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of paraboloidal shape

Oleg Limarchenko', Iryna Semenova®

'D. Sci., professor, the Taras Shevchenko KNU, Kyiv, Academician Glushkov avenue, 4e, e-mail: olelim2010@yahoo.com
2 Ph. D., the Taras Shevchenko KNU, Kyiv, Academician Glushkov avenue, 4e, e-mail: is25@bigmir.net

Peculiarities of behavior of the mechanical system «reservoir — liquid with a free surface» under
reservoir motion disturbance by horizontal harmonic force are under investigation. In particular,
we consider the example of small depth filling of the paraboloidal reservoir for different kinds of
harmonic force. We investigate the problem of transition to the steady mode of motion on the basis
of multimodal nonlinear discrete model of dynamics of combined motion of bounded liquid volume
with a free surface and the reservoir, which performs translational motion in horizontal plane.
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Introduction. The problem of studying of wave motion of bounded liquid volume with
a free surface in immovable reservoirs of non-cylindrical shape can be represented as
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Motion is described in the Cartesian reference frame Oxyz, fixed with reservoir.
For description of oscillations of bounded liquid volume in reservoir we introduce the
following denotation: T is domain, occupied by liquid, S is a free surface of liquid, X is
moisten wall of the reservoir, n(x,y,z,¢) =0 is the equation of a free surface of liquid,

U is potential energy of external forces applied to liquid. Since description of non-
vortex motion of ideal homogeneous incompressible liquid is reduced to motion of its
boundaries, mathematical formulation of the problem of dynamics of the system «reser-
voir — liquid with a free surface» represents an aggregate of kinematic and dynamic
boundary conditions. Kinematic conditions are considered as mechanical constraints,
which superimpose restrictions on variations of unknowns, on statement of the problem
of motion of the mechanical system on the basis of the Hamilton-Ostrogradskiy variatio-
nal principle. Here the dynamic boundary condition follows from the Hamilton-Ostro-
gradskiy variational principle as natural.

Similar to publication [1] for description of liquid motion we introduce non-
Cartesian parameterization of the domain 1, occupied by liquid

oczr/f(z); Bzz/H.
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Center of the coordinate system in the center of undisturbed free surface of li-
quid, the axis Oz is directed upward, we denote by » =f(z) the generatrix of the
reservoir in the cylindrical coordinate system, H is depth of liquid in the reservoir,
z =0 coincides with undisturbed free surface of liquid. The system of cylindrical coor-
dinates (r,0,z) is substituted for the new non-Caertesian one (c,0,p). In the accepted

non-Cartesian system of coordinates the domain of liquid obtains cylindrical shape, but
metric of this domain is non-Euclidean. It is impossible to represent the equation
of a free surface in old variable (r,0,z) as z=¢(r,0,7). However, because of cylindri-

cal shape of liquid domain in new system of variables new parameterization makes it
possible to represent the equation of a free surface of liquid as

B=%c‘,(0c,6,t) or HB-§(a,0,)=0.

Further this enables usage of the perturbation techniques and the Kantorovich
method for construction of nonlinear model of dynamics of the system «reservoir — liquid».

Construction of the discrete model is done on the basis of problem statement
in the form of the Hamilton-Ostrogradskiy variational principle with preliminary satis-
fying of kinematic boundary conditions and solvability conditions. Transition from
continuum structure of the system reservoir — liquid to its discrete model is done on the
basis of the Kantorovich method and on the whole is similar to the case, when reservoir
has cylindrical shape. However, here there are a number of fundamental differences,
caused by non-cylindrical shape of the domain, occupied by liquid, and by the necessity
of holding the solvability conditions of the problem for perturbed state of liquid. In par-
ticular, there are the following new properties, which differ the considered case from
the case of cylindrical reservoir:

. the system of coordinate functions, by which decomposition of the velocity
potential is performed, hold the non-flowing condition on the moisten border
approximately;

. this system of coordinate functions supplementary holds the non-flowing condi-

tions on certain prolongation of the moisten boundary of liquid, where wave
crests can reach, which are consequences of the solvability conditions;

. aggregate of geometrical nonlinearities enters the solution, which complicates
nonlinear interaction between normal modes of oscillations in the system and
liquid with reservoir.

1. Object of investigation

In the considered problem we investigate dynamic peculiarities of combined motion of the
mechanical system «paraboloidal reservoir — liquid with a free surface» in the case of low
depth filling. At the initial time reservoir and liquid are at rest state. System motion is
disturbed by harmonic force. We assume that reservoir performs its motion only in the
horizontal plane.

In publication [2] on the basis of the method of the article [1] discrete model of
the system «paraboloidal reservoir — liquid with a free surface» was constructed in the form
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of ordinary differential equations of the second order, namely, equations of combined
motion of the system «reservoir — liquid» in amplitude parameters a; and parameters
of motion of the carrying body &
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(p is liquid density, g is free falling acceleration, M,., and M;;,, are masses of reservoir
and liquid correspondingly). The equations (1) describe dynamics of amplitudes
of oscillations of a free surface of liquid, and the equations (2) describe dynamics
of reservoir, which performs horizontal translational motion. Combined motion of the
reservoir with liquid is completely characterized by independent generalized coordina-
tes a; and €. The number of equations is equal to the number of system degrees
of freedom, so the suggested model (1), (2) is of minimal dimension.

According to technique of publication [1] let us represent the equation of a free
surface of liquid & in the form

E=E(0)+ 24y, (0)T;(0).
I
Taking into account character of variation of frequency parameters we accepted

the following system of coordinate functions and their arrangement for decomposition
of elevation of a free surface

Y =\|1T1sin6, Y, ZWTlcosea V3 :\V:;h 7 ZW; sin 20, ;s =\v§10082ea
W6 =V, W7 =1;8in30, yg=y3 00830, yo=y,sin0, y,,=yj,cos0,

where \thk is solution of the problem about refined (with satisfying boundary conditions

on crests of waves on reservoir walls) determination of normal modes of oscillations
of a free surface with angular number m, which is associated with the k-th eigenvalue
(arrangement of coordinate functions was accepted in ascending order of eigenvalues).
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For solving nonlinear problem of combined motion of reservoir and free surfaced
liquid used n; = 10 coordinate functions (amplitude parameters), from which the first
n, = 6 were considered accurate to values of the second order, the first n; = 3 coordi-
nate functions of them were studied accurate to values of the third order. We accepted
perturbation of a liquid free surface with respect to the first antisymmetric normal
mode. Here &(¢) is term of decomposition of free surface elevation, which is determi-
ned from the requirement of conservation of liquid volume in its perturbed motion.
Coefficients of the dynamical model (1), (2) are determined as quadratures from coor-
dinate functions over undisturbed liquid free surface.

For investigation of nonlinear dynamics of combined motion of the system
«reservoir — liquid» series of numerical experiments were performed.

2. Results of numerical modeling of the problem of transition of the system
«reservoir — liquid» to steady mode of motion

We consider the paraboloidal reservoir » = J2z+ H with vertical axis of symmetry
Oz, which performs translational motion in horizontal plane. Reservoit of radius R with
mass M, is partially filled by water with mass M;;, with small depth (below we adduce
results for the filling level H = 0,3).

The system of equations (1), (2) is linear relative to the second order derivatives
of variables, this makes it possible to reduce the equations on every step of numerical
solving to the Cauchy normal form with numerical integration of the system by means
of the Runge-Kutta method on practical implementation of the model. Here on the stage
of transformation to the Cauchy normal form order of derivatives was reduced
by means of introduction of generalized velocities a; as equal right independent vari-

ables (together with ;). Step of numerical integration was accepted as Az = 0,02 s.
On solving the problem of determination of coordinate functions we used decompo-
sition of solution with respect to N = 22 harmonic polynomials.

Peculiarities of transition of the system on steady motion was considered in the case,
when ratio of masses of reservoir and liquid is M, =10M ,, , and amplitude of the external

force is equal to 0,06. The oscillation process is investigated on time interval equal to 40
periods of oscillations with respect to the first normal mode. System motion is disturbed
by the force, which varies with frequency close to frequency of the first normal mode.
The graph of variation in time of amplitude of elevation of a free surface of liquid
with respect to the first normal mode for the external force F, = Asinw? is shown
in Fig. 1a, and for F, = Acoswt it is shown in Fig. 1. As it is seen from the graphs,
for the specified ratio of masses of reservoir and liquid law of variation of amplitude
of the first normal mode is similar. Here transition to steady mode of oscillations in classical
sense is not observed. Process is developed for clearly manifested modulation with
practically constant mean value. For certain time instants phenomenon of antiresonance
is manifested, when during several period of oscillations variations of amplitudes are
in a vicinity of zero. Graphs of variation of elevation near reservoir wall and law of varia-
tion of the main vector of pressure on reservoir walls have also periodic character with
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Fig. 1. Amplitude of excitation of the first normal mode for M., = 10M,;,
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Fig. 2. Trajectory of motion of the reservoir for M, ., = 10M};,

manifested modulation for both cases of harmonic external force. Moreover, period of modu-
lation is practically constant ant it is about 25 periods of oscillations with respect to the first
normal mode. Fig. 2a shows variation in time of reservoir displacement in the horizontal
direction in the case of the applied force F, = Asinw?, and Fig. 2b corresponds to

F, = Acoswt . In the first case reservoir moves with small oscillations of mean velocity

in the direction of Ox axis. In the second case reservoir performs oscillations near certain
constant value of x. Direction of motion at certain time instants can be opposite to the di-
rection of the applied force. Such inverse motion is caused by influence of internal sloshing
of liquid, which results in considerable displacement of liquid mass center takes place.
For other ratio of masses of reservoir and liquid, for example, in the case M,., =
= 0,1M,;,, shown in Fig. 3 (then mass of reservoir is considerably lesser), transition to steady
mode is not manifested at all and graphs of variation of amplitude of @, for both cases
of external loading even have no clear form of modulation. Moreover, drift of mean value
of amplitudes of oscillations takes place. Graphs of variation of the main vector of pressure
on reservoirs walls and elevation of liquid near reservoir walls have similar character. Howe-
ver, character of displacement of reservoir in the horizontal plane for this ratio of masses
of liquid and reservoir does not change considerably (Fig. 4). Behavior of the system in
two cases of variation of external force F, = Asinwt and F, = Acoswt is similar and
graphs of variation of velocity of reservoir have similar modulation (Fig. 5). In the case 5a
variation of velocity has mean value, which differs from zero. This indicates that
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Fig. 3. Amplitude of excitation of the first normal mode for M.... = 0.1M;,
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Fig. 4. Trajectory of motion of the reservoir for M,,, = 0,1M;;,
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Fig. 5. Velocity of motion of the reservoir for M,, = 0,1M;;,

the reservoir performs systematic motion. In the case5h mean value has zero
magnitude and reservoir performs oscillation in a vicinity of starting position.

Numerical experiments for different ratio of masses of reservoir and liquid, fil-
ling depths and frequencies and laws of harmonic external loading in a vicinity of main
resonance showed, that transition to steady mode of oscillations with considerable
modulation (this mode does not coincide with classical understanding of resonance)
depends mostly on ratio of masses of reservoir and liquid. Moreover, modulation
period also depends on this ratio.

In the case of small filling of the reservoir (H = 0,3) liquid motion with iteration
of oscillations cycles with strongly expressed modulation occurs starting from ratio
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factor of masses M,., = 5M,,, although for greater higher filling level (4 = 1) process
attains to steady mode at values M,., = M;;,. On increase of amplitude of the external
force parameters of reservoir motion differs, but law of amplitudes variation conserves.

Conclusion. We consider problem of modeling of nonlinear forced motion of liquid
with a free surface in movable paraboloidal reservoir. Motion was disturbed by harmo-
nic force in the horizontal direction. In particular, we consider the case of small filling
of reservoir by liquid was considered. It was shown that transition to steady mode
of motion in the considered nonlinear multifrequency systems of «reservoir — liquid»
type is not manifested at all. Modulation periodicity of graph of variation in time
of amplitudes of perturbation of a free surface occurs on increase of ratio of mass
of reservoir with respect to mass of liquid. It was shown also that law of external har-
monic force effects only parameters of reservoir motion, but not on liquid.
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BumyLieHi konvBaHHA piagvHKU B pe3epByapi
napa6onoiganbHoi chopmu

Oner JlumapyeHko, IpuHa CemeHoBa

YV pobomi docnidoiceno ocobnueocmi nogediHKu MEXaHiuHOL cucmemu «pe3epeyap — PiouHa 3 6LIbHOI0
noeepxueioy y pasi 30ypenHs pyxy pe3epeyapa 20pu30HmMAIbHOW 2apMoHiuHo0 cunolo. Posensoacmuvca
NPUKIA0 Manoeo 3ano6HeHHs NapabonoioanbHo20 pe3epeyapa Ol PI3HUX 8apianmie 2apMOHIYHOT
cunu. 3adaua 8uxody HA YCMALEHUN PeNCUM GUBHAEMbCS HA OCHOBI 0a2amomo0060i HeNIHIUHOT
OUCKPEMHOT MOOeli QUHAMIKU CYMICHO20 PYXY 00MediCceH020 00 €My PIOUHU 3 BIILHOK NOBEPXHEI)
ma pe3epeyapa, sKuil 30iUCHIOE 20PU3OHMATbHUL NOCHYNATIbHULL DYX.

BbIHyXaeHHble Koneb6aHus XUAKOCTU B pe3epByape
napa6bonounaansbHon opmbI

Oner JlumapyeHko, NpuHa CemeHoBa

B pabome uccnedosanvl 0CO6EHHOCHU NOBEOCHUS MEXAHUYECKOU CUCEMbL «Pe3ep8yap — HCUO-
KOCMb CO C8ODOOHOU NOBEPXHOCHBIOY NPU B030YHCOCHULU OBUNCEHUSI NAPAOOTOUOWTILHOZO pe3ep-
8yapa 20pU30HMANLHOU 2aPMOHUYECKOU CUlol. Paccmampusaemess npumep Maio2o 3an0aHeHus
napabonuuecko2o pesepeyapa Onsi PA3HbIX 3AKOH08 2APMOHUYECKOU Culbl. 3adaua evixodd Ha
VCMAHOBUBUIUTICS, PEHCUM U3VUAEMCSL HA OCHOBE MHOCOMOOO0BOU HENUHEIHOU OUHAMUKU COBMECI-
HO20 OBUIICEHUSI OSPAHUUEHHO20 00BEMA ACUOKOCU CO C60DOOHOT NOBEPXHOCMbIO U pe3epsyapa,
KOMOPbLIL 8bINOTHSIEM 20PUSOHMATIbHOE OBUICEHILE.
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