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Nonlinear forced liquid sloshing in a hyperboloid reservoir
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Peculiarities of behaviour of mechanical system «reservoir — liquid with a free surface» under
excitation by the given horizontal harmonic force are investigated. The problem of liquid forced
oscillations is studied on the basis of multimodal nonlinear model of dynamics of combined motion
of limited volume of liquid with a free surface and reservoir of a hyperboloid shape. It is shown
that finally the system of oscillations does not transit to steady state.
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Introduction. We investigate translational motion in the horizontal plane of absolutely
rigid hyperboloid reservoir, partially filled with liquid. The problem of oscillations
of ideal incompressible liquid with a free surface in a cavity has been studied by many
authors [1-3]. Mathematical formulation of the problem of dynamics of the system
«reservoir — liquid with a free surface» represents a system of kinematic and dynamic
requirements (boundary conditions):

Ap=0 in 7,

8_(p =0 on X,

on

% = _8n_/6t on S
on |

Z—T+%(§(p)2 +U=0 on &.

The motion is described in the Cartesian reference frame Oxyz, fixed with reservoir.
For description of oscillations of bounded liquid volume in reservoir, we introduce the
following denotations: ¢ is the velocity potential of liquid, t is the domain, occupied

by liquid, 83 is external normal derivative to a surface, S is a free surface of liquid
n

in its perturbed motion, X is the boundary of the contact of liquid with reservoir walls
in perturbed motion (for convenience, we also introduce X, which corresponds to
boundary of contact of liquid with tank walls in unperturbed motion and AX variations
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of the contact boundary caused by liquid perturbation (£ =%, + AX ), n(x,y,z,t)=0 is

the equation of a free surface of liquid, U is the function of potential energy of liquid, # is
time. Kinematic conditions are considered as mechanical constraints, which superim-
pose restrictions on variations of unknowns, for the statement of the problem of motion
of the mechanical system on the basis of the Hamilton-Ostrogradskiy variation prin-
ciple. Dynamic boundary conditions are naturally obtained from the Hamilton-Ostro-
gradskiy principle. Following the publication [4, 5], for description of liquid motion we
introduce non-Cartesian parameterization of the domain 1, occupied by liquid
;. p==.
f(2) H

In the accepted non-Cartesian system of coordinates(oc,G,B), the domain of liquid

takes cylindrical shape. New parameterization makes it possible to represent the equa-
. . 1
tion of a free surface of liquid as P= Ec‘,(a, 0,/) or HP—&(a,6,/)=0 because

of cylindrical shape of liquid domain in new system of variables. The study of liquid
sloshing for arbitrary tank geometry is based on variational formulation. Construction
of the motion equations of the system is done on the basis the Hamilton-Ostrogradskiy
variation principle, used to the system of volume of bounded liquid and a rigid body
with cavity of revolution with preliminary satisfying of kinematic boundary conditions
and solvability conditions. For transition from continuum structure of the initial model
of the system rigid body — liquid to its discrete model we make use of the Kantorovich
method. This way is similar to the case, when reservoir has cylindrical shape. Main
distinction consists in the following two properties: decomposition of the velocity
potential with respect to the coordinate functions holds approximately the non-flowing
conditions; the group of geometrical nonlinearities caused by non-cylindrical shape of
the reservoir predetermines additional dependences of all natural modes of oscillations.

1. Object of investigation

We investigate dynamic peculiarities of combined motion of the mechanical system
«hyperboloid reservoir — liquid with a free surface». The reservoir performs translatio-
nal motion in the horizontal plane under action of active periodic force. In publication
[5] on the basis of the method of the article [4], a discrete model of the system «hyper-
boloid reservoir — liquid with a free surface» was constructed. The motion equations
of the system reservoir — liquid in amplitude parameters a; and parameters of transla-

tional motion of the carrying body & take the form
.. 1 2 3
2.4, (Vir + 204V + D a4V J +
i J Jok

3| 7l 52 53 F4 | _
+€- (U, + Za[U” + ZaiajU”»j + z a[ajakU”.ij =
i i,j i,j.k
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(p is the liquid density, g is the free falling acceleration, M,

os and M, are masses
of reservoir and liquid). The equations (1) describe dynamics of amplitudes of normal
modes of oscillations of a free surface of liquid, and the equations (2) describe dyna-
mics of translational motion of reservoir.

According to the technique of publication [5], let us represent the equation

of a free surface of liquid & as follows
E=E(0)+ 2 a7, ()T; (0).
I

Taking into account the character of variation of frequency parameters, we have
accepted the following system of coordinate functions and their arrangement for
decomposition of elevation of a free surface:

W =\VT1 sin6; v, Z\V; cos0; v, :\V:F)IQ Wy Z‘V; sin(29); Ys Z‘V; COS(ZG)Q
W —\;/02, v, —\y31 sin(30); g —\v31 cos(30); vy, =y;,sin6; Wio =y}, cos0,

where \thk is the solution of the refined problem (with satisfied boundary conditions

on crests of waves on reservoir walls) of determination of normal modes of oscillations
of a free surface with the angular number m, which is associated with the k-th eigenvalue
(arrangement of coordinate functions was accepted in ascending order of eigenvalues).
For investigation of nonlinear dynamics of combined motion of the system
«hyperboloid reservoir — liquid», a number of numerical experiments were performed.

2. Results of numerical experiments

2

. . . a . . o
Let us consider hyperboloid reservoir » = —\/ (x+H +¢)* —¢? with vertical longitudi-
c

nal axis Oz, which performs translational motion in the plane xOy. A step of numerical
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Table 1
Frequency ratios
Modes of oscillations ; ®/ o
Vi, Y2 1,000000
Vs 1,637210
W4, s 1,329786
W 1,581338
Y7, Vs 1,801157
Yo, Wio 2,154455

integration was specified as Ar=0,01s. For solving the problem of determination
of coordinate functions, we used decomposition of solution with respect to N =22
harmonic polynomials. The ratio of masses of reservoir and liquid is R =
=M, /M, =0,1, the liquid depth parameter is H/R,=1. The natural frequencies
for selected values of parameters of the mechanical system are given in Table 1. Pro-
cess of oscillation is investigated over the time interval of 100 periods of oscillation
of the main normal mode; graphs are shown for 30 periods. Motion is initiated
by horizontal force, applied to reservoir walls, which is changed according to the har-

monic function F, =Acos( pt), the initial excitation of a free surface of liquid is
absent. For all numerical examples, the value of amplitude of external horizontal force

applied to the reservoir was accepted in such a way, that oscillations of a free surface
of liquid hit in nonlinear range of variation of wave amplitudes (i.e. elevation of a free

surface of liquid was (0,2+0,25)R,).

We consider nonlinear oscillations of free surfaced liquid when frequency
of external force is under resonance given below (Fig. 1, 2), ie., p=0,7w,, where
o, =3,503581 is partial frequency of the first antisymmetric normal mode. Normal
(resonant) frequency of the mechanical system for the specified mass ratio
M, /M, =0,1 is equal to o =1,58a; .

Time dependence of the amplitude of perturbation of the free surface is exposed
to discrete Fourier transform; the resulting frequency spectrum A:|A(oa/ o, )| was
analyzed for the presence of harmonics equal or multiples to normal, matching, or
forced frequencies.

Graph of amplitude perturbation of the free surface on tank walls is shown
in Fig. 1a, b illustrates frequency spectrum amplitude perturbation of the liquid free-
surface motion. Fig. 1a illustrates that free surface oscillations occur with noticeable

amplitude modulation with the presence of the varied in time mean value.
The presence of amplitude modulation is explained by the presence of two amplitude

harmonics on external (p =0,7w,) and normal frequencies of the system (p =1,580, ).
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Fig. 1. Forced oscillations of liquid F;, = 4 cos( pt), p = 0,7m,
a) amplitude of oscillations of liquid on tank wall, b) frequency spectrum

Variation of mean value in time can be explained by the presence of time harmonics
with extremely low (close to zero) frequencies, caused by difference of two values
of frequencies (Fig. 15). Moreover, the frequency spectrum (Fig. 15) contains high
spectral harmonics, both in their own and in combination frequencies. Frequency

spectrum includes four peaks: frequency of external force ( p=0,70, ) , natural frequ-
ency of the mechanical system ( p =1,58w, ) and combination frequencies ( p=L40,,

p= 2,1031) . The presence of amplitude modulation, time variable mean value and high

harmonics with frequencies, which are not multiple to the frequency of external distur-
bance, made it possible to draw conclusion that excitation of motion in below resonance
range steady oscillations in the system «hyperboloid reservoir — liquid» are absent.
Fig. 2a shows a graphical time-dependent vector main forces fluid pressure on the shell
wall. Graph of variation in time of the liquid horizontal response on tank walls has
amplitude modulation and time variable mean value. Spectrum (Fig. 2b) slightly differs
from spectrum of amplitude perturbation of free surface (Fig. 1). Frequency spectrum
of liquid response contains only two pronounced peaks corresponding to external force

(p=0,7w;) and natural frequency of the mechanical system (p =1,580, ), since only

antisymmetric oscillations corresponding number m =1 can create horizontal hydrody-
namic response tank in the case of combined motion of the reservoir and liquid.

Let us consider nonlinear oscillations of a free surface of liquid, when frequency
of the external force is in a close vicinity of resonant frequency (Fig. 3, 4), namely,
p =158, for ratio of masses M,eS/M,[q =0,1. As it is seen from Fig. 3a, oscillations
of a free surface have pronounced amplitude modulation and time variable mean value.
This property is also confirmed by structure of frequency spectrum, namely, all domi-

nating harmonics are focused near frequencies of disturbance (Fig. 3b). Graphs
of variation of the main vector of pressure on reservoir walls (liquid response) have
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Fig. 2. Forced oscillations of liquid F,, = 4 cos( pt), p = 0,7m,
a) total liquid response on the wall of a tank, b) frequency spectrum
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Fig. 3. Forced oscillations of liquid F, = 4 cos(pt), p = 1,58w,;
a) amplitude of oscillations of liquid on tank wall, b) frequency spectrum

also periodic character (Fig. 4a). Noticeable amplitude modulation and the absence
of manifestation of high frequency modes are peculiar also. Frequency spectrum
of vector of liquid horizontal response on tank is similar (Fig. 4b). Therefore, in the
case of system disturbance in a small vicinity of resonant frequency transition of
the system to steady mode of oscillations in its classical sense does not occur.

Fig. 5a shows variation in time of amplitude of elevation of a free surface of li-
quid, when system motion is disturbed by force, which varies with the above resonance
frequency ( p=L8p, ) As it is seen from Fig. 5a, graph is characterized by amplitude

modulation and variable in time mean value of amplitudes. Frequency spectrum
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Fig. 4. Forced oscillations of liquid F, = 4 cos(pt), p = 1,58w,;
a) liquid response on tank walls, b) frequency spectrum

(Fig. 5b) has four peaks: frequency of external force ( p =0,7®,), natural frequency
of the mechanical system (p=158w,) and combination frequencies (p=2,30,,
p =2,5m,). The presence of harmonics at low frequencies explains variation in time of
mean value. Graph of variation of horizontal response of liquid on tank walls has amp-
litude modulation (Fig. 6a). The spectrum of this liquid response is similar to the case
of below resonant disturbance (two dominant peaks, corresponding to external frequency
and natural frequency of the system). Behaviour of «hyperbolic tank — liquid» in above
resonance range of motion disturbance does not lead to steady mode of oscillations.
We consider the case, when ratio of mass of the reservoir to mass of liquid is
M, /M, =0,1 (this ratio is often met in practice), this differs from research results
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Fig. 5. Forced oscillations of liquid F,, = 4 cos( pt), p = 2,30,
a) amplitude of oscillations of liquid on tank wall, b) frequency spectrum
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Fig. 6. Forced oscillations of liquid F;, = 4 cos( pt), p = 2,30,
a) total force of water acting on the wall of a tank, ) frequency spectrum

[1, 2, 4], when law of reservoir motion is given, i.e., this corresponds to reservoir with
infinitely great mass, and free surface oscillations of liquid do not affect the reservoir
motion. In this case, nonlinear interaction of liquid sloshing with translational motion
of reservoir leads to quasi-periodic motion characterized by the effects of variation
in time of mean value and amplitude modulation.

Conclusion. We consider a problem of modelling of nonlinear forced motion of liquid
with a free surface in movable hyperboloid reservoir. Behaviour of the system is consi-
dered under horizontal periodic disturbance, when frequency of external force is
in a vicinity of resonance, namely, below, near and above resonance values. Frequency
spectrum of elevation near reservoir walls and spectrum of liquid response on tank
walls were compared. It was shown that transition to steady mode of motion in
the considered nonlinear multifrequency systems of «hyperboloid reservoir — liquid»
type is not manifested at all.
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BumylueHi HeniHiNHI KONUBaHHA piaMHK B rinepbonoiai obepTaHHA

IpvHa CemeHoBa

Y pobomi oocridoceno ocobausocmi nosedinku mMexaniyHoi cucmemu «pezepsyap — pioura 3 8ilb-
HOW0 nogepxHeio» 3a 30ypeHHsi pYX)y pe3ep8yapa 20pU30HMAaIbHOI 2apMOHIUHOIO cunolo. 3adaya
Nnpo GUMYULEHI KOTUBAHHS UEHAEMbCS HA OCHOBI HENiHIliHOT 6a2amomo0080i mooeni, wo oOnucye
CYMICHUIL pyX pe3epsyapa 3 piounoio nid 0i€ro akxmuHux 306HiwHIX cun. [lokazano, wo 6uxio
cucmemu Ha yCManeHull pelcum Konusans He 6i00yeacmucsi.

BbIHy)Kp,eHHI:Ie HeNUHeMNHble KonebGaHnsA XKUOKOCTU
B runepﬁonomqe BpaweHuns

UpuHa CemeHoBa

B pabome uccredosanvl 0cobeHHOCMU NOBEOCHUsSI MEXAHUYECKOU CUCMEMbL «pe3epeyap — JHcuo-
KOCMb CO C80000HOU NOBEPXHOCIIBIO) NPU 8030YIHCOCHUU OBUIICEHUSL Pe3ep8Yapa 20PU3OHMATbHOL
2APMOHUYECKOU CUTOU. 3a0a4a O 8bIHYIHCOCHHBIX KONCOAHUSAX HCUOKOCMU U3YYAEMCsl HA OCHO8E
MHO20MOO0801U HEUHEUHOU OUHAMUKU COBMECIHO20 OBUNCEHUST OZPAHUYEHHO20 00beMa HCUOKOC-
mu co c80000HOIU NOBEPXHOCMBIO U pe3epsyapa unepboruueckoll gopmol. Tlokazano, 4mo 6bIxo0
cucmembl Ha YCMAHOBUBUIUTICS. PENCUM He NPOUCKXOOUMN.

IIpeacrasieno npogecopom €. Yannero
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