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Peculiarities of behavior of the mechanical system «reservoir – liquid with a free surface» under 
reservoir motion disturbance by horizontal harmonic force are under investigation. In particular, 
we consider the example of small depth filling of the paraboloidal reservoir for different kinds of 
harmonic force. We investigate the problem of transition to the steady mode of motion on the basis 
of multimodal nonlinear discrete model of dynamics of combined motion of bounded liquid volume 
with a free surface and the reservoir, which performs translational motion in horizontal plane.  
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Introduction. The problem of studying of wave motion of bounded liquid volume with 
a free surface in immovable reservoirs of non-cylindrical shape can be represented as  
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Motion is described in the Cartesian reference frame Oxyz, fixed with reservoir. 
For description of oscillations of bounded liquid volume in reservoir we introduce the 
following denotation: τ is domain, occupied by liquid, S is a free surface of liquid, Σ is 
moisten wall of the reservoir, ( , , , ) 0x y z t   is the equation of a free surface of liquid, 
U is potential energy of external forces applied to liquid. Since description of non-
vortex motion of ideal homogeneous incompressible liquid is reduced to motion of its 
boundaries, mathematical formulation of the problem of dynamics of the system «reser-
voir – liquid with a free surface» represents an aggregate of kinematic and dynamic 
boundary conditions. Kinematic conditions are considered as mechanical constraints, 
which superimpose restrictions on variations of unknowns, on statement of the problem 
of motion of the mechanical system on the basis of the Hamilton-Ostrogradskiy variatio-
nal principle. Here the dynamic boundary condition follows from the Hamilton-Ostro-
gradskiy variational principle as natural. 

Similar to publication [1] for description of liquid motion we introduce non-
Cartesian parameterization of the domain τ, occupied by liquid 

 ( )r f z  ;    z H  . 

УДК 532.595 



ISSN 1816-1545   Фізико-математичне моделювання та інформаційні технології 
2013, вип. 18, 106-112 

 107 

Center of the coordinate system in the center of undisturbed free surface of li-
quid, the axis Oz is directed upward, we denote by r = f (z) the generatrix of the 
reservoir in the cylindrical coordinate system, H is depth of liquid in the reservoir, 
z = 0 coincides with undisturbed free surface of liquid. The system of cylindrical coor-
dinates ( , , )r z  is substituted for the new non-Caertesian one ( , , )   . In the accepted 
non-Cartesian system of coordinates the domain of liquid obtains cylindrical shape, but 
metric of this domain is non-Euclidean. It is impossible to represent the equation 
of a free surface in old variable ( , , )r z  as ( , , )z r t   . However, because of cylindri-
cal shape of liquid domain in new system of variables new parameterization makes it 
possible to represent the equation of a free surface of liquid as  

 1 ( , , )t
H

        or   ( , , ) 0H t      . 

Further this enables usage of the perturbation techniques and the Kantorovich 
method for construction of nonlinear model of dynamics of the system «reservoir – liquid».  

Construction of the discrete model is done on the basis of problem statement 
in the form of the Hamilton-Ostrogradskiy variational principle with preliminary satis-
fying of kinematic boundary conditions and solvability conditions. Transition from 
continuum structure of the system reservoir – liquid to its discrete model is done on the 
basis of the Kantorovich method and on the whole is similar to the case, when reservoir 
has cylindrical shape. However, here there are a number of fundamental differences, 
caused by non-cylindrical shape of the domain, occupied by liquid, and by the necessity 
of holding the solvability conditions of the problem for perturbed state of liquid. In par-
ticular, there are the following new properties, which differ the considered case from 
the case of cylindrical reservoir: 
 the system of coordinate functions, by which decomposition of the velocity 

potential is performed, hold the non-flowing condition on the moisten border 
approximately; 

 this system of coordinate functions supplementary holds the non-flowing condi-
tions on certain prolongation of the moisten boundary of liquid, where wave 
crests can reach, which are consequences of the solvability conditions;  

 aggregate of geometrical nonlinearities enters the solution, which complicates 
nonlinear interaction between normal modes of oscillations in the system and 
liquid with reservoir. 

1. Object of investigation 

In the considered problem we investigate dynamic peculiarities of combined motion of the 
mechanical system «paraboloidal reservoir – liquid with a free surface» in the case of low 
depth filling. At the initial time reservoir and liquid are at rest state. System motion is 
disturbed by harmonic force. We assume that reservoir performs its motion only in the 
horizontal plane.  

In publication [2] on the basis of the method of the article [1] discrete model of 
the system «paraboloidal reservoir – liquid with a free surface» was constructed in the form 
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of ordinary differential equations of the second order, namely, equations of combined 
motion of the system «reservoir – liquid» in amplitude parameters ai and parameters 
of motion of the carrying body    
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( ρ is liquid density, g is free falling acceleration, Mres and Mliq are masses of reservoir 
and liquid correspondingly). The equations (1) describe dynamics of amplitudes 
of oscillations of a free surface of liquid, and the equations (2) describe dynamics 
of reservoir, which performs horizontal translational motion. Combined motion of the 
reservoir with liquid is completely characterized by independent generalized coordina-
tes ai and  . The number of equations is equal to the number of system degrees 
of freedom, so the suggested model (1), (2) is of minimal dimension.  

According to technique of publication [1] let us represent the equation of a free 
surface of liquid ξ in the form 
 ( ) ( ) ( )i i i

I
t a T       . 

Taking into account character of variation of frequency parameters we accepted 
the following system of coordinate functions and their arrangement for decomposition 
of elevation of a free surface  

 * * * * *
1 11 2 11 3 01 4 21 5 21sin , cos , , sin 2 , cos2                  , 

 * * * * *
6 02 7 11 8 31 9 12 10 12, sin3 , cos3 , sin , cos                   , 

where *
mk  is solution of the problem about refined (with satisfying boundary conditions 

on crests of waves on reservoir walls) determination of normal modes of oscillations 
of a free surface with angular number m, which is associated with the k-th eigenvalue 
(arrangement of coordinate functions was accepted in ascending order of eigenvalues). 
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For solving nonlinear problem of combined motion of reservoir and free surfaced 
liquid used n1 = 10 coordinate functions (amplitude parameters), from which the first 
n2 = 6 were considered accurate to values of the second order, the first n3 = 3 coordi-
nate functions of them were studied accurate to values of the third order. We accepted 
perturbation of a liquid free surface with respect to the first antisymmetric normal 
mode. Here ( )t  is term of decomposition of free surface elevation, which is determi-
ned from the requirement of conservation of liquid volume in its perturbed motion. 
Coefficients of the dynamical model (1), (2) are determined as quadratures from coor-
dinate functions over undisturbed liquid free surface. 

For investigation of nonlinear dynamics of combined motion of the system 
«reservoir – liquid» series of numerical experiments were performed.  

2. Results of numerical modeling of the problem of transition of the system 
«reservoir – liquid» to steady mode of motion 

We consider the paraboloidal reservoir 2r z H   with vertical axis of symmetry 
Oz, which performs translational motion in horizontal plane. Reservoit of radius R with 
mass Mres is partially filled by water with mass Mlig with small depth (below we adduce 
results for the filling level H = 0,3). 

The system of equations (1), (2) is linear relative to the second order derivatives 
of variables, this makes it possible to reduce the equations on every step of numerical 
solving to the Cauchy normal form with numerical integration of the system by means 
of the Runge-Kutta method on practical implementation of the model. Here on the stage 
of transformation to the Cauchy normal form order of derivatives was reduced 
by means of introduction of generalized velocities ia  as equal right independent vari-
ables (together with ai). Step of numerical integration was accepted as Δt = 0,02 s. 
On solving the problem of determination of coordinate functions we used decompo-
sition of solution with respect to N = 22 harmonic polynomials.  

Peculiarities of transition of the system on steady motion was considered in the case, 
when ratio of masses of reservoir and liquid is 10res ligM M , and amplitude of the external 
force is equal to 0,06. The oscillation process is investigated on time interval equal to 40 
periods of oscillations with respect to the first normal mode. System motion is disturbed 
by the force, which varies with frequency close to frequency of the first normal mode. 

The graph of variation in time of amplitude of elevation of a free surface of liquid 
with respect to the first normal mode for the external force sinxF A t   is shown 
in Fig. 1a, and for cosxF A t   it is shown in Fig. 1b. As it is seen from the graphs, 
for the specified ratio of masses of reservoir and liquid law of variation of amplitude 
of the first normal mode is similar. Here transition to steady mode of oscillations in classical 
sense is not observed. Process is developed for clearly manifested modulation with 
practically constant mean value. For certain time instants phenomenon of antiresonance 
is manifested, when during several period of oscillations variations of amplitudes are 
in a vicinity of zero. Graphs of variation of elevation near reservoir wall and law of varia-
tion of the main vector of pressure on reservoir walls have also periodic character with 
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manifested modulation for both cases of harmonic external force. Moreover, period of modu-
lation is practically constant ant it is about 25 periods of oscillations with respect to the first 
normal mode. Fig. 2a shows variation in time of reservoir displacement in the horizontal 
direction in the case of the applied force sinxF A t  , and Fig. 2b corresponds to 

cosxF A t  . In the first case reservoir moves with small oscillations of mean velocity 
in the direction of Ox axis. In the second case reservoir performs oscillations near certain 
constant value of x. Direction of motion at certain time instants can be opposite to the di-
rection of the applied force. Such inverse motion is caused by influence of internal sloshing 
of liquid, which results in considerable displacement of liquid mass center takes place.  

For other ratio of masses of reservoir and liquid, for example, in the case Mres = 
= 0,1Mlig, shown in Fig. 3 (then mass of reservoir is considerably lesser), transition to steady 
mode is not manifested at all and graphs of variation of amplitude of a1 for both cases 
of external loading even have no clear form of modulation. Moreover, drift of mean value 
of amplitudes of oscillations takes place. Graphs of variation of the main vector of pressure 
on reservoirs walls and elevation of liquid near reservoir walls have similar character. Howe-
ver, character of displacement of reservoir in the horizontal plane for this ratio of masses 
of liquid and reservoir does not change considerably (Fig. 4). Behavior of the system in 
two cases of variation of external force sinxF A t   and cosxF A t   is similar and 
graphs of variation of velocity of reservoir have similar modulation (Fig. 5). In the case 5a 
variation of velocity has mean value, which differs from zero. This indicates that 
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Fig. 2. Trajectory of motion of the reservoir for Mres = 10Mlig 

Fig. 1. Amplitude of excitation of the first normal mode for Mres = 10Mlig 
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the reservoir performs systematic motion. In the case 5b mean value has zero 
magnitude and reservoir performs oscillation in a vicinity of starting position.  

Numerical experiments for different ratio of masses of reservoir and liquid, fil-
ling depths and frequencies and laws of harmonic external loading in a vicinity of main 
resonance showed, that transition to steady mode of oscillations with considerable 
modulation (this mode does not coincide with classical understanding of resonance) 
depends mostly on ratio of masses of reservoir and liquid. Moreover, modulation 
period also depends on this ratio.  

In the case of small filling of the reservoir (H = 0,3) liquid motion with iteration 
of oscillations cycles with strongly expressed modulation occurs starting from ratio 
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Fig. 3. Amplitude of excitation of the first normal mode for Mres = 0,1Mlig 
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Fig. 4. Trajectory of motion of the reservoir for Mres = 0,1Mlig 

Fig. 5. Velocity of motion of the reservoir for Mres = 0,1Mlig 
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factor of masses Mres = 5Mlig, although for greater higher filling level (H = 1) process 
attains to steady mode at values Mres = Mlig. On increase of amplitude of the external 
force parameters of reservoir motion differs, but law of amplitudes variation conserves.  

 
Conclusion. We consider problem of modeling of nonlinear forced motion of liquid 
with a free surface in movable paraboloidal reservoir. Motion was disturbed by harmo-
nic force in the horizontal direction. In particular, we consider the case of small filling 
of reservoir by liquid was considered. It was shown that transition to steady mode 
of motion in the considered nonlinear multifrequency systems of «reservoir – liquid» 
type is not manifested at all. Modulation periodicity of graph of variation in time 
of amplitudes of perturbation of a free surface occurs on increase of ratio of mass 
of reservoir with respect to mass of liquid. It was shown also that law of external har-
monic force effects only parameters of reservoir motion, but not on liquid. 
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Вимушені коливання рідини в резервуарі  
параболоїдальної форми 
Олег Лимарченко, Ірина Семенова 

У роботі досліджено особливості поведінки механічної системи «резервуар – рідина з вільною 
поверхнею» у разі збурення руху резервуара горизонтальною гармонічною силою. Розглядається 
приклад малого заповнення параболоїдального резервуара для різних варіантів гармонічної 
сили. Задача виходу на усталений режим вивчається на основі багатомодової нелінійної 
дискретної моделі динаміки сумісного руху обмеженого об’єму рідини з вільною поверхнею 
та резервуара, який здійснює горизонтальний поступальний рух. 

Вынужденные колебания жидкости в резервуаре 
параболоидальной формы 
Олег Лимарченко, Ирина Семенова 

В работе исследованы особенности поведения механической системы «резервуар – жид-
кость со свободной поверхностью» при возбуждении движения параболоидального резер-
вуара горизонтальной гармонической силой. Рассматривается пример малого заполнения 
параболического резервуара для разных законов гармонической силы. Задача выхода на 
установившийся режим изучается на основе многомодовой нелинейной динамики совмест-
ного движения ограниченного объема жидкости со свободной поверхностью и резервуара, 
который выполняет горизонтальное движение. 
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