 \times (C_1 - 7.5)$) [5], N_1 – довжина великої осі ядра, N_2 – довжина малої осі ядра.

Вимірювали 100 клітин на одну пробу. Нормальність розподілу цифрових масивів перевіряли, використовуючи критерій Пірсона. Вірогідність відзнак оцінювали за допомогою критерію t Стьюдента. Результати представлені у вигляді $x \pm S_x^-$.

РЕЗУЛЬТАТИ ТА ОБГОВОРЕННЯ

При зниженні концентрації кисню в інкубаційному середовищі в діапазоні 1,76-4,03мгО₂ · л⁻¹ відзначали зменшення об'єму еритроцитів на 1,5-5,0 %. При 1,76 і 2,14 мгО₂ · л⁻¹ відмінності були статистичними (рис. 1). Зниження вмісту кисню в діапазоні 0,57-1,76 мгО₂ · л⁻¹ викликало протилежну реакцію. Об'єм клітин червоної крові зростав на 3-12 %. У чотирьох випадках (при 1,07; 1,23; 1,50; 1,73 мгО₂ · л⁻¹) зміни були статистично значимі (див. рис. 1).

Ядерні еритроцити мають еліпсоїдну форму. Об'єм клітин залежить від зміни їх значень: С₁, С₂, h. Оцінка корелятивних зв'язків показала, що ці величини змінюються незалежно одна від одної (коефіцієнт $R^2 =$ 0,003–0,006). Це означає, що кожна з них може робити свій внесок у зміну об'єму клітин.

Об'єм клітини зростав переважно внаслідок зміни C_1 і h. Про це свідчать більш високі значення R^2 (0,51–0,76) порівняно з C_2 (0,10–0,32; рис.2). Це означає, що в умовах гіпоксії еритроцити набувають форми подовженого еліпса, що підтверджується світловою мікроскопією.

В умовах гіпоксії об'єм ядра еритроцитів фактично змінювався пропорційно об'єму клітини (рис. 3,а). За умов вмісту кисню в інкубаційному середовищі в концентраційному діапазоні 1,76–4,03 мгO₂ · π^{-1} у двох випадках (при 2,14 і 4,03 мгO₂ · π^{-1}) відзначали зменшення значень цього показника на 9–15 %. Лише в одному разі при 3,58 мгO₂ · π^{-1} спостерігали зростання на 8 %. При низький концентрації кисню (діапазон 0,57–1,76 мгO₂ · π^{-1}) зміни були більш однозначні. В 5 з 6 випадків об'єм ядра збільшувався на 7–21 %.

Результати кореляційного аналізу свідчать про пропорційність змін значень V_n і V_c (див. рис. 3,6). Відсутність вірогідних змін ядерно-плазматичного відношення в контрольних і дослідних серіях також відображає цей зв'язок.

За умов низьких концентрацій кисню в інкубаційному середовищі (діапазон 0,57–1,76 мгО₂ · л⁻¹) істотно підвищувалася інтенсив-

Рис.1. Зміни об'єму ядерних еритроцитів в умовах експериментальної гіпоксії. За віссю абсцис – концентрація кисню, за віссю ординат – об'єм клітин. *P<0,05; **P<0,02

ність флуоресценції SYBR Green I в ядерних структурах. Максимуми розподілів зсувалися вправо (рис. 4). При цьому простежувався пропорційний зв'язок між об'ємом ядра та інтенсивністю флуоресценції (рис. 5).

Інформація про зменшення об'єму клітин червоної крові риб в умовах нестачі кисню вкрай обмежена. Подібна зміна показників об'ємів еритроцитів Scorpaena poreus L. була описана в умовах короткочасної гіпоксії (90 хв, *in vivo*) [3]. Разом з цим механізми, які можуть лежати в основі цієї реакції клітин, цілком реальні. Відомо, що регуляторне зменшення об'єму еритроцитів може відбуватися

Рис. 2. Кореляційний зв'язок між лінійними та об'ємними характеристиками ядерних еритроцитів. За віссю абсцис: а – довжина великої осі клітини, б – довжина малої осі клітини, в – товщина клітини; за віссю ординат – об'єм клітин

Рис. 3. Зміни об'єму ядер еритроцитів в умовах експериментальної гіпоксії та оцінка кореляційного зв'язку між об'ємом клітин (V_c) і об'ємом ядра (V_n) : а – зміни об'єму ядер при дефіциті кисню. За віссю абсцис – концентрація кисню, за віссю ординат – об'єм ядра (відносно контролю); б – кореляційний зв'язок між значеннями V_c і V_n . За віссю абсцис – об'єм ядра (відносно контролю); б – кореляційний зв'язок між значеннями V_c і V_n . За віссю абсцис – об'єм ядра (відносно контролю), за віссю ординат – об'єм клітин (відносно контролю). **P<0,02

завдяки діяльності К⁺–СІ⁻ котранспорта, а також через вихід із клітини органічних осмолітів [16]. Серед можливих шляхів активації каналу найбільш ймовірним є незначне зниження pH внутрішньоклітинного середовища (до 7,0), яке може бути наслідком активації анаеробних процесів і збільшення внутрішньоклітинної концентрації лактату [6]. Відомо, що ядерні еритроцити нижчих хребетних

здатні за несприятливих умов переходити на анаеробні режими функціонування [27]. Випадки внутрішньоклітинного ацидозу в умовах гіпоксії були зареєстровані для багатьох видів кісткових риб [13, 23].

Зростання об'єму еритроцитів – більш поширена та описана реакція клітин червоної крові риб [18]. Набухання еритроцитів за умов гіпоксії відбувається внаслідок

Рис. 4. Інтенсивність флуоресценції SYBR Green I в умовах нормоксії (а) та гіпоксії (б). За віссю абцсис – флуоресценція дволанцюгової ДНК у відносних одиницях на клітину. За віссю ординат – кількість клітин

входу в клітину Na⁺ через Na⁺-H⁺-антипорт. Найбільш сильним стимулом до активації транспорту є катехоламіни, які потрапляють у кров при зниженні концентрації доступного кисню і вступають у взаємодію з β-адренорецепторами еритроцитів [7]. Проте за умов in vitro ця послідовність подій виключена. У дослідженнях [19] показано, що активність Na⁺-H⁺-каналу також посилюється при значному зниженні рН цитоплазми еритроцитів і, як наслідок, зростанні спорідненості внутрішнього боку мембрани клітин до H⁺. Слід зазначити, що ацидоз внутрішньоклітинного середовища повинен інгібувати процеси К⁺-СІ⁻-котранспорта, що також має сприяти гідратації цитоплазми клітини [6]. В умовах екстремальної гіпоксії це припущення цілком допустимо і пояснює послідовність подій, яку спостерігали. Причину збільшення клітинного об'єму можна також вбачати і в активації HCO₂--Cl-антипорта, який допускає надходження в клітину Cl⁻ в умовах гіпоксії [29].

Розглянуті вище аргументи свідчать, що спостережуване зниження, а потім зростання об'єму еритроцитів Scorpaena porcus L. за умов гіпоксії, ймовірно, є наслідком поступового зниження значення pH клітини. Спочатку воно активує K⁺–Cl⁻-котранспорт, а потім Na⁺–H⁺-антипорт. Це є найбільш імовірним механізмом впливу гіпоксії, який реалізується в умовах *in vitro*. В умовах in vivo активація K⁺–Cl⁻-каналу малоймовірна, тому що потрапляння у кров катехоламінів і активація β-адренорецепторів еритроцитів практично відразу запускає Na⁺–H⁺-обмін на мембрані клітини.

Як було зазначено вище, гіпоксія чинила істотний вплив й на розміри клітинного ядра. При концентрації кисню в інкубаційному середовищі $0,57-1,76 \text{ мгO}_2 \cdot \pi^{-1}$ об'єм цієї структури в деяких випадках підвищувався на 21 % (P<0,02). Подібні ефекти гіпоксії були відзначені раніше в умовах *іп vivo* [2]. Збільшення об'єму ядра клітини зазвичай спостерігається при поліплоїдії, гідратації або функціональній активізації структури (зростання вмісту еухроматину), токсичній дії [4].

Відомо, що проліферативна активність у зрілих ядерних еритроцитів не виражена. Вона втрачається на стадії базофільних нормобластів [24]. Можливі випадки цитокінеза (амітоз), які індукуються гіпоксією [24], але вони не супроводжуються редуплікацією ДНК і, як наслідок, не призводять до поліплоїдії. Про будь-яку токсичну дію на еритроцити в наших експериментах також говорити не доводиться. Навіть якщо вона і спостерігалася, то була адекватною як для дослідних, так і контрольних проб.

Гідратація ядерного матриксу як процес, що визначає зростання об'єму клітинного ядра цілком можлива, якщо врахувати наявність залежності між об'ємами цієї структури і клітини в цілому (R²=0,67). Про це свідчить також сталість ядерно-плазматичного відношення, яка зберігалася протягом усього експерименту.

Разом з тим слід зазначити і достатньо виражений зв'язок між об'ємом ядра та інтенсивністю його флуоресценції при забарвленні SYBR Green I, яка була встановлена в цій

Рис. 5. Аналіз кореляційного зв'язку між інтенсивністю флуоресценції SYBR Green I (вісь ординат) та змінами об'єму ядра зрілих еритроцитів (вісь абсцис)

роботі (R²=0,81). Це дає змогу припустити наявність процесу реактивації цієї структури за умов екстремально низьких концентрацій кисню. Водночас інтерпретація зростання інтенсивності флуоресценції SYBR Green I має певні труднощі, оскільки механізм зв'язування цього флуорохрома з ДНК до кінця не встановлений [30]. Проте наявна інформація дає можливість однозначно говорити про те, що посилення інтенсивності флуоресценції цього барвника практично завжди сполучено зі збільшенням функціональної активності клітин [9].

Таким чином, об'єми еритроцитів та їх ядер в умовах зовнішньої гіпоксії зазнавали послідовних змін. Спочатку (діапазон $1,76-4,03 \text{ мгO}_2 \cdot \pi^{-1}$) значення цих показників знижувалися, потім істотно підвищувалися (діапазон $0,57-1,76 \text{ мгO}_2 \cdot \pi^{-1}$) при збереженні ядерно-плазматичного відношення. При цьому клітини набували форми подовженого еліпса, що було зумовлено збільшенням значень С₁ і h. За умов екстремально низьких концентрацій кисню значно підвищувалася інтенсивність флуоресценції SYBR Green I в ядрах клітин, яка корелювала з об'ємом згаданих структур (R²=0,81).

А.Ю. Андреева, А.А. Солдатов

ФУНКЦИОНАЛЬНАЯ МОРФОЛОГИЯ ЯДЕР-НЫХ ЭРИТРОЦИТОВ В УСЛОВИЯХ ГИПОК-СИИ (ЭКСПЕРИМЕНТЫ IN VITRO)

Исследованы изменения морфофункциональных характеристик ядерных эритроцитов в условиях экспериментальной гипоксии in vitro. Показано, что при концентрации кислорода в инкубационной среде в диапазоне 1,76-4,03 мгО₂ · л⁻¹ уменьшается объем эритроцитов и их ядер на 1,5-5,0 и 9-15 % соответственно. В условиях глубокой гипоксии $(0,57-1,76 \text{ мгO}_2 \cdot \pi^{-1})$ оба показателя, напротив, достоверно увеличиваются при сохранении ядерно-плазматического отношения. При этом эритроциты приобретают форму удлиненного эллипса за счет увеличения длин большой оси клетки (C1) и толщины (h). В нижнем диапазоне концентраций кислорода (0,57–1,76 мгО₂ · л⁻¹) наряду с возрастанием объема ядра эритроцитов наблюдается усиление флюоресценции SYBR Green I, интенсивность которой коррелировала с показателями объема данной структуры ($R^2 = 0.81$).

Ключевые слова: гипоксия, эксперименты in vitro, ядерные эритроциты, морфология клетки, цитометрия.

O. Y. Andrieieva, O. O.Soldatov

FUNCTIONAL MORPHOLOGY OF NUCLEIC ERYTHROCYTES DURING HYPOXIA (IN VITRO EXPERIMENTS)

Changes in morphologic and functional properties of nucleic erythrocytes were observed during experimental hypoxia *in vitro*. It has been shown that erythrocytes volume and nuclei volume decrease in oxygen concentration of $1,76-4,03 \text{ mgO}_2 \cdot l^{-1}$ on 1,5-5,0% and 9-15% respectively. Both indexes increased significantly in case of deep hypoxia ($0,57-1,76 \text{ mgO}_2 \cdot l^{-1}$) when nucleo-cytoplasmic ratio doesn't change. By this time erythrocytes shape modifies into extended ellipse because of elongation of large axis of cell (C_1) and its width (h). Along with increase in nuclei volume the enhancement of SYBR Green I fluorescence is observed; the intensity correlates with volume magnitude of this cell structure ($R^2 = 0,81$). Key words: hypoxia, in vitro experiments, nucleated erythrocytes, cell morphology, cytometry.

A.O. Kovalevsky Institute of Biology of the Southern Seas, National Academy of Sciences of Ukraine, Sevastopol

СПИСОК ЛІТЕРАТУРИ

- Новицкая В.Н., Солдатов А.А., Парфенова И.А. Функциональная морфология, сопряжение мембранных и метаболических функций у ядерных эритроцитов Scorpaena рогсиз L. в условиях экспериментальной гипоксии // Доп. НАН України. – 2011. – № 10. – С. 131–136.
- Парфенова И.А., Солдатов А.А. Функциональная морфология циркулирующих эритроцитов бычка-кругляка в условиях экспериментальной гипоксии // Морской экол. журн. – 2011. – 10, №2. – С. 59–67.
- Солдатов А.А., Русинова О.С., Трусевич В.В., Звездина Т. Ф. Влияние гипоксии на биохимические показатели эритроцитов скорпены // Укр. биохим. журн. – 1994. – 66, №5. – С. 115–118.
- Ташкэ К. Введение в количественную цито-гистологическую морфологию. – Бухарест: Изд-во Академии Республики Румынии, 1980. – 291 с.
- Чижевский А.Л. Структурный анализ движущейся крови. – М.: Изд-во АН СССР, 1959. – 474 с.
- Adragna N.C., Di Fulvio M., Lauf P.K. Regulation of K-Cl cotransport: from function to genes // J. Membrane Biol. – 2004. – 201. – P. 109–137.
- Borgese F., Garcia-Romeu F. Motais R. Control of cell volume and ion transport by β-adrenergic catecholamines in erythrocytes of rainbow trout, Salmo gairdneri // J. Physiol. – 1987. – 382. – P. 123–144.
- Boutilier R.G., Ferguson R.A. Nucleated red cell function: metabolism and pH regulation // Can. J. Zool. – 1989. – 67, №12. – P. 2986–2993.

- Cerca F., Trigo G., Correia A., Cerca N., Azeredo J, Vilanova M. SYBR green as a fluorescent probe to evaluate the biofilm physiological state of Staphylococcus epidermidis, using flow cytometry // Can. J. Microbiol. – 2011. – 57, №10. – P. 850–856.
- Cossins A. R., Gibson J. S. Volume-sensitive transport systems and volume homeostasis invertebrate red blood cells // J. Exp. Biol. – 1997. – 200. – P. 343–352.
- Gilles C., Motais R. Effect of catecholamines on deformability of red cells from trout: relative roles of cyclic AMP and cell volume // J. Physiol. – 1989. – 412. – P. 321–332.
- Girish V., Vijayalakshmi A. Affordable image analysis using NIH Image/ImageJ // Indian J. Cancer. – 2004. – 41, №1. – P. 41–47.
- Hallman T. M., Rojas-Vargas A. C., Jones D. R., Richards J. G. Differential recovery from exercise and hypoxia exposure measured using 31P- and 1H-NMR in white muscle of the common carp Cyprinus carpio // J. Exp. Biol. – 2008. –211. – P. 3237–3248.
- Houchin D.N., Munn J.I., Parnell B.L. A method for the measurement of red cell dimensions and calculation of mean corpuscular volume and surface area // Blood. – 1958. – 13. – P. 1185–1191.
- Jahns R., Borgese F., Lindenthal S, Straub A., Motais R., Fievet B. Trout red blood cell arrestin (TRCarr), a novel member of the arrestin family: cloning, immunoprecipitation and expression of recombinant TRCarr // Biochem. J. – 1996. –316, №2. – P. 497–506.
- Jensen F. B. Regulatory volume decrease in carp red blood cells: mechanisms and oxygenation-dependency of volume-activated potassium and amino acid transport // J. Exp. Biol. – 1995. – 198. - P. 155–165.
- Jensen F.B. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O₂ and CO₂ transport (review) // Acta Physiol. Scand. – 2004. –182, №3. – P. 215–227.
- Jensen F.B.; Weber R. E. Kinetics of the acclimational responses of tench to combined hypoxia and hypercapnia // J. Comp. Physiol., B. – 1989. – 156, №2. – P. 197–203.
- Motais R., Borgese F., Fievet B. Garcia-Romeu F. Regulation of Na⁺/H⁺ exchange and pH in erythrocytes of fish // Comp. Biochem. Physiol. – 1992. – 102a, №4. – P. 597–602.

Ін-т біології південних морів ім. О.О. Ковалевського НАН України, Севастополь E-mail: andreevaal@gmail.com

- Perry S.F., Montpetit C.J., Julio A.E., Moore K. The influence of chronic anaemia on catecholamine secretion in the rainbow trout (Oncorhynchus mykiss) // J. Comp. Physiol. – 1999. – 169, №4/5. – P. 335–343.
- Phillips M.C.L., Moyes C.D., Tufts B.L. The effects of cell ageing on metabolism in rainbow trout (Oncorhynchus mykiss) red blood cells // J. Exp. Biol. – 2000. – 203, №6. – P. 1039–1045.
- Reid S.D., Perry S.F. The effects of hypoxia, in vivo, on red blood cell b-adrenoreceptors in the rainbow trout, Oncorhynchus mykiss // Fish Physiol. Biochem. – 1995. – 14, №6. – P. 217–240.
- Richards J. G., Wang Y. S., Brauner C. J., Gonzalez R. J., Patrick M. L., Schulte P. M., Choppari-Gomes A. R., Almeida-Val V. M., Val A. L. Metabolic and ionoregulatory responses of the Amazonian cichlid, Astronotus ocellatus, to severe hypoxia // J. Comp. Physiol B. 2007. 177. P. 361–374.
- Soldatov A.A. The effect of hypoxia on red blood cells of flounder: a morphologic and autoradiographic study // J. Fish. Biol. – 1996. – 48, №3. – P. 321–328.
- Tetens V., Lykkeboe G., Christensen N.J. Potency of adrenaline and noradrenaline for b-adrenergic proton extrusion from red cells of rainbow trout, Salmo gairdneri // J. Exp. Biol. – 1988. – 134. – P. 267–280.
- Tiihonen K., Nikinmaa M. Short communication substrate utilization by carp (Cyprinus carpio) erythrocytes // J. Exp. Biol. – 1991. – 161. – P. 509–514.
- Walsh P. J., Wood C. M., Thomas S., Perry S. F. Characterization of red blood cell metabolism in rainbow trout //Ibid. – 1990. – 154. – P. 475–489.
- Wells R.M.G. Blood-gas transport and hemoglobin function: adaptations for functional and environmental hypoxia // Fish. Physiol. – 2009. – 27. – P. 255–299.
- Wood C.M., Simmons H. The conversion of plasma HCO3- to CO2 by rainbow trout red blood cells in vitro: adrenergic inhibition and the influence of oxygenation status // Fish. Physiol. and Biochem. – 1994. – 12, №6. – P. 445–454.
- 30. Zipper H., Brunner H., Bernhagen J., Vitzthum F. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications // Nucleic Acids Res. – 2004. – 32, №12. – P. e103.

Матеріал надійшов до редакції 19.04.2013