УДК 539.3

Решение задач о напряженном состоянии цилиндров с различными условиями на торцах на основе сплайн-аппроксимации

Ярослав Григоренко

Д. т. н., академик НАН Украины, Институт механики им. С. П. Тимошенко НАН Украины, ул. Нестерова, 3, Киев-03, e-mail: ayagrigorenko@yandex.ru

Изложен подход к решению в пространственной постановке краевых задач о напряженнодеформированном состоянии сплошных и полых цилиндров конечной длины при различных условиях на торцах. Подход основан на сведении задачи к одномерной с помощью рядов Фурье и метода сплайн-коллокации, для решения которой предложен устойчивый численный метод дискретной ортогонализации. Проанализированы поля перемещений и напряжений в зависимости от граничных условий, а также параметров геометрии объекта и типа нагрузки.

Ключевые слова: полый цилиндр, напряженное состояние, граничные условия, сплайн-аппроксимация, метод дискретной ортогонализации.

Введение. Исследование напряженно-деформированного состояния сплошных и полых цилиндров при различных нагрузках на боковых поверхностях и на торцах приводит к необходимости решения задач в пространственной постановке. При этом возникают математические и вычислительные трудности при удовлетворении граничных условий с достаточной точностью на торцах цилиндра. Задача описывается системой дифференциальных уравнений в частных производных с переменными коэффициентами и для ее решения привлекаются различные дискретно-континуальные методы.

В последнее время в вычислительной математике, математической физике и механике для решения задач стали широко использовать сплайн-функции. Это объясняется преимуществами аппарата сплайн-приближений по сравнению с другими, в частности: устойчивость сплайнов к локальным возмущениям, поведение сплайна в окрестности точки не сказывается на поведении сплайна в целом, как, к примеру, при полиномиальном приближении; хорошая сходимость сплайн-интерполяции в отличие от многочленной; простота реализации алгоритмов построения и вычисления значений сплайнов.

Сплайн-функции эффективно применяются для решения одномерных и двумерных задач теории оболочек и пластин, двумерных и трехмерных задач теории упругости.

В настоящей статье рассматриваются подходы к решению двух классов задач для сплошных и полых цилиндров в пространственной постановке [1, 2] с использованием метода сплайн-коллокации [2-5] и метода дискретной ортогонализации [2].

1. Сплошные цилиндры

Рассмотрим задачи о напряженном состоянии сплошных круговых цилиндров при приложенных на боковых поверхностях нагрузках и различных видах закрепления торцов.

Исходные уравнения в цилиндрической системе координат запишем в следующем виде:

соотношения Коши

$$\varepsilon_r = \frac{\partial u_r}{\partial r}, \quad \varepsilon_\theta = \frac{u_r}{r}, \quad \varepsilon_z = \frac{\partial u_z}{\partial z}, \quad \varepsilon_{rz} = \frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r};$$
 (1)

уравнения равновесия

$$\frac{\partial \sigma_r}{\partial r} + \frac{\partial \tau_{rz}}{\partial z} + \frac{\sigma_r - \sigma_{\theta}}{r} = 0, \qquad \frac{\partial \tau_{rz}}{\partial r} + \frac{\partial \sigma_z}{\partial z} + \frac{\tau_{rz}}{r} = 0; \qquad (2)$$

соотношения закона Гука

$$\varepsilon_{r} = \frac{1}{E} \Big[\sigma_{r} - \nu \big(\sigma_{\theta} + \sigma_{z} \big) \Big], \\ \varepsilon_{\theta} = \frac{1}{E} \Big[\sigma_{\theta} - \nu \big(\sigma_{r} + \sigma_{z} \big) \Big], \\ \varepsilon_{rz} = \frac{2(1+\nu)}{E} \tau_{rz} \qquad \left(0 \le r \le R, \quad 0 \le \theta \le 2\pi, \quad 0 \le z \le l \right),$$
(3)

где r, θ, z — цилиндрические координаты: r — полярный радиус, θ — центральный угол в поперечном сечении, z — продольная координата; u_r, u_z — перемещения в радиальном и продольном направлениях; $\varepsilon_r, \varepsilon_{\theta}, \varepsilon_z, \varepsilon_{rz}$ — деформации; $\sigma_r, \sigma_{\theta}, \sigma_z, \tau_{rz}$ — напряжения в соответствующих направлениях; E — модуль Юнга; v — коэффициент Пуассона. Добавляя к уравнениям (1)-(3) нагрузки на боковой поверхности r = R и граничные условия на торцах z = 0; l, приходим к двумерной краевой задаче.

Из исходных уравнений (1)-(3) после некоторых преобразований разрешающую систему уравнений получим в следующем виде

$$\frac{\partial^2 u_r}{\partial r^2} = -\frac{1-2\nu}{2(1-\nu)} \frac{\partial^2 u_r}{\partial z^2} - \frac{1}{2(1-\nu)} \frac{\partial^2 u_z}{\partial r \partial z} - \frac{1}{r} \frac{\partial u_r}{\partial r} + \frac{1}{r^2} u_r, \quad \frac{\partial^2 u_z}{\partial r^2} = -\frac{1}{1-2\nu} \frac{\partial^2 u_r}{\partial r \partial z} - \frac{1}{1-2\nu} \frac{\partial^2 u_z}{\partial r^2} - \frac{1}{1-2\nu} \frac{\partial^2 u_z}{\partial z^2} - \frac{1}{r} \frac{\partial u_z}{\partial r} \quad \left(0 \le r \le R, \ 0 \le z \le l\right).$$
(4)

На торцах цилиндра задаём условия жесткого закрепления

$$u_r = 0, \quad u_z = 0 \quad \text{при} \quad z = 0; l.$$
 (5)

Граничные условия при r = const можно задать в виде

$$u_r = 0, \quad \tau_{rz} = 0 \quad при \quad r = 0,$$

 $\sigma_r = q_r, \quad \tau_{rz} = 0 \quad при \quad r = R.$ (6)

Граничные условия (6) в перемещениях запишем в виде

$$u_r = 0, \quad \frac{\partial u_z}{\partial r} = 0 \quad \text{при} \quad r = 0,$$

$$\frac{(1-\nu)E}{(1+\nu)(1-2\nu)} \frac{\partial u_r}{\partial r} + \frac{E\nu}{(1+\nu)(1-2\nu)} \frac{u_r}{r} + \frac{E\nu}{(1+\nu)(1-2\nu)} \frac{\partial u_z}{\partial z} = q_r,$$

$$\frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r} = 0 \quad \text{при} \quad r = R.$$
 (7)

Для понижения размерности системы дифференциальных уравнений в частных производных применяем подход, основанный на сплайн-аппроксимации решения в направлении образующей [4, 5], т. е. решение задачи представляем в следующем виде

$$u_r(r,z) = \sum_{j=0}^N u_{1j}(r)\phi_{1j}(z), \qquad u_z(r,z) = \sum_{j=0}^N u_{2j}(r)\phi_{2j}(z), \qquad (8)$$

где $u_{1i}(r)$, $u_{2i}(r)$ — искомые функции, а $\phi_{1i}(z)$, $\phi_{2i}(z)$ — функции, построенные с помощью линейных комбинаций *B*-сплайнов третьей степени, позволяющие точно удовлетворить граничные условия на торцах цилиндра (5).

Для случая жесткого закрепления торцов функции $\phi_{ij}(z)(i=1,2; j=0,N)$ имеют вид

$$\begin{split} & \phi_{i0}(z) = -4B_3^{-1}(z) + B_3^0(z) , \qquad \phi_{i1}(z) = B_3^{-1}(z) - 0,5B_3^0(z) + B_3^1(z) , \\ & \phi_{ij}(z) = B_3^j \quad \left(j = \overline{2, N-2}\right), \\ & \phi_{iN-1}(z) = B_3^{N-1}(z) - 0,5B_3^N(z) + B_3^{N+1}(z) , \quad \phi_{iN}(z) = -4B_3^N(z) + B_3^{N+1}(z) . \end{split}$$

После этого подставляем выражения (8) в уравнения системы (4) и требуем их удовлетворения в точках коллокации $z = z_k \left(k = \overline{0, N}\right)$. Получаем систему 2(N+1) обыкновенных дифференциальных уравнений. Аналогично поступаем с граничными условиями (7) на краях r = const.

Разрешающая система обыкновенных дифференциальных уравнений принимает вид

$$\sum_{i=1}^{N} \frac{d^{2} u_{1i}}{dr^{2}} \phi_{1i}(z_{k}) = -\frac{1-2\nu}{2(1-\nu)} \sum_{i=0}^{N} u_{1i} \phi_{1i}^{"}(z_{k}) - \sum_{i=0}^{N} \frac{1}{r} \frac{du_{1i}}{dr} \phi_{1i}(z_{k}) + \\ + \sum_{i=0}^{N} \frac{1}{r^{2}} u_{1i} \phi_{1i}(z_{k}) - \frac{1}{2(1-\nu)} \sum_{i=0}^{N} \frac{du_{2i}}{dr} \phi_{2i}^{'}(z_{k}), \\ \sum_{i=0}^{N} \frac{d^{2} u_{2i}}{dr^{2}} \phi_{2i}(z_{k}) = -\frac{1}{2(1-\nu)} \sum_{i=0}^{N} \frac{du_{1i}}{dr} \phi_{1i}^{'}(z_{k}) - \frac{1}{2(1-\nu)} \sum_{i=0}^{N} \frac{1}{r} u_{1i} \phi_{1i}^{'}(z_{k}) - \\ - \frac{2(1-\nu)}{1-2\nu} \sum_{i=0}^{N} u_{2i} \phi_{2i}^{"}(z_{k}) - \sum_{i=0}^{N} \frac{1}{r} \frac{du_{2i}}{dr} \phi_{2i}(z_{k}) \quad (k = 2(N+1));$$
(9)

33

граничные условия запишем в виде

$$\begin{split} \sum_{i=0}^{N} u_{1i} \phi_{1i} \left(z_{k} \right) &= 0, \qquad \sum_{i=0}^{N} \frac{du_{2i}}{dr} \phi_{2i} \left(z_{k} \right) = 0 \quad \text{при} \quad r = 0; \end{split}$$
(10)
$$\begin{aligned} \frac{E(1-\nu)}{(1+\nu)(1-2\nu)} \sum_{i=0}^{N} \frac{du_{1i}}{dr} \phi_{1i} \left(z_{k} \right) + \frac{E\nu}{(1+\nu)(1-2\nu)} \sum_{i=0}^{N} u_{1i} \phi_{1i} \left(z_{k} \right) + \\ &+ \frac{E\nu}{(1+\nu)(1-2\nu)} \sum_{i=0}^{N} u_{2i} \phi'_{2i} \left(z_{k} \right) = q_{r} , \end{aligned}$$
$$\begin{aligned} \sum_{i=0}^{N} u_{1i} \phi'_{1i} \left(z_{k} \right) + \sum_{i=1}^{N} \frac{du_{2i}}{dr} \phi_{2i} \left(z_{k} \right) = 0 \quad \text{при} \quad r = R . \end{split}$$

Полученная система обыкновенных дифференциальных уравнений (9) с граничными условиями (10) образует двухточечную краевую задачу на интервале $0 \le r \le R$. При этом в уравнениях системы (9), также как и в системе (8), при r = 0 необходимо раскрыть неопределенности. Учитывая, что при $r \to 0$

$$\frac{u_{1i}}{r} \to \frac{du_{1i}}{dr} \quad \left(i = \overline{0, N}\right),\tag{11}$$

уравнения (9) при r = 0 принимают вид

$$\sum_{i=1}^{N} \frac{d^2 u_{1i}}{dr^2} \phi_{1i}(z_k) = -\frac{1-2\nu}{2(1-\nu)} \sum_{i=0}^{N} u_{1i} \phi_{1i}''(z_k),$$

$$\sum_{i=0}^{N} \frac{d^2 u_{2i}}{dr^2} \phi_{2i}(z_k) = -\frac{2(1-\nu)}{1-2\nu} \sum_{i=0}^{N} u_{2i} \phi_{2i}''(z_k) - \frac{1+2\nu}{1-2\nu} \sum_{i=0}^{N} \frac{du_{1i}}{dr} \phi_{1i}'(z_k).$$
(12)

Добавляя к системам (9), (12) граничные условия (10), получаем краевую задачу, которую решаем численно. При этом для r = 0 используем систему (12), а затем переходим к системе (9).

Введем обозначения $y_{1i} = u_{1i}, y_{2i} = \frac{du_{2i}}{dr}, y_{3i} = u_{2i}, y_{4i} = \frac{du_{1i}}{dr} (i = \overline{0, N})$. Тогда

разрешающую систему уравнений (9) можно представить в следующем виде

$$\frac{d\mathbf{Y}}{dr} = \mathbf{A}(r)\mathbf{Y} + \mathbf{f} \quad \left(0 \le r \le R\right),\tag{13}$$

где $\mathbf{Y} = \{y_{10}, ..., y_{1N}; y'_{10}, ..., y'_{1N}; y_{20}, ..., y_{2N}; y'_{20}, ..., y'_{2N}; y_{30}, ..., y_{3N}; y'_{30}, ..., y'_{3N}; y_{40}, ..., y_{4N};$ $y'_{40}, ..., y'_{4N}\}^{\mathrm{T}}; \mathbf{A}(r)$ — квадратная матрица порядка 4(N+1), **f** — вектор правой части. Граничные условия можно записать в виде

$$\mathbf{B}_1 \mathbf{Y}(0) = \mathbf{b}_1, \qquad \mathbf{B}_2 \mathbf{Y}(R) = \mathbf{b}_2, \tag{14}$$

где \mathbf{B}_1 и \mathbf{B}_2 — прямоугольные матрицы, а \mathbf{b}_1 и \mathbf{b}_2 соответствующие векторы.

Краевую задачу (13), (14) решаем с использованием устойчивого численного метода дискретной ортогонализации.

Рассмотрим задачи о напряженном состоянии сплошных изотропных цилиндров различной длины под действием нормальной распределенной нагрузки. При решении задач полагаем R = 10, $l_1 = 12$; $l_2 = 11,8$; $l_3 = 11,6$; $l_4 = 11,4$; $q = q_0 \times x \sin(\pi z/l)$ ($q_0 = const$); v = 0,3.

Задачи решены для двух вариантов закрепления торцов цилиндра: 1) жесткого закрепления (5) и 2) простого опирания [6], при котором граничные условия имеют вид

$$\sigma_z = 0, \quad u_r = 0 \quad \text{при} \quad z = 0; l,$$
 (15)

что соответствует наличию на торцах диафрагмы, абсолютно жесткой в своей плоскости и гибкой из нее.

Задача для системы уравнений (1)-(3) и граничных условий на торцах допускает с использованием разложения в ряд Фурье по продольной координате разделить переменные и свести задачу к одномерной, которую решаем устойчивым численным методом дискретной ортогонализации [2].

Результаты решения задач приведены на рис. 1-3. Графики для варианта 1 граничных условий обозначены штриховыми линиями, а для варианта 2 — сплошными. По оси абсцисс отложена величина $\zeta = z/l_n$, $0 \le \zeta \le 1(n = \overline{1,4})$, т. е. отношение значения координаты z к длине l_n каждого цилиндра. Это позволяет исследовать изменение радиального перемещения и напряжений $\sigma_r, \sigma_{\theta}$ вблизи торцов в зависимости от длины цилиндра.

2. Полые цилиндры

Здесь строится решение класса задач, и исследуются поля перемещений и напряжений изотропных полых цилиндров конечной длины при различных видах нагружения на боковых поверхностях и торцах. Исследуется влияние относительной толщины цилиндра, различных граничных условий на торцах и характера нагрузки на их напряженно-деформированное состояние. Решение данного

Рис. 1. Распределение радиальных перемещений по длине цилиндра

Ярослав Григоренко Решение задач о напряженном состоянии цилиндров с различными условиями на торцах ...

класса задач основано на сведении трехмерной краевой задачи к двумерной с помощью разделения переменных по окружной координате и применении методов сплайн-коллокации и дискретной ортогонализации для решения последней [4, 5].

Будем рассматривать класс задач о напряженно-деформированном состоянии полых изотропных цилиндров конечной длины под действием несимметричных силовых нагрузок, приложенных на боковых и торцевых граничных поверхностях. Исходные соотношения теории упругости для тел цилиндрической формы в цилиндрической системе координат r, θ, z заданы в следующем виде:

$$e_{r} = \frac{\partial u_{r}}{\partial r}, \quad e_{\theta} = \frac{1}{r} \left(u_{r} + \frac{\partial u_{\theta}}{\partial \theta} \right), \quad e_{r} = \frac{\partial u_{r}}{\partial r},$$

$$e_{r\theta} = \frac{1}{r} \left(\frac{\partial u_{r}}{\partial \theta} - u_{\theta} \right) + \frac{\partial u_{\theta}}{\partial r}, \quad e_{rz} = \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{z}}{\partial r}, \quad e_{\theta z} = \frac{\partial u_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial u_{z}}{\partial \theta}; \quad (16)$$

уравнения равновесия

$$\frac{\partial \sigma_r}{\partial r} + \frac{1}{r} \left(\frac{\partial \tau_{r\theta}}{\partial \theta} + \sigma_r - \sigma_{\theta} \right) + \frac{\partial \tau_{rz}}{\partial z} = 0 , \quad \frac{\partial \tau_{r\theta}}{\partial r} + \frac{1}{r} \left(\frac{\partial \sigma_{\theta}}{\partial \theta} + 2\tau_{r\theta} \right) + \frac{\partial \tau_{\theta z}}{\partial z} = 0 ,$$

$$\frac{\partial \tau_{rz}}{\partial r} + \frac{1}{r} \left(\frac{\partial \sigma_{\theta z}}{\partial \theta} + \tau_{rz} \right) + \frac{\partial \theta_z}{\partial z} = 0 ; \qquad (17)$$

соотношения обобщенного закона Гука

$$e_{r} = \frac{1}{E} \Big[\sigma_{r} - \nu \big(\sigma_{\theta} + \sigma_{z} \big) \Big], \quad e_{r\theta} = \frac{2(1+\nu)}{E} \tau_{r\theta}, \quad e_{\theta} = \frac{1}{E} \Big[\sigma_{\theta} - \nu \big(\sigma_{r} + \sigma_{z} \big) \Big],$$
$$e_{rz} = \frac{2(1+\nu)}{E} \tau_{rz}, \quad e_{z} = \frac{1}{E} \Big[\sigma_{z} - \nu \big(\sigma_{r} + \sigma_{\theta} \big) \Big], \quad e_{\theta z} = \frac{2(1+\nu)}{E} \tau_{\theta z}.$$
(18)

В выражениях (16)-(18) ось *Oz* направлена по оси цилиндра, а *r*, *θ* — радиус и центральный угол в поперечном сечении.

После некоторых преобразований из выражений (16)-(18) получим ключевую систему уравнений в перемещениях

$$(1-\nu)\frac{\partial^{2}u_{r}}{\partial r^{2}} - \frac{1-\nu}{r^{2}}u_{r} + \frac{1-\nu}{r}\frac{\partial u_{r}}{\partial r} + \frac{1-\nu}{r^{2}}\frac{\partial^{2}u_{r}}{\partial \theta^{2}} +$$

$$+(1-2\nu)\frac{\partial^{2}u_{r}}{\partial z^{2}} - \frac{3-4\nu}{r^{2}}\frac{\partial u_{\theta}}{\partial \theta^{2}} + \frac{1}{r}\frac{\partial^{2}u_{\theta}}{\partial r\partial \theta} + \frac{\partial^{2}u_{z}}{\partial r\partial z} = 0,$$

$$\frac{3-4\nu}{r^{2}}\frac{\partial u_{r}}{\partial \theta^{2}} + \frac{1}{r}\frac{\partial^{2}u_{r}}{\partial r\partial \theta} + (1-2\nu)\frac{\partial^{2}u_{\theta}}{\partial r^{2}} - \frac{1-2\nu}{r^{2}}u_{\theta} +$$

$$+\frac{2(1-\nu)}{r^{2}}\frac{\partial^{2}u_{\theta}}{\partial \theta^{2}} + \frac{1-2\nu}{r}\frac{\partial u_{\theta}}{\partial r} + (1-2\nu)\frac{\partial^{2}u_{\theta}}{\partial z^{2}} + \frac{1}{r}\frac{\partial^{2}u_{z}}{\partial r\partial \theta} = 0,$$

$$\frac{1}{r}\frac{\partial u_{r}}{\partial z} + \frac{\partial^{2}u_{r}}{\partial r\partial z} + \frac{1}{r}\frac{\partial^{2}u_{\theta}}{\partial z\partial \theta} + (1-2\nu)\frac{\partial^{2}u_{z}}{\partial r^{2}} - \frac{1-2\nu}{r^{2}}\frac{\partial^{2}u_{z}}{\partial \theta^{2}} +$$

$$+2(1-\nu)\frac{\partial^{2}u_{z}}{\partial z^{2}} + \frac{1-2\nu}{r}\frac{\partial u_{z}}{\partial r} = 0.$$
(19)

На боковых поверхностях цилиндра задаются граничные условия

$$\begin{aligned} \sigma_r &= q_r^-, \quad \tau_{rz} = q_z^-, \quad \tau_{r\theta} = q_{\theta}^- \quad (r = r_1), \\ \sigma_r &= q_r^+, \quad \tau_{rz} = q_z^+, \quad \tau_{r\theta} = q_{\theta}^+ \quad (r = r_2). \end{aligned}$$
(20)

Кроме условий (20) на боковых поверхностях цилиндра могут быть заданы граничные условия в перемещениях или в смешанной форме.

На торцевых поверхностях цилиндра z = const будем рассматривать следующие граничные условия или их комбинации:

1)
$$u_r = u_{\theta} = \sigma_z = 0$$
 или $u_r = u_{\theta} = \frac{\partial u_z}{\partial z} = 0$; (21)

2)
$$u_z = \tau_{rz} = \tau_{\theta z} = 0$$
 или $u_z = \frac{\partial u_r}{\partial z} = \frac{\partial u_{\theta}}{\partial z} = 0$; (22)

3)
$$u_r = u_0 = u_z = 0$$
. (23)

Граничные условия (21) соответствуют наличию на торце диафрагмы, абсолютно жесткой в своей плоскости и гибкой в направлении оси цилиндра, а граничные условия (22) — случаю, когда на торце действуют только осевые напряжения σ_z , распределенные таким образом, что торец остается плоским. Граничные условия (23) заключаются в том, что на торце отсутствуют все перемещения, т. е. имеет место жесткое закрепление всего торца.

Учитывая периодичность всех факторов напряженно-деформированного состояния цилиндров по окружной координате θ , нагрузки, действующие на боковых поверхностях, представляем в виде рядов Фурье

$$q_r(\theta, z) = \sum_{k=0}^{\infty} \left[q_{rk} \cos(k\theta) + q'_{rk} \sin(k\theta) \right],$$

$$q_{\theta}(\theta, z) = \sum_{k=0}^{\infty} [q_{\theta k} \sin(k\theta) + q'_{\theta k} \cos(k\theta)],$$

$$q_{z}(\theta, z) = \sum_{k=0}^{\infty} [q_{zk} \cos(k\theta) + q'_{zk} \sin(k\theta)].$$
(24)

В соответствии с (24) решение системы уравнений (19) будем искать в виде

$$u_{r}(r,\theta,z) = \sum_{k=0}^{\infty} \left[u_{rk}(r,k)\cos(k\theta) + u'_{rk}(r,z)\sin(k\theta) \right],$$

$$u_{\theta}(r,\theta,z) = \sum_{k=0}^{\infty} \left[u_{\theta k}(r,z)\sin(k\theta) + u'_{\theta k}(r,z)\cos(k\theta) \right],$$

$$u_{z}(r,\theta,z) = \sum_{k=0}^{\infty} \left[u_{zk}(r,z)\cos(k\theta) + u'_{zk}(r,z)\sin(k\theta) \right].$$
(25)

Подставляя выражения (25) в систему уравнений (19), после разделения переменных для каждой гармоники без штрихов получаем систему дифференциальных уравнений

$$\frac{\partial^{2} u_{r}}{\partial r^{2}} = \left(1 + \frac{1 - 2v}{1 - v}k^{2}\right) \frac{1}{r^{2}} u_{r} - \frac{1}{r} \frac{\partial u_{r}}{\partial r} + \frac{1 - 2v}{1 - v} \frac{\partial^{2} u_{r}}{\partial z^{2}} + \frac{3 - 4v}{1 - v} \frac{k}{r^{2}} u_{\theta} - \frac{1}{1 - v} \frac{\partial u_{\theta}}{\partial r} - \frac{1}{1 - v} \frac{\partial^{2} u_{z}}{\partial r \partial z}, \\ \frac{\partial^{2} u_{\theta}}{\partial r^{2}} = \frac{3 - 4v}{1 - 2v} \frac{k}{r^{2}} u_{r} + \frac{1}{1 - 2v} \frac{k}{r} \frac{\partial u_{r}}{\partial r} + \left(1 + \frac{2(1 - v)}{1 - 2v}k^{2}\right) \frac{1}{r} u_{\theta} - \frac{1}{r} \frac{\partial u_{\theta}}{\partial r} - \frac{\partial^{2} u_{\theta}}{\partial z^{2}} + \frac{1}{1 - 2v} \frac{k}{r} \frac{\partial u_{z}}{\partial r}, \\ \frac{\partial^{2} u_{z}}{\partial r^{2}} = -\frac{1}{1 - 2v} \frac{1}{r} \frac{\partial u_{r}}{\partial z} \frac{1}{1 - 2v} \frac{\partial^{2} u_{r}}{\partial r \partial z} - \frac{1}{1 - 2v} \frac{k}{r} \frac{\partial u_{\theta}}{\partial z} + \frac{k^{2}}{r^{2}} u_{z} - \frac{2}{1 - 2v} \frac{\partial^{2} u_{z}}{\partial z^{2}} - \frac{1}{r} \frac{\partial u_{z}}{\partial r}.$$
(26)

Здесь для упрощения индекс *k* опущен.

Для членов разложения (25) со штрихами получаем аналогичную систему, заменив k на -k. Формулы для напряжений после разделения переменных принимают вид

$$\sigma_r = \frac{E}{(1+\nu)(1-2\nu)} \left[\nu \frac{\partial u_z}{\partial z} + \frac{\nu}{r} \left(ku_\theta + u_r \right) + (1-\nu) \frac{\partial u_r}{\partial r} \right],$$

$$\tau_{r\theta} = \frac{E}{2(1+\nu)} \left[\frac{\partial u_\theta}{\partial r} - \frac{1}{r} \left(u_\theta + ku_r \right) \right], \quad \tau_{rz} = \frac{E}{2(1+\nu)} \left[\frac{\partial u_z}{\partial r} + \frac{\partial u_r}{\partial z} \right].$$

Для решения двумерной краевой задачи (26) применяем метод сплайнколлокации в одном координатном направлении, что позволяет свести двумерную краевую задачу к одномерной, и метод дискретной ортогонализации для решения полученной задачи.

Решение краевой задачи (26) ищем в виде

$$u_{r}(r,z) = \sum_{i=0}^{N} u_{1i}(r)\phi_{1i}(z), \quad u_{\theta}(r,z) = \sum_{i=0}^{N} u_{2i}(r)\phi_{2i}(z),$$
$$u_{z}(r,z) = \sum_{i=0}^{N} u_{3i}(r)\phi_{3i}(z), \quad (27)$$

где $u_{1i}(r), u_{2i}(r), u_{3i}(r)$ — неизвестные функции, а функции $\phi_{si}(z)(s = \overline{1,3}; i = \overline{0, N})$ точно удовлетворяют граничным условиям на торцах (21)-(23).

Выражения для В-сплайнов третьей степени на расширенной сетке Δ' : $z_{-m} < z_{-m+1} < \ldots < z_{-1} < z_0 < z_1 < \ldots < z_N < \ldots < z_{N+m} (z_{k+1} - z_k = h = const)$ имеют вид

$$B_{3}^{i}(z) = \frac{1}{6} \begin{cases} 0, & z \leq z_{i-2}, \\ t^{3}, & z_{i-2} \leq z \leq z_{i-1}, \\ 1+3t+3t^{2}(1-t), & z_{i-1} \leq z \leq z_{i}, \\ 3t^{3}-6t^{2}+4, & z_{i} \leq z \leq z_{i+1}, \\ (1-t)^{3}, & z_{i+1} \leq z \leq z_{i-2}, \\ 0, & z \geq z_{i+2}, \end{cases}$$

где $t = (z - z_k)/h$ на интервале $[z_k, z_{k+1}], k = \overline{i - 2, i + 1}, i = \overline{-1, N + 1}$.

Аппроксимирующие функции $\phi_{si}(s)(s = \overline{0,2})$ задаем в виде: при $u_{si}(s) = 0$ на торцах

$$\begin{split} \phi_0(z) &= -4B_3^{-1}(z) + B_3^0(z) , \quad \phi_1(z) = B_3^{-1}(z) - \frac{1}{2}B_3^0(z) + B_3^1(z) , \\ \phi_1(z) &= B_3^i(z) \qquad \left(i = \overline{2, N-2}\right), \\ \phi_{N-1}(z) &= B_3^{N+1}(z) - \frac{1}{2}B_3^N(z) + B_3^{N-1}(z) , \quad \phi_N(z) = -4B_3^{N+1}(z) + B_3^N(z) ; \end{split}$$

при $\partial u_{si}(z)/\partial z = 0$ на торцах

$$\begin{split} \phi_0(z) &= B_3^0(z) , \quad \phi_1(z) = B_3^{-1}(z) - \frac{1}{2} B_3^0(z) + B_3^1(z) , \\ \phi_i(z) &= B_3^i(z) \quad \left(i = \overline{2, N-2}\right) , \\ \phi_{N-1}(z) &= B_3^{N+1}(z) - \frac{1}{2} B_3^N(z) + B_3^{N-1}(z) , \quad \phi_N(z) = B_3^N(z) . \end{split}$$

39

При этом также можно задать на одном торце $u_{si}(s) = 0$, а на другом $\partial u_{si}(z)/\partial z = 0$.

Выбрав на отрезке интегрирования $[z_0, z_N] N + 1$ точку коллокации $z = \xi_i$ $(j = \overline{1, N+1})$, проведем в сечении $\theta = const N+1$ линию $z = \xi_i$ и после подстановки (27) в (26) потребуем, чтобы невязка системы была равна нулю. В результате некоторых преобразований получим систему 6(N+1) обыкновенных дифференциальных уравнений

$$\frac{d\mathbf{y}_{1}}{dr} = \mathbf{y}_{2}, \quad \frac{d\mathbf{y}_{2}}{dr} = \mathbf{W}_{0}^{-1} \left(C_{21}\mathbf{y}_{1} + C_{22}\mathbf{y}_{2} + C_{23}\mathbf{y}_{3} + C_{24}\mathbf{y}_{4} + C_{25}\mathbf{y}_{6} \right),$$

$$\frac{d\mathbf{y}_{3}}{dr} = \mathbf{y}_{4}, \quad \frac{d\mathbf{y}_{4}}{dr} = \mathbf{V}_{0}^{-1} \left(C_{21}\mathbf{y}_{1} + C_{22}\mathbf{y}_{2} + C_{23}\mathbf{y}_{3} + C_{24}\mathbf{y}_{4} + C_{25}\mathbf{y}_{6} \right),$$

$$\frac{d\mathbf{y}_{5}}{dr} = \mathbf{y}_{6}, \quad \frac{d\mathbf{y}_{6}}{dr} = \mathbf{U}_{0}^{-1} \left(C_{31}\mathbf{y}_{1} + C_{32}\mathbf{y}_{2} + C_{33}\mathbf{y}_{3} + C_{34}\mathbf{y}_{4} + C_{35}\mathbf{y}_{6} \right), \quad (28)$$

коэффициенты которой имеют вид

$$\begin{split} C_{11} = & \left(1 + k^2 \frac{1 - 2\nu}{1 - \nu} \right) \frac{2}{r^2} \mathbf{W}_0 - \frac{1 - 2\nu}{1 - \nu} \mathbf{W}_2, \quad C_{12} = -\frac{1}{r} \mathbf{W}_0, \quad C_{13} = \frac{3 - 4\nu}{1 - \nu} \frac{k}{r^2} \mathbf{W}_0, \\ C_{14} = \frac{1}{1 - \nu} \frac{k}{r} \mathbf{V}_0, \quad C_{15} = -\frac{1}{1 - \nu} \mathbf{U}_1, \quad C_{21} = \frac{3 - 4\nu}{1 - \nu} \frac{k}{r^2} \mathbf{W}_0, \quad C_{22} = \frac{1}{1 - 2\nu} \frac{k}{r} \mathbf{W}_0, \\ C_{23} = & \left[1 + k^2 \frac{2(1 - \nu)}{1 - 2\nu} \right] \frac{1}{r^2} \mathbf{V}_0 - \mathbf{V}_2, \quad C_{24} = -\frac{1}{r} \mathbf{V}_0, \quad C_{25} = \frac{1}{1 - 2\nu} \frac{k}{r} \mathbf{U}_0, \\ C_{31} = -\frac{1}{1 - 2\nu} \frac{1}{r} \mathbf{W}_1, \quad C_{32} = \frac{1}{1 - 2\nu} \mathbf{W}_1, \quad C_{33} = \frac{1}{1 - 2\nu} \frac{k}{r} \mathbf{V}_1, \\ C_{34} = \frac{k^2}{r^2} \mathbf{U}_0 - 2 \frac{1 - \nu}{1 - 2\nu} \mathbf{U}_2, \quad C_{35} = -\frac{1}{r} \mathbf{U}_0. \end{split}$$

Здесь $\mathbf{W}_{\alpha}, \mathbf{V}_{\alpha}, \mathbf{U}_{\alpha}$ — матрицы соответственно вида

$$\left\{\phi_{1i}^{(\alpha)}\left(\xi_{k}\right)\right\}, \quad \left\{\phi_{2i}^{(\alpha)}\left(\xi_{k}\right)\right\}, \quad \left\{\phi_{3i}^{(\alpha)}\left(\xi_{k}\right)\right\} \quad \left(\alpha = \overline{0,2}; \ i = \overline{0,N}; \ k = \overline{1,N+1}\right).$$

Систему (28) запишем в сокращенном виде

$$\frac{d\mathbf{R}}{dr} = \mathbf{A}(r)\mathbf{R} \quad \left(r_1 \le r \le r_2\right),\tag{29}$$

где

$$\mathbf{R} = \{u_{10}, u_{11}, \dots, u'_{1N}, u'_{10}, u'_{11}, \dots, u'_{1N}, u_{20}, u_{21}, \dots, u_{2N}, u'_{20}, u'_{21}, \dots , u'_{2N}, u_{30}, u_{31}, \dots, u_{3N}, u'_{30}, u'_{31}, \dots, u'_{3N}\},\$$

A = A(r) — матрица размерности 6×N.

Осуществляя подобные преобразования с граничными условиями на внутренней и внешней боковых поверхностях цилиндра, систему уравнений (29) дополним граничными условиями

$$\mathbf{A}_{1}\mathbf{R}(r_{1}) = \mathbf{a}_{1}, \qquad \mathbf{A}_{2}\mathbf{R}(r_{2}) = \mathbf{a}_{2}.$$
(30)

Полученную одномерную краевую задачу (29), (30) решаем методом дискретной ортогонализации.

На основании данного подхода находим решение некоторых задач рассматриваемого класса и проводим исследование полей перемещений и напряжений в цилиндрах конечной длины при различных граничных условиях на торцах.

Рассмотрим задачу о напряженно-деформированном состоянии полых цилиндров ($r_1 \le r \le r_2$) длиной L под действием локальной нагрузки $q_{\gamma} = q_0 \cos(k\theta) \sin^5(\pi z/L)$, приложенной на внутренней поверхности цилиндра с жестко закрепленными торцами, т. е. выполняется условие (2.8). Задача решена при следующих значениях параметров: $L = 20, r_{cp} = (r_1 + r_2)/2 = 10, h/r_{cp} = 0,05; 0,1; 0,2; 0,4; 0,5$ ($h = r_2 - r_1$); $k = \overline{0,2}; v = 0,3$.

Результаты решения задачи приведены в табл. 1. В верхней строке приведены значения, полученные по пространственной теории, а в нижней по теории тонких оболочек. Из таблицы видно, что для малых значений h/r_{cp} результаты по двум теориям почти совпадают, а для $h/r_{cp} = 0,5$ отличаются на 28 %.

Табл. 2 содержит распределение перемещений u_r по толщине цилиндра при действии локальной нагрузки и различных граничных условиях (21)-(23) на торцах [7], что обозначено соответственно цифрами 1-3. Принято $r^* = (r - r_1)/(r_2 - r_1)$.

На рис. 4, 5 показано распределение напряжений σ_z и σ_{θ} по толщине цилиндра. Цифрами 1-4 обозначены их графики в точках z = 10; 13; 18; 20 соответственно для k = 0 при жестком закреплении торцов и $h/r_{cp} = 0,5$. Штриховой линией показано, что в указанных точках r^* напряжения обращаются в бесконечность.

Таблица 1

k	Eu_r/q_0				
	h/r_{cp}				
	0,05	0,20	0,40	0,50	
0	$0,179 \cdot 10^{3}$ $0,181 \cdot 10^{3}$	$0,344 \cdot 10^2 \\ 0,344 \cdot 10^2$	$\begin{array}{c} 0,138{\cdot}10^2 \\ 0,125{\cdot}10^2 \end{array}$	$\begin{array}{c} 0,104{\cdot}10^2 \\ 0,859{\cdot}10 \end{array}$	
1	$\begin{array}{c} 0,304{\cdot}10^{3} \\ 0,310{\cdot}10^{3} \end{array}$	$\begin{array}{c} 0,547{\cdot}10^2 \\ 0,593{\cdot}10^2 \end{array}$	$\begin{array}{c} 0,200{\cdot}10^2 \\ 0,185{\cdot}10^2 \end{array}$	$\begin{array}{c} 0,141 \cdot 10^2 \\ 0,116 \cdot 10^2 \end{array}$	
2	$0,692 \cdot 10^{3} \\ 0,708 \cdot 10^{3}$	$0,893 \cdot 10^2 \\ 0,902 \cdot 10^2$	$\begin{array}{c} 0,213{\cdot}10^2 \\ 0,178{\cdot}10^2 \end{array}$	$0,137 \cdot 10^2 \\ 0,986 \cdot 10$	

Значения радиальных перемещений в цилиндре при различных видах симметрии нагрузки

r*	Eu_r/q_0				
	1	2	3		
0	$0,118 \cdot 10^2$	$0,105 \cdot 10^2$	$0,104 \cdot 10^2$		
0,1	$0,113 \cdot 10^2$	$0,100 \cdot 10^2$	0,988.10		
0,2	$0,108 \cdot 10^2$	0,954.10	0,943.10		
0,3	$0,104 \cdot 10^2$	0,912.10	0,903.10		
0,4	$0,101 \cdot 10^2$	0,874.10	0,866.10		
0,5	0,974.10	0,841.10	0,833.10		
0,6	0,945.10	0,811.10	0,804.10		
0,7	0,919.10	0,785.10	0,778.10		
0,8	0,804.10	0,762.10	0,755.10		
0,9	0,871.10	0,739.10	0,732.10		
1,0	0,847.10	0,717.10	0,709.10		

Значения радиальных перемещений в цилиндре при действии локальной нагрузки

Рис. 4. Распределение продольных напряжений по толщине цилиндра

Рис. 6. Распределение продольных напряжений в среднем сечении цилиндра при различных граничных

Рис. 5. Распределение окружных напряжений по толщине цилиндра

Рис. 7. Распределение окружных напряжений в среднем сечении цилиндра при различных граничных

Таблица 2

На рис. 6, 7 даны распределения напряжений σ_z и σ_{θ} по толщине в сечении z = L/2 цилиндра при различных граничных условиях на торцах (21)-(23), обозначенных на графиках соответственно цифрами 1-3 при тех же значениях нагрузки, что и в предыдущей задаче.

Литература

- [1] Тимошенко, С. П. Курс теории упругости / С. П. Тимошенко. Киев: Наук. думка, 1972. 501 с.
- [2] Григоренко, Я. М. Численно-аналитическое решение задач механики оболочек на основе различных моделей / Я. М. Григоренко, Г. Г. Влайков, А. Я. Григоренко. — Киев: Академпериодика, 2006. — 472 с.
- [3] Алберг, Д. Теория сплайнов и ее приложения / Д. Алберг, Э. Нильсон, Д. Уолш. Москва: Мир, 1972. — 318 с.
- [4] Завьялов, Ю. С. Методы сплайн-функций / Ю. С. Завьялов, Ю. И. Квасов, В. М. Мирошниченко. — Москва: Наука, 1980. — 352 с.
- [5] Григоренко, Я. М. Решение задач теории пластин и оболочек с применением сплайнфункций / Я. М. Григоренко, Н. Н. Крюков // Прикл. механика. — 1996. — Т. 36, № 6. — С. 3-27.
- [6] Григоренко, Я. М. К решению задачи о напряженном состоянии сплошных цилиндров при различных граничных условиях на торцах / Я. М. Григоренко, А. Я. Григоренко, Л. С. Рожок // Прикл. механика. 2006. Т. 42, № 6. С. 24-31.
- [7] Григоренко, Я. М. Исследование на основе сплайн-аппроксимации полей перемещений и напряжений в цилиндрах при различных граничных условиях на торцах / Я. М. Григоренко, Н. Н. Крюков // Прикл. механика. 1997. Т. 33, № 12. С. 30-39.

Solution of stress problems for cylinders with different conditions at ends using spline-approximation

Yaroslav Grigorenko

The approach to solving spatial boundary-value stress-strain problems for solid and hollow finitelength cylinders under different conditions at the ends is proposed. According to the approach, the problems are reduced to one-dimensional ones using Fourier series and a spline-collocation method with further use of the method of discrete orthogonalization. The displacement and stress fields are analyzed depending on the boundary conditions and parameters of geometry and loading.

Розв'язання задач про напружений стан циліндрів із різними умовами на торцях на основі сплайн-апроксимації

Ярослав Григоренко

Запропоновано підхід до розв'язання в просторовій постановці крайових задач про визначення напружено-деформованого стану суцільних і порожнистих циліндрів скінченної довжини за різних умов на торцях. Підхід базується на зведенні задачі до одновимірної за допомогою рядів Фур'є та методу сплайн-колокації з подальшим застосуванням методу дискретної ортогоналізації. Проведено аналіз полів переміщень і напружень за різних граничних умов, а також параметрів геометрії об'єкту та типу навантаження.

Отримано 28.09.10