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The paper is devoted to five different flanges of cold-formed thin-walled beams. Mathematical mo-
dels of each of the flanges are formulated and solved. The theory of elastic stability of plates and
cylindrical shallow shells is applied for this purpose. Critical stress for each flange of the beam is
determined. Results of analytical solutions are discussed and compared with numerical (FEM)
and experimental investigations. The formulas of critical stresses may be used in practical
applications.
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Introduction. Cold-formed thin-walled beams of flat walls may be modeled by long
rectangular plates joined with adjacent edges. Investigation of local stability of such
beams converts itself to studying buckling of long rectangular plates, taking into
account appropriate conditions of supporting. Timoshenko and Gere (1961) and Vol-
mir (1967) presented a discussion of the elastic buckling problems. Detailed results of
contemporary analytical, numerical — FEM and experimental investigations of selec-
ted problems of strength, buckling and optimization of cold-formed thin-walled beams
are presented for example by: Bradford and Ge (1997), Bradford (1998), Put, Pi and
Trahair (1999), Davies (2000), Pi and Trahair (2000), Magnucki and Monczak (2000),
Rasmussen (2001), Magnucki (2002), Hancock (2003), Mohri F., Brouki A., Roth (2003),
Corte et al. (2004), Dinis P. B., Camotim D., Silvestre (2004), Stasiewicz et al. (2004),
Trahair and Hancock (2004), Magnucki et al. (2004), Magnucka-Blandzi and Mag-
nucki (2004), Magnucki (2005), Magnucki and Ostwald (2005), Magnucki and Mac¢-
kiewicz (2005). Elastic buckling problems of five selected flanges of cold-formed thin-
walled beams are presented based on the referred papers. Beams with these flanges are
under a pure bending state. The upper flange of each of the beams is compressed and the
lower flange is subject to tension.

1. A flat flange with a bend of the channel beam

Channel beams with flat flanges are reckoned among typical cold-formed thin-walled
beams. One edge of such a flange is free or stiffened by bends. Buckling of these flan-
ges was studied by Hancock (1997), Rogers and Schuster (1997), Bambach and Ras-
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mussen (2001, 2004), Corte G. D. et al. (2004). They proposed some formulas
designed for determining critical loads. Stasiewicz et. al. (2004), Magnucki and Ost-
wald (2005) analytically determined critical loads of flat flanges with bends. Their ana-
lytical solution was subject to numerical verification by means of the finite element method.

Approximate model of a flat flange with bends is considered as a long rectangu-
lar plate with three simply supported edges. The fourth edge with the bends is free
(fig. 1). Moreover, the flange-web joint of the beam is assumed as a hinged one.

The flange width b is small as compared to its length L. A cross section of the flange
rotates with respect to its supporting point (the flange-web joint) by the angle y(x).

Angle of rotation of a flange cross section is assumed in the form

v(x)=v, sin% (1)

where y, — parameter;
hence, the corresponding displacement

v(x,z)zz-\u(x)z\ul-zsin%. )

Potential energy of elastic strain for the flange

L L
U, = 6, ( j okl J-( j dx, or
2
0 -
T
U8=4—{GJ +m’ EJ, } vy, 3)
where
y -t c? nch’c—l(c—e)2 is location of central axis of the flange
P b+c+d+e 2
cross section,
a) b)
h

I

Fig. 1. Schemes: a) cross section of the flange, b) displacement of a buckled flange
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2
J,, =t gc3+czd—l(c—e)3—; cz+dc—l(c—e)2 is moment
? 3 3 b+c+d+e 2

of inertia,

1 . . . . .
J, = §t3 (b +c+d+ e) is geometric torsion stiffness of the cross section.

The upper flange is compressed and the work of the load

1 bL v 2 L
:E !{(Ej dxdz+ c+d+e‘([( jz_

and, upon integrating

2
bt
w=L21 o7 oolp+3(c+d+e)|-y?, 4)
where
(1 2 )[);j max 1S compressive stress in the flange, A depth of the beam.
Maximal stress in the bent beam .. =——H , where M 1s maximal ben-

max > max
2J.

ding moment.
The principle of stationary total potential energy 6(U .= W) =0 enabled determi-

ning critical stress of the beam flange subject to pure bending

3 bY
) GJ, + 2(—] EJ_ |. 5
0K = bzt[b+3(c+d+e)]|: L) e ®)

In particular case of a flange without bends (c = d = e = 0) the critical stress

o) siols)

Example calculation of critical stress has been carried out (5) for the channel
beam flange, assuming the following numerical data: ¢=1,5mm, =100 mm,
0<¢c<20mm, 0<d<10mm, 0 <e<4mm, L=2800mm, v=0,3. Results of the cal-
culation are shown in fig. 2. Enlarging the length of any bend results, of course, in gro-
wing critical stress. Very effective growth of the stress occurs while extending the first
bend up to a certain minimal value (¢/b)_. =0,05. Smaller growth of the stress, slight-

'min

ly below linear, corresponds to extending the second bend (0 < d/b <0,1). On the other
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Fig. 2. Critical stress of the flange as a function
of bending ratio of its free edge

hand, extending the third bend (0 <e/b< 0,04) appears to be of small meaning, as it

results only in insignificant growth of the flange critical stress. It should be noticed that
a free edge complemented with the bends of growing area must be finally considered
as a supported one. Hence, the value of critical stress corresponding to the flange with
bends exceeds the value for the flange/plate supported at four edges. For example, such
support of the considered flange was obtained when the value of the second bend
d/b=0,01 (fig. 2).

Moreover, critical stress of the flange was determined by means of FEM (The
COSMOS/M System). The computation was confined to the variant of the flange with
maximal bends. Hence, the following numerical data have been assumed: ¢ = 1,5 mm,
b =100 mm, ¢ =20 mm, d= 10 mm, e =4 mm, L =800 mm, v=0,3, E =2,05-10° MPa
with uniformly distributed compressive stress. Values of the stresses obtained this way

are marked with the points of the diagram (fig. 2). Differences between numerical re-
sults obtained with both methods do not exceed 1,5%.

2. A flat rectangularly corrugated channel beam

Flat flanges of thin-walled beams may be also stiffened by their corrugation. In such a
case the flange takes, in practice, a form of a long orthotropic rectangular plate, with
three edges simply supported and the fourth edge free (fig. 2). Magnucki and Ostwald
(2005) analytically determined critical loads of flat rectangularly corrugated flange.
Magnucki and Mackiewicz (2005) the critical loads of flat cosinusoidally corrugated
flange determined.
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Similarly, like for the single-bend flange, a simplified scheme of displacements
shown in fig. 3 is adopted here. The angle of rotation of the flange was assumed in the
form (1) and, consequently, the displacement in the form (2).

Potential energy of elastic strain (Volmir (1967))

1488 ot ' %y
u, ==[[|D. +2D_| | +D.| 2 dxdz, (6)
299 Ox0z 0z*
where
2
vix,z)=z-y(x)=y, -z sin% is the displacement, D = iJZ = Ec—t(b +c)
3
g2l pse), e b ap G5 _GUf) 5c
12 3 3 ¢ 3 b
s = 2 +c, D, = 25 S
307 7 -y s
Integrating of the expression (6) provides
2
UE T[ b b D)C + 2DXZ ) le *
4L 3 L
Work of the load
2
_1 b’ 2 _ LI
W= N “( ] ™ LN -y, where Nxx—(b+3c)bc50 . (7)

The principle of stationary total potential energy S(U .= W)= 0 was a basis for
determining critical stress

E ¢ bic(cY
(2) Bl 2 —
o.kr = 4(1+v){2(b] o (1+V)b+3c(Lj } ®

In particular case of a flat flange without corrugated (c = 0) the critical stress

ouli] sl

b/3 >

Fig. 3. Schemes: a) cross section of corrugated flange, b) displacement of a buckled flange
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3. A flat three layer flange of channel beam

Stiffness of flat flange of a thin-walled beam may be increased by its double bending
and filling the space created this way with polyurethane foam. In such a case the flange
is considered, in practice, as a long three-layer rectangular plate with three simply
supported edges and one edge free (Fig. 4). Magnucki and Ostwald (2001, 2005) pre-
sented the problems of stability of three-layer structures.

A simplified scheme of displacements is applied here, similarly as for the case of
the bent or rectangularly corrugated flanges. The angle of rotation of a cross section
was assumed in the form (1) and, consequently, the displacement as (2).

Potential energy of elastic strain

1 L8 o%v 2 0%y ? 0%y ?
U& = _J.J. DX A2 + 2sz A A + DZ A2 dxdz ? (9)
241 ox 0x0z oz
where

v(x,z)=z-y(x)=y, - zsin % is displacement,

X

-1 -1
D, =Ge’t [1+5j +(1+3j =Gt p _Llpey
b L 1+c/b 2

1
c=t+2t,, D =EEczt,

it was taken into account that ¢/L <<1.

Integration of the expression (9) gives

2 2 2
v, =“—3{“—[9 D, +2DXZ]-wf . (10)

b)

Fig. 4. Schemes: a) flat three-layer flange, b) displacements of a buckled flange
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Work of the load

2 3

—lN ﬁ TN 2 (11)
_2 ) 12 L o Vi

The principle of stationary total potential energy 8(U — W)= 0 enabled deter-
mining intensity of critical load

2 2 2
Nxx KR :[E] Dx +£2sz :lE[[ngj + 6Gt2+—c/b[£j ,
L pr e 2\ 1+¢/b\b

hence, the critical stress of the compressed flange
2 2
O o= Eb 3 2+¢/b(c +l AN (12)
o) 1+vive/b\b) 2L

4. A flat double flange of I-beam

Mathematical model for local buckling of the upper flange of the beam is assumed in
the form of a beam on an elastic foundation [Magnucki and Ostwald (2005)]. Scheme
of the deformation of the cross section of the beam is shown in fig. 5.

The differential equation for the beam on an elastic foundation is in the follo-
wing form

d4
dx*

de
+k e w(x)=0 (13)

where

3
k= , B= . Jog =§bt3, CZSE[éj is module of the elastic

foundation, £ is longitudinal compression force of
== the upper flange.

The web is rigid as compared to the flange of
the beam. In consequence, the deflection function
determining the buckling shape is assumed in the
following form

w(x)=w, -sinzanx, (14)

where w, is amplitude, m is natural number.

The differential equation (13) is solved with
Fig. 5. Deformed cross section the Galerkin method. The critical force is obtained
of the beam under pure bending in the following form
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£ (2., 31 £ b
Fep =8E—min| —Y* +—— =8x/EE—,where Y=mn— (15)
b v |3 4Y b L

The critical stress for the compressed flange of the I-section of cold-formed
beam is in the following form

2
(ana1)=h=4 ZE[LJ 16
o = o = V2E 5 ) (16)

5. A circular cylindrical flange

Stability of a compressed cylindrical shell was extensively studied and described in li-
terature. The first solution to the problem was presented by R. Lorenz in 1908 and 1911,
S. P. Timoshenko in 1910, and R. V. Southwell in 1914. They determined critical
stress of an axially compressed cylindrical shell

(L-1-S) _ E
c ==, 7)
e SR

where ¢ 1s thickness of the shell, 7 is radius of the shell, £, v are material constants.
Stability of cylindrical shells was studied very thoroughly, particularly in the
latter part of the 20" century. Nevertheless, stability of an axially compressed open
cylindrical shell with linear free edges was investigated only rarely. Chu et al. (1967),
Yang and Guralnick (1976) solved this problem for open cylindrical shells with sec-
torial angle B < n/2 . Magnucka-Blandzi and Magnucki (2004) determined analytically
and FEM-numerically the critical stress for open cylindrical shell of grater sectorial
angles /2 < B < . Magnucki and Mackiewicz (2005) presented an extended study of

these shells. They assumed that two curvilinear edges of the shell are pivoted, while
two others free. The shell is loaded at both ends with a distributed force of the intensity
N, along the curvilinear edges, giving rise to the stress o, =N, /¢ (fig. 6).

a) b)
b=Rp

Fig. 6. Schemes: a) cross section of the cylindrical flange, b) cross section of the flat flange
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Equations of stability for the circular cylindrical shell are in the following form

2 2 2
VF—%a——o DV*w 15 NOa

=0, (18)
ox? R ox? ox?

where w = w((p, x) — displacement-deflection function, V* = V>V ?*— linear operator,

F = F(p,x) — airy force function, D = E¢’ / [12(1 -v? )] — bending stiftness, t and R —
thickness and radius of the cylindrical shell.
The internal forces of the shell are as follows

2 2 2 2
0. :Di[é o'w j o = 0 [ ow + 0 v;j are shear forces,

ox| ax*  R*69* Ra@ R*0¢*  ox
2 2 2
N, = 82 F2 s Noo :6_127 s Ny =— oF are normal and tangent forces,
R0 Ox ’ Rox0¢
2 2 2 2

Mw:Da_vzv"'V% ,M¢¢:D%+ o

) Ox R0 R0 =

O*w . e
M, = D(1-v) are bending and twisting moments.
ROx0@

Boundary conditions of the cylindrical shell are as follows:
e two simply supported edges (x =0 and x = L)
o*w o*w
W((p’x)|x:O,L:O’ y'f‘\/mzo, (19)

e  one simply supported edge ((p = 0)

o*w o°w
W((P’xl(p=0 = O . —Rzaq)z +V§ = O s (20)
e  one freeedge (¢ =P)
2 2 2 2 : ’
a2V2V—+va—v2v=0, o iz ow , ‘afzo’ aF:O' @0
R*%¢  ox oo\ R%%p  ox® ox OxOp

The system of two differential equations (18) includes two unknown functions
w(p,x) and F(¢,x). Confining the solution only to asymmetric buckling the unknown

functions are assumed in the following forms

w(p,x)=w, {sin(i (pj + 0Ly sin(3—7t (pﬂ sin ,
2B 2B L
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F((p,x)z—EtRf1 sin E(p +Esm ?(p s1nT,

1+4vk?
+4vk?’

The functions satisfy the boundary conditions (19), (20) and (21), while the
equations of stability (18) are not met. The Bubnov-Galerkin method enabled formula-
ting two orthogonal conditions

BL

J‘J.( ———J {sin[i(p] + lsin(z—n(pﬂ sinﬂd(p dx =0,

% § 2 § L

R 1 O’F o’w T 3n mmx

J.j DViw = + N} — sin(—(p] + 0, sin(—(pj sin——dodx =0.
0% Ox 2B 2B L

This, upon integrating, some simple transformations, and consideration of the

R . .
where o, = = mBz , m is natural number, w,, f, are function parameters.

o, =N, / ¢t expression, enabled to express the critical stress in the form

O kg _ mkm{ G (k)+ G, (k)} ’

E Cy(k)

where
0o et T 2] 2]

2 2
4k* 32 9 B
G lk)= l+—a =1,
2 () 20+16k2+5k4[15n( 7 SH (nj

G, (k) =k’ (1 + ocg) are coefficients for the case N = N =const.

Numerical study of the expression shows two local minima. The first one is rela-
ted to classical shell buckling, being compatible with the value resulting from the
expression (17). The other is related to local buckling of the free shell edge that is
considerably smaller than the first classical one. Calculation shows that in this case the
value of the angle B only slightly affects the level of critical stress. Consideration of

the Lorenz, Timoshenko and Southwell formula (17) enabled to propose the following
form of the critical stress of an open cylindrical shell subject to axial compression
(Nxx =NJ = const)

ol —g —L L here a, = 8111[1 00146[3] <ps<n.  (22)

T
3(1-v?) R : 2
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It should be noticed that buckling of an open cylindrical shell is of local cha-
racter and concentrates at its free edge. Hence, critical stress of an open cylindrical
shell subject to axial compression with the force varying at its length should be assu-
med to be equal to two above described cases with lengthwise constant force.

Moreover, buckling of the cylindrical shells was numerically studied with FEM.

The following data have been adopted: £ =1 mm, »=302,6 mm, B =(r/2, 2n/3,51/6, ),

v=0,3, E=2,05-10° MPa . Comparison of the values of critical stress obtained from

analytical and FEM-numerical solutions indicates that the difference between them does
not exceed 6,5%.

Conclusions. The buckling problems of flat flanges of cold-formed thin-walled beams
are extensively investigated and described in many publications. Basic models of these
flanges are isotropic or orthotropic rectangular plates under longitudinal compression.
Nevertheless, the buckling problem of axially compressed cylindrical panel with three
simply supported edges and one edge free were only weakly recognized. The critical
stresses of thin-walled elements with free edges are significantly smaller than the criti-
cal stresses of simply supported elements.
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MpyxHe BUNy4YyBaHHA BUOpaHMx npodinis
XONOAHOKaTaHUX TOHKOCTIHHUX 6anok

Kwintod MarHyuki

YV pobomi posensmymo n’sme pisnux npoghinie xonroonoxamanux monxocminnux éanok. Cghop-
MYbOBAHO MA OOCTLONCEHO MAMEMAMUYHI MOOEE /sl KOJCHO20 3 N simu npoginie. ¥ npedcmagienux
MOOenax 8UKOPUCIIAHO MeOpilo NPYAHCHOI CMILIKOCMI NAACMUN MA NOAO2UX YUTTHOPUUHUX ODONOHOK.
Busnaueno kpumuuni nanpyscenns 0as kodcnozo muny npogpinio. Ilpoananizoeano pesyismamu
AHATIMUYHUX OOCTIOJHCEHb MA NPOBEOEHO IX NOPIGHAHH I3 Pe3YIbMAMamy YUCL08UX 00CIONCEHDb
MemoOoM CKIHYeHHUX eleMeHmis, d MaKodic excnepumenmanvhumu oanumu. Ompumani y pobomi
DOpMynU O KPUMUUHUX HANPYIHCEHb MOICYMb OYMU GUKOPUCMANT HA NPAKMUY.

127



Krzysztof Magnucki
Elastic Buckling of Selected Flanges of Cold-Formed Thin-Walled Beams

Ynpyroe Bbiny4nBaHMe HEKOTOPbIX Npodunen
XOnoAHOKaTaHbIX TOHKOCTEHHbIX 6anok

Kwunwtod MarHyukm
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B pobome paccmompeno namv pasuvix npogpuieii X0N00HOKAMAHBIX MOHKOCMEHHBIX OAIOK.
Cpopmynuposansl u uccnedosanvl mamemamuieckue mMooenu 0as Kaxncooeo u3 namu npoguiel.
B npedcmaenennbix MOOensX UCHONBb308AHO MEOPUIO YAPY2Oll YCMOUYUBOCHU NIACHIUH U YUTUHO-
puneckux nonozux obonouex. Onpedenenvl KpumuiecKue Hanpa;CeHus 0 Kancoo2o muna npoQuis.
IIposeden ananus aHarumu4eckux pe3yabmamos u NpeodCmasieHo CpasgHenue ux ¢ pe3yabmamami
YUCTEHHO20 UCCAE008AHUA MEMOOOM KOHEUHbIX DNEMEHMO8, d MAKHce IKCNePUMEHMATbHbIMU

oannvimu. Ilpedcmasnennvie GoOpMyabl 0N KPUMUYECKUX HANPANCEHUN MO2Yym Oblmb UCNONb30-
8aHbl 8 NPAKMUKE.
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