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The problem for identification of the geometrical parameters of a tunnel cavity in a heat conduc-
tive half-space has been considered in the paper. Temperature field of body’s external surface,
caused by concentrated stationary heat fluxes, is used as input data for the identification problem.
A stationary 2-d mathematical model for thermal sounding of the object has been built with the use
of the boundary integral equations. The direct and inverse problems for cavity identification have
been formulated within the model. The direct problem was numerically studied with the use of
boundary-element method. On this basis informative parameters of the surface temperature field
have been identified and quantitatively studied. Using these parameters, the inverse problem was
reduced to an implicit nonlinear system of equations. An iterative boundary-element algorithm
based on Newton method has been developed for solving this system. With the use of numerical
experiment the efficiency of developed algorithm has been studied. The suggested method can be
used for development nondestructive contactless methods for identification of cavities in solids
with the use of IR-thermography.

Keywords: cavity identification, thermal sounding, inverse problems, boundary-
element methods, iterative methods.

Introduction. The technique of IR-thermography can be used for identification of dis-
continuities in solids (cavities, inclusions, structural defects etc.) [1]. To do that a ther-
mal process is exited in the object by heating it with external heat flow. The heteroge-
neity of body’s thermal properties impacts on the thermal process. Hence the surface
temperature of the object contains information about body’s internal structure. Measu-
ring this temperature with the use of IR-thermography one can obtain data applicable
for identification of the object’s structure.

To formulate inverse problems these data should be used simultaneously with
appropriate mathematical model describing thermal sounding of the object. Approa-
ches based on using finite Fourier transform [2], finite differences [1] and finite element
[3, 4] methods are known. Realization of these approaches brings to non-linear ill-posed
problems. To solve them variation-iterative methods [3] and neural networks [4] were
used in particular.

Most of the known approaches are applied to slab-like objects. The thermal
sounding process in such object is excited by a homogeneous heat flow, completely
covering a one of object’s plane surface. In the issue a contrast thermal image is for-
med. It reflects with some precision the object’s internal heterogeneity. That enables to
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identify visually the inclusion or cavity. These approaches can be effectively used for
thin-walled objects. The contrast range of the thermal image is depended on the
thickness of the object, defect size, its occurrence depth etc. All that can decrease the
identification precision in case of thick objects.

The problems of nondestructive identification of cavities in continuous media
with the use of the data obtained by thermal sounding the object with external heat
flows bring to inverse problems for the heat equation. The boundary integral method
can be effectively used to do that [6-8]. This approach enables one to formulate the
inverse problem as the nonlinear operator equation [7]. On this basis a regularized
Newton iteration scheme for approximate reconstruction of the shape of the closed
cavity in bounded 2d domain has been developed [6, 7].

In publications [9-11] we considered the approach to the identification of the geo-
metrical parameters of the cylindrical cavity in a long cylindrical body. According to
this approach, the body is sounding by its scanning with a concentrated heat flow and
the surface temperature field in step is measured. In the frame of boundary-integral
model direct and inverse problems for cavity identification were formulated. Analyzing
the direct problem’s solutions, obtained with use of the boundary-element method,
informative parameters of the surface temperature field have been revealed. With the use
the informative parameters and variational formulation of the inverse problem the prob-
lem was reduced to an overspecified system of nonlinear equations. That enables us to
develop a regularized boundary-element iterative algorithm based on the Newton method.

In this paper we continue this approach for identification of subsurface cavities.
In this view a heat conductive half-space with a cylindrical tunnel cavity is considered.

1. Mathematical model for thermal sounding

A heat conductive body in the form of half space is considered. The body contains
a tunnel cylindrical cavity that is parallel to the plane, bounding the body. The cross-
section of the surface bounded the cavity is a sufficiently smooth plane convex contour I'.

Let {x,x,,x;} be the Cartesian coordinate system with axis x; being normal to the

plane containing the contour I', origin O laying on the plane bounding the half-space
and axis x, being normal to this plane. Then geometry of contour I' can be defined by

a function x =x(s), where x=(x,x, )T ,s € Ac R . The function x=x(s) depends on
a finite number ne N of real parameters B,,,,...,5, defining geometry of the con-

tour: x= x(s; BisBas---5B, ) Hence the problem of cavity identification is reduced to
determination values of the parameters B, € B, c R, k =1,_n , where B, is the admit-

ted region for parameter [ that form a 1-connected closed domain B in R".
The body is heated by stationary heat flow that falls on half-space’s boundary
x, = 0. The normal component J of the flow intensity do not depend on x;: J = J(x)).

We consider function J(x,) as a member of some functional class J.

The body is cooled by convection with the ambient medium with temperature
T,, = const. The cylindrical surface bounding the cavity is thermally insulated one.
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Under such conditions the heat transfer process, exciting in the body by the flow, will
be stationary and dependent just on x; and x, coordinates.
Let X be the line coinciding with the x;-axis. Then caused by cavity disturbance

T(m)=T(n)-T(n) of the body’s surface temperature 7'(n) satisfies the boundary
integral equation [11]

3T+ J(0(n9) 0 (n) F(E)ek - [one)  (€)a(e)-

~Jo(ne)T(8)di(3). (1)

where n=n(x,,x,),&=§(x,,x,)e X UT stand for the radius-vectors of two arbitrary

points on the curve X U, T (1]) stands for the temperature field on the curve X UT
for the body without cavity, # and « stand for the coefficients of convection heat
exchange and thermal conductivity; ®(n,&), #(n,§) and ®(n,&) denote the functions

©(n.§)
8n(§)

, where n — outer

1 1
®('la§)5gln(m} r(ﬂ,§)5|ﬂ—§| and @(1],2;)5

normal to X UT .
Temperature field 7 on the contour T' is determined as

T(n)z—j@(n,xl)f(xl)dxl +I®(n,xl){J(zl)+%Tdexl, nerl, )

where T (x,) is the solution of the boundary integral equation

17 () J((D(xl,?;)+ﬁ®(x1,§))7_"(§)d§=

Y K

K

:j@(xl,g)(@+ﬁTde§, xeXx. 3)
X

Equations (1)-(3) specify the mathematical model for thermal sounding of the
body with stationary heat flows.

When the sounding heat flow J (xl) is given, we can solve sequentially the
equations (3) and (1) for any given values of the parameters B,,f,,...,, and determine
in such way the temperature perturbation of T (xl) on the body’s external surface. The
calculated field 7'(x,) is be dependent on the sounding flow intensity J(x;) and geo-
metrical parameters By,B,.,...,B, . We indicate that as T(x;) =T (x;;J;B1,B5-- . B, ) -

From the other hand, we can impact on the real-life body, containing a near-
surface cavity, by heat flow of intensity J¢ (xl) and measure the body’s stationary
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surface temperature distribution 7°¢ (x1 ) , caused by the flow. Then, calculating the distur-
bance T°(x,)=T°(x;)—T(x,), we can compare it to the field 7' (x;;J;B;.B5.--..B8, )
being the solution of integral equation (1), obtaining for any chosen values of
geometrical parameters f,B,,...,8, . So, juxtaposing the measured data 7° (xl) to the

mathematical model (1)-(3) gives some information about parameters B,,8,,....B, .

2. Direct and inverse problems for cavity identification

Direct problem. a) determine perturbation of temperature field 7'(x;)=T7(x;3J;B,,B,.,-...B, )
on external body’s surface for any given heat flow density J (x1 ) € J and any given
values B, € B, k= Ln of all cavity’s geometric parameters; b) determine on this basis
characteristic parameters F,F,,...F, (m>=n) of temperature field T(x),x X,
which can be used as informative parameters for cavity identification.
Points of function’s 7'(x;),x € X extremums arg(max(f(xl))), arg(rrﬁn(f(xl)))
X X

and their values max (f (% )), min (f (% )) can be used as the characteristic parameters
X X

F\, F,, ... F, in particular.
To solve the direct problem it is necessary to develop an algorithm for solving
the integral equations (1), (3) and study numerically with its using the influence of

values of the parameters f,,B,,...,3, ontemperature disturbance T (x1 ), xeX.
Inverse problem: functions for sounding heat flow J¢(x,),x € X and tempera-

ture disturbance 7° (x;),x, € X on external body surface are given; the values of cavi-

ty’s geometrical parameters f3,,8,,...,53, should to be determined.
We will use a variational formulation for the inverse problem.

n

Let F°,Fy,...F, be the values for characteristic parameters F,,F,,...F, of the
temperature disturbance 7°(x, ), x; € X . Function 7 (x,) is determined from the measu-
red data obtained by thermal sounding of the real-world body, containing the cavity,
with the heat flow of intensity J¢(x,),x € X . So, vector F*= (Ee,er,...F,ﬁ )T car-
ries posteriori information about cavity’s geometry. Let T (xl;J §B1a[327---an): xeX

be a solution of the direct problems, obtained at J(x;)=J¢(x;),x € X and some

T
given values of geometric parameters B;,f,,...,5,, F= (F1 ,F, ,...Fm) 1s the vector
of values of characteristic parameters F, ,F, ,...F,, for this solution. Obviously under
fixed J¢ (xl), x, € X vector F is dependent on just the geometrical parameters: F =

=F(B,.B,...-.B,) - Due to that we will consider the set {,,B,.....B,} as the solution
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of the inverse problem if vector F(BI,BZ,...,BH) is closest in some sense to vector F°,

ie. [F(B).By.-...B,) ~F¢

Variational formulation jointly with iterative procedure will enable us to reduce
the inverse problem to solving of some sequence of direct problems.

—» min, where |.. || is a vector norm, for instance /.

3. Boundary-element model for thermal sounding

In the direct problem the geometry of the cavity is known. So, we can solve boundary
integral equations (2) and (1) for any given function J (x1 ), x, € X of sounding heat

flow and determine the temperature disturbance T (%), x, € X . To do that we use the

boundary-element method [11].
Let «# = X be the projection of the contour I' on x; axis. We choose the
coordinate system x;0Ox, with the origin O in the center of the segment 4 and take

a segment £(x,)c X: x,€[-L/2,L/2] containing +#. We choose L>>a, where

a=|A| is the length of the segment . Then we choose N €Z, satisfying relation
L/N < a, and select on N + 1 regularly spaced nodes with Cartesian coordinates

(&;,0), where & =—L/2+iL/N, i=0,N . These nodes form N linear finite elements
EZ.X = [E;i,f‘,M ], i =m. Now we can consider line X as a union of N + 2 segments,
namely: N finite elements E[X and two semi-infinite elements EX = (—oo,—L/ 2] and
EY =[L/2,0): X =EX U(UY EX)UEY.

Selecting on contour I' N € Z regularly spaced nodes with Cartesian coordi-
nates & = (&, ), where &, =x,(s), & =%(s), {s,i=0,Nr|, we introduce

Ny curvilinear finite elements E = {x(s), s €518 )} , each of which is a segment of

the contour: T'=| J" "' £F
e contour: I'={_J._ " E; .

We introduce in equations (1), (2) new unknown functions u=T -7, and
i =T — T, which decay when x; — +o0, and apply to them linear approximations on
each finite elements E* (i =0,N —1) and E] (i =0,Np —1) using the functions

¢ (N =(1-1)/2 and @, (1) =(1+1)/2 [9].

To reflect the semi-infinite elements £% and E on segment [~1,1] we use for
them nonlinear transformations of coordinates x, =&, (t—3)/(1+¢) and x; =&, (t+3)/(1-?)
(¢t €[-1,1]) correspondingly. Then, we approximate the unknown functions on these
elements by the functions ¢_(7) = (1+7)* / 4 and o, (t)=(1-1¢) 2 / 4 respectively.

Finally, of the unknown function we can replace the integrals in the equations
(1), (2) by sums of boundary element integrals. For instance we have
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0 1

J H(m,x)u(x)dx =u, I H(n,0)o_(t)J_(t)dt +
—00 -1

N-2 1 1

+> %jH (1) (1391 () + 1,105 ()t +uy, [ H (n.t) 0, (0, ()t 4
i=2 % J

where H (m,x)= @(q,x)+ﬁ®(q,x), J(t)=4Ey [(-0)%, J_(1)=4&, /(1+1)? .
K

In the issue the boundary integral equations (1) and (2) will be replaced by the
systems of linear algebraic equations (5) and (6) respectively:

MUy + MUy =0, MUy + MUy =B, ©)
MUy =B. (6)

Here fJ(l) and fJ(z) are vectors of function’s u node values on the line X and
contour ' correspondingly, I_J(l) is vector of function’s # node values on the line X;
M(H), M(12)a M(Zl) and M(zz) are matrixes of dimensions N xNp, NpxN and
Np x Np; B=<I)-(M_1 -l_?'), where M and @ are N xN -matrixes;

B=0- (J + (Tmh/K)I) , where @ is N x N -matrix, J is vector of node values of soun-

ding flux intensity function on the line X, I is unit N-vector.

4. Solution of direct problem and informative parameters for cavity identification

Solving sequentially the systems (6) and (5), we can determine vector fJ(l) , represen-

ting temperature disturbance T (x),x, € X on external surface of the body, and study
on this basis influence of the geometrical parameters f,,B,,...,3, on the characteristic
parameters F,,F,,...F,, of the temperature field 7'(x; ).

Further we restrict ourselves by the case of circular cylindrical cavity. Its
geometry is determined by three independent parameters i.e. — coordinates x; = x,

and x, =y, of the circle’s center, and its radius 7.
Let’s the function

J(x )Ej—oex (—MJ Ceb (7)
RN ’ ’

where j, = const >0, b= const >0, determines intensity of the sounding heat flow.

220



ISSN 1816-1545 ®izuko-maTemaTUyHe MoAeNiOBaHHA Ta iHcdopmauiiHi TexHonorii
2014, Bun. 19, 215-227

In this case the direct prob- (04
lem’s solution T'(x;),x € X is de- 0.03
pendent on three parameters of soun- ’

ding heat flow j,, b, { and three 0,02
geometrical parameters: T (x;)=
= f(xl;joabag;x03y07r0) .
Applying the boundary-ele-
ment model (5), (6) we can study - 0,011

influence of sounding heat flow’s
parameters and geometrical parame-

0,01 1

0,

-0,02

ters of the cavity on temperature —L/2 §=x0 L2
disturbance on body’s external Flg 1. Temperature disturbances for different
surface. heat flow’s position ¢ e {7L/8 + i} , 1=0,10

On fig. 1 the plots for tem-
perature disturbance T (x1 ),x1 € X, calculated for different positions of sounding heat

flow, are presented. The calculations were made for the next values of the geometrical
parameters: x, =0, y, ==2, , =0,5; values for parameters of the sounding heat flow

were chosen j, = IOOW/ m? and b=1; the coefficients of thermal conductivity and
convective heat exchange were taken equal k=1,15 W/m-K and h=2 W/ m?-K,
the value 7,, =300 K was used for ambient temperature. The boundary elements was
defined by L =40, N =300 and N =320.

At fixed parameters j,b, x,, y,,7, the function of temperature disturbance
T (x1 ),x1 € X is dependent just on parameter {, determining position of sounding heat
flow: T(x)=T(x;¢). We considered characteristic parameters F,F,,...,F; for

functions T(xl;(;),xl € X, namely: the maximum £ () =max7~”(x1;g) and two mini-
X

mums F,5(¢)=minT(x;;C), as well as the coordinates of these extremums:
X

F,(¢)= arg(max f(xl,q)), I@jé(g)zarg(minf(xl,Q)). The values of the parameters
X X
are dependent on . Theses dependence, calculated for the curves, presented on fig. 1,

are depicted on the fig. 2.
As we can see from the plots fig. 1 and 2, the coordinate F4() of maximum of

function T (xl;(;) in general (for arbitrary () doesn’t coincide with coordinate {

of maximum of the sounding flow. Just when { coincides with abscissa x, of the
cavity’s center, F4(C) coincides with coordinate (. That can be written as

C=xy = F(¢)=C. )
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Fig. 2. Dependences the parameters F, F, ..., F on the position of sounding flow

This property follows from symmetry of the temperature field 7 (x;,§) at §=x,
with respect to variable x;.

Taking into account the uniqueness of the solution 7 (xl;(;) of the direct prob-
lem, we can conclude that property (8) is biunique one, i.e.

F(C)=C = C=x. )
Analyzing behavior of minimums of functions 7 (x;;§) we can see, that

|x0—F4|<|x0—FS| = F(€)>F(C), (10)
L=xy = FK(0)=F(), C=x = F(L)+F(C)=2. (11)

Taking into account the uniqueness of the solution T (xl;(;) of the direct problem, we
can conclude that property (10), (11) are biunique, i.e.

Fy(€)> F5(C) = |x — Fy| <|xo = K| (12)
K(Q)=F(C) = C=x), F(O)+F(L)=20 = C=x,. (13)

The property (8)-(13) reflect the influence of the relative position of cavity and
sounding flow centers on temperature field of body’s external surface. They can be
used for identification of x, independently on two other parameters y, and ry.

To estimate a possibility to use the characteristic parameters F), F>, ..., F as
informative parameters for identification of the geometric parameters we studied
numerically the influence of the parameters y, and ry on F}, I, ..., Fs. We restricted
ourselves by the case of central sounding, when the center C of the sounding flow dist-

ribution coincides with abscissa x, of cavity’s center.

222



ISSN 1816-1545 ®izuko-maTemaTUyHe MoAeNiOBaHHA Ta iHcdopmauiiHi TexHonorii
2014, Bun. 19, 215-227

0 yo =—4,0
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Fig. 3. Dependences of parameters F) (a) and F, (b) on geometrical parameters 7 and y,

On fig. 3 influence of geometric parameters )y, o on characteristic parameters F)
and F, = F; are presented for example. The calculations were made by solving the
direct problem for case of central sounding for discrete sets of values for parame-

ters y, € {—4;-3,5;-3;-2,5,-2;-1,5} and r, ={0,05;0,1;0,2;0,3;0,4;0,5} .
As we can see, maximum £ (x,) and minimum F,(x,) of temperature field
T (x1 ), x € X , excited by central thermal sounding, are strongly dependent on parame-

ters yp and ro. Therefore F; and F, can be used as informative parameters for identi-
fication the cavity’s geometrical parameters y, and .

5. Iterative method for solving of inverse problem

Since the parameter x, can be determined independently, we consider the inverse problem
for identification parameters y, and r, with the use of the data, obtained by central sounding
of the body. In this case only three characteristic parameters Fj, F, and Fs are independent.

Let T° (x;),x € X beaknown function, describing the disturbance of temperature
field on the external surface of the half-space that contains the circular tunnel cavity with
geometrical parameters x{, y§ and 7; . Parameter x{ is known. The function 7°(x,) was

determined from the data, obtained by central sounding ((; = xg) the body with heat
flow, intensity of that is described by formula (7) at {=x; and given j, =j; and
b =b° . It is necessary to determine values of cavity’s geometrical parameters y; and 7; .

Since function 7°(x),x €X is known we can determine its characteristic

parameters F,° = max(fe (% )) , Ff =min(7¢) and F¢ = arg(min(fe)).
X X X

Let’s take arbitrary values y, and r, for unknown parameters and solve the direct
problem for case of central sounding by the flow (7) with the parameters C=x{,
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jo=Jj¢ and b=5b°. Function T(x,), x; € X determined in such way will be dependent
on the chosen values of the parameters y, and ro: T (x;)=T(x;5¥.7% ). Now we can

calculate the values of parameters F, F» and F; for the field T (x, ), x, € X : F(yo.7) =
zmax(f(xléJ’oJo))’ Fz(J’Oaro)zrmn(f(xl;J’oJo))ﬂ F5(yo,ro)=arg(n}(in(f(x1;yo,r0))).
X X 1

If chosen values yy and 7, are equal to the corresponding actual values y; and 7, the

obtained value Fi, F, and Fs will be equal to corresponding values F°, F, and Fy :
Fe(678)-F¢ =0, k=125, (14)

So, we obtain the system of equations for determination parameters y; and 7y .
Explicit analytical structures of the functions F;(y,,7,) are unknown. But we

can calculate the values of each of them for any given y, and r.

Three equations (14) make up nonlinear overdetermined system. It can be solved
by the iterative method developed in [8]. But since this system is dependent just on two
unknown variables we can consider only two equations

Fe(s6.7)-Fe =0, k=12, (15)

To solve the system (15) we developed an iterative algorithm based of Newton
method [10].

Let y,eB, = [ yon g } r,eB, = [romi“,roma" } , where y™, y™ and ™", 5"
stand for the lower and upper bounds for parameters y, and r,. Using the denotation

T . T
f=(£./,) , where f;=f,(yo.1)=F (y0.5)-F, i=12, Y=(yy,75) , we can
represent the iterative procedure for numerical solving the system (15):

YD =y 0 -G (YO ) (Y®), (16)

where, Y® and Y**V are vectors of k-th and (k+ 1)-th approaches, G stands for
Jacobi matrix for functions f,(yy.7) and f, (yo.7%)-

To calculate Jacobi matrix it is necessary to determine the derivatives
3f;(os70) /0 » 0f;(¥os7p)/0ry» i=1,2. Since the analytical structure of functions

Ff ( yo,ro) is unknown, these derivatives be replaced by the finite differences [8]

5f,-(yoa’”o) f,'(yo +Ay0’r0)_fi (yO’rO)

~ , (17)
Mo Ayy
5]",-()’0#0)%ﬁ(yOaVo"’AVo)_fi(yoJo) (18)
a}’o Aro ’
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where Ay, and Ar, are positive constants small as compared to |yy™ —y™"| and
max min
"’0 —"

Calculations due to the formula (16) should be terminated, when the condition

HYU‘“) -Y® ” <& becomes true. Here is a small positive parameter.

6. Numerical results

To estimate the effectiveness of the developed algorithms for solving of the inverse
problem we used a numerical experiment. To obtain the input data for the inverse
problem the values for cavity’s geometric parameters have been assigned: xo =0, yo=— 2,
ro=0,5. Then the direct problem for assigned parameters was solved. Obtained in such

way solution was treated as function T¢ (x1 ), x, € X . Next, the values of the characte-

ristic parameters F°=0,0617 and Fy =-0,007 for field 7¢(x,) were determined.

These values were used in the system (15). The values yo=—3, ro=1 were used as
zero-approximation for the iterative process (16). They have been taken as an input
data for solving system (14) by algorithm (15). The values y,=-1,999984 and
ro = 0,499976 were obtained on the 6-th iteration.

Conclusions. Direct and inverse problems for identification of tunnel cavity in the
half-space on the base of given surface temperature field, excited by concentrated heat
flow, incident on the half-space’s surface, have been considered. The boundary ele-
ment method for solving of the direct problem has been developed. Analyzing nume-
rical solutions of the direct problem, a set of characteristic parameters of surface’s
temperature field has been established. These parameters can be used as informative
ones for identification of the cavity. A variational formulation for inverse problem of
determination of cavity’s geometric parameters has been done with the use of the cha-
racteristic parameters. An iterative boundary-element method for solving of the inverse
problem has been developed. Effectiveness of the developed method has been corrobo-
rated with the use of numerical experiment. This method can be used under develop-
ment of nondestructive contactless methods for cavities identification in solids with the
use of technique of IR-thermography.
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Posenanymo 3adauy eusnavenns ceomempuiHux napamempie YuiiHOpU4Hoi myHenbHoi NOPONCHUHU
V MenionpogioHoOMy NIGNPOCMOPE 34 3A0AHUM HA 308HIWHIN NOBEPXHI MEMNEPATNYPHUM NOJIEeM,
30Y02HCeHUM CMAYIOHAPHUM HASPIBOM MIiNA 30CepeddceHUMU MenaosuMu nomoxkamu. 13 sacmocy-
BAHHAM SPAHUYHUX THMEZPANbHUX PIGHAHb NOOYOOBAHO 0B0BUMIPHY MAMEMAMUYHY MOOeNb men-
108020 30HOYBAHHS MINA, 8 MedCaX SKOI chopmynvbosani npsama i obepuena 3adayi ioeHmugikayii
napamempie nopodichunu. I panuuno-enemeHmuum memooom 0ocaiodiceno npamy 3aoaqy. Ha yii
OCHOBI 8USIBNIEHO A QOCTIONCEHO THopMamusHi napamempu mennogoi ioenmudpixayii. I3 euxo-
PUCMAHHAM YUX Napamempie c@opmyib08anHo 0OEpHEHY 3a0auy, 5Ky 36€0€HO 00 HEeNIHIUHOL
cucmemu Hesi8HO 3A0aHUX pieHsaHb. Po3pobieno imepayiinull areopumm po3s 's3y8ants yici cuc-
memu, sKull IpyHmyemsca Ha memooi Hvtomona. Ilposedeno uucnoge 0ocniodcenms eghexmug-
HOCMI Yb02O aneopummy. 3anponoHo8aHULl Memood MOJUCHA 3ACMOCY8amu 05l CIGOPeHHsL 3aco0i8
i0enmuixayii nOpoICHUH Y MEepouUx minax Ha ocHosi danux 14-mepmozcpapii.
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paHU4YHO-3N1eMEeHTHbIN MeToA4 uaeHTudnKaumm
NPUNOBEPXHOCTHOWN TYHHESTbHOWN LIUNTMHAPUYECKOU
NoJSIOCTU B Tene C NSIOCKOMN NOBEPXHOCTLHO

Bacunb YekypuH, Oner CuHbKeBNY

Paccemompena 3a0aua onpedenerus 2eomempuyieckux napamenpos YUIUHOPUIECKOU myHHeNbHOU
nOIOCMU 8 MENLONPOBOOHOM NOLYRPOCIPAHCIGE, UCXOO0SL U3 3A0AHHO20 MEMNEPANYPHOSO NOJA
GHEUIHEU NOBEPXHOCHU MeNd, 8030YHCOAEMO20 COCPEOOMOUEHHBIM CMAYUOHAPHLIM MENJI06bIM
NOMOKOM 8 YCILOBUSIX KOHBEKMUBHO20 MeNnI000MeHa ¢ eHewreli cpedoti. C ucnonv3068anuem epa-
HUYHBIX UHMESPATILHBIX YPAGHEHUI NOCMPOEHA 08YMEPHAS. MAMEMAMUYECKAsi MOOelb MENI08020
30HOUposanus mena. B pamxax smoi modenu copmyruposanvl npsmas u odpamuas 3a0ayu
uoenmughuxayuu napamempos noiocmu. I panuuHo-31eMeHMHbIM MEMOOOM NPOBEOEHO UCCLEN0-
6anue npsmou 3a0auu. Ha amoii ocnose gvisignenbl u ucciedo8anbl UHGOpMamueHvle Napamempol.
C ucnonv308anuem smux napamempos chopmyIuposano 0OpAmHy0 3a0avy, KOmopas ceedeHa
K cucmeme HeNUHEHbIX HeIB8HO 3A0aHHbIX ypashenull. Paspaboman umepayuonnwiii arcopumm
pewerust SMoil cucmembl, OCHOBAHHbIU Ha Mmemode Hovtomona. C ucnonb3o08anuem 4ucieHHo20
IKCHEPUMEHMA NPOBEOEHO UCCAe)08aHUe IPekmusHocmu paspabomantoco memooa. Ilpedno-
JICEHHBIIL MemOO MOJCHO UCNONL306aMb O CO30AHUS MEMO008 udeHmuukayuy nosocme
6 MBepObIX MeNAx ¢ UCNONb308aHUem mexHuku HK-mepmozpagpuu.
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