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The methods of power summation of factors, degree of factors which are arbitrary powers of sum-
mation indices are reviewed. It is shown that by Poisson-Abel method only those series can be
summarized the order of member increase of which is proportional to the exponent depending on
the summation index. Gauss-Weierstrass method and other power factors methods can be also
applied to the series the terms of which increase in proportion to the exponential dependence of
the indices summation.
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Introduction. Methgods of series summation based on the mathematical aparatus of
averaging integral operators are formulated in the works [1, 2].

Power multiplier methods of and Gauss-Weierstrass [2-5] with the factors
having, respectively, the first and the second degree of sequence numbers of the series
members (summation indeces) are powerful enough from the point of view of sum-
ming up the series with the growing number of members.

This paper reviews power multiplier methods of series summation, degrees of
factors of which are arbitrary powers of summation indeces. It is shown that by
Poisson-Abel method can be summarized only the series the members of which have
the order of growth proportional to the exponent depending on the index. Gauss-
Weierstrass method and other power multiplier methods (power facors methods) can
also be applied to the series whose members grow in proportion to the exponential
dependence of the index summation.

1. Generalized sum of trigonometric series
Here are the main characteristics of averaging operators [2].

1. Let the function f(x) such that the function f (x)(l + |x|)_k e L'(E) be integ-
rated by Lebesgue where A >1;E = {x || < oo} ,and o(x)e L' (E) is the function that

satisfies the conditions

60



ISSN 1816-1545 ®izuko-maTemaTUyHe MoAeNiOBaHHA Ta iHcdopmauiiHi TexHonorii
2015, Bun. 22, 60-66

|0)(x)|(1+|x|)k£M<oo, Toa(x)dle. (1)

—00

Then, at each point of the continuity of the function f(x) the equality is true
S ()= lim j f(O)— 03[ )dz 2)

where {G} is positive numerical set with the point of condensation 6=0.

Let us consider trigonometric series of periodical function f(x)e L'[-m;n],

f(x)~a70+2an cosnx+b, sinnx, 3)

n=1
17 17 .
where a, =— I f(x)cosnxdx; b, =—If(x)s1nnxdx.
T iy

Applying the averaging operator to the function f(x) and developing it into the
series with the fixed value ¢ =0, we’ll get the series

fo(x)= _]; f(t)ém(%)dt _ %°+ 3" 0, (0)(a, cosnx+ b, sinnx), )

n=1
where ¢,(c) = I o(x)cos(onx)dx .
If the conditions of statement 1 are true, then at each point of continuity of the
function f(x) marginal equation (2) is true, which with (4) takes the form

f(x)= hm {— + Z(pn (0)(a, cos(nx)+b, sm(nx))} ®)
—+0 n=1
2. The equality (5) defines a generalized sum, and the sequence {(pn (G)} with
o6 — +0 is the series summation method (3).
Traditionally for theoretical and practical studies of convergence of series they

use methods of power factors { ¢, = p”v } ,v>0,p—>1-0. Prominent place in mathe-

matical analysis is occupied by Poisson-Abel method {(pn (0)= p”} with the kernel of

: 1
averaging operator o(x)=———/,

where p=¢°, p—>1-0, and the method of
Tl+x

Gauss-Weierstrass {(pn (G)=p”2} with the kernel w(x)= exp( /4), where

2f
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p:e“’2 , p—>1-0. Nuclear features of these methods are infinitely differentiated

functions which satisfy the conditions (1).
The similar limit equality to (5) for the derivative of the function is true.

3. If the periodical function f(x)e L'[-m;7] has the derivative of k order in the
point x, then the next equality is true

f(k)(x)_phtlno{%+2p n {a cos(nx+k?)+b sm(nx+k7nﬂ}.

n=1

Note that averaging operators have a clear expressions only in these two cases.

2. Sequences of generalized partial sums of series

By entering generalized partial sum of the series (4), the limit equality (5) can be
written as double limit equality

p—>1-0 N>wo

f(x)= lim lim {— + Zp a cosnx +b, sin nx)} . (6)

Then, f(x) is generalized sum of the series (3) in the point x, if for any arbitrarily

small number &> 0 there exists number N and there exists number p,, lim py =1,
N—

such that for all n> N andp=p, the following inequality is true

f(x)—{ayo+zn:p/]‘vv (ay cos(kx)+b; sin(kx))} <g. (7)
=

So, approximate numerical value of the generalized sum (6) is the value of
variants of the corresponding sequence (dependent on two parameters) at sufficiently

large value of number N and very close to one parameter p = p(N ) . In this regard,
there appears the challenge of choosing the numerical values of the parameters of the

variant which provide the least error of the corresponding approximate value of the
series sum. No less important is the problem of the choice of indicator v >1, defining

the general factors of power summation method { ¢, = p”v } . The choice of the values

of these parameters depends on the order of ascending of coefficients of the series (3)
and the points in which the generalized sum of series is determined.

According to Abel [2] we will transform the series in the formula (4) under the
condition 0 <p <1 and taking into consideration of the formulas

s1n[ n+1 /2]

$n (0= kz(:)cos sin (x/2) "
s1n[ n+1 x/2]
S (X) kZOSIH WSIH > .
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We will get

S () =a?0+ Zp” a cosx+b, smx = ——+ Zp a L COSX+b, sinx)=

—- a3 ap” —ap™ |t ()4 [Bp" b [si0) . ®
n=0

Let us explore the convergence of the series (8) if for large values of the indices
of summing its coefficients have the estimates

a, = O(nmr”), b, = O(nmr”) , )
where r>1; m>0.
The estimates a, =O(n’”), b, =O(n’”) have the coefficients of the series

which are derivatives of any orders from trigonometric Fourier series, the estimates (9)
correspond to derivatives of the power series.
Let us estimate residual of series (8), considering its two parts

00

A;\/: z|:nmrnpn _(n+1)m n+l1 (n+1) }S,j(x),

n=N
AS, = [nmr"p" IO }S,f(x). (10)
n=N
The sequence {(pn (p,r,m)zn’”r”p”v} is not monotonically decreasing.
n=0

Number of the largest member of the sequence is determined by the necessary
condition of extremum of the function that sets the general member of this sequence

nlnr+vn'Inp+m=0. (11)

Let us write the numbers of the largest members of the sequence separately for
cases r=1and m=0

1 —1/v 1 -1/(v-1
NOZNm(p) (ln v/m J , NO ZN’,(p)Z (lan

Remark 1. In the case of estimates of series coefficients a, =O(n’”), b, =O(n’”)
sequence {(pn (p,l,m)} , starting from the number N, =N, (p), monotonically

decreases and tends to zero for all v>0, in the case of estimates a, =O(r”),

b,=0 (r” ) , starting from the number N, = N, (p) , monotonically decreases and tends

to zero only for v>1.
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From the equality (11) we will find inverse relationship of the parameter p from
the number of the biggest variant of the sequence N,

Nylnr+m 1 m

p(N0)=e v Ny _r ngfle VN(;" (12)

The parameters N and p or according to (12) N and Ny, N > N,, are chosen in the
expression (10) independently. By entering variable coefficient o — oo using formula

N =a N, and (20), we will find the estimate for the remains

‘AIN‘ _ i |:nmrnpnv _(n N l)m rn+1p(n+1)v :lS[ (x) <
n=N
< i [nmr”p'zv —(n+1)" r””p(”H)V }|S[ (x)| <
n=N

<A x) z |:nmrnpnV _(n +1)m rn+1p(n+1)v :|S[ — A(X)NmerNV _
n=N
oa'N, ma’ ma’ Ny

= A(x)(aN,y)" rNop v e v = A(x)Né"ame_Tr v (o7-vo)

(13)
Remark 2. 1f for the coefficients of the series (3) the estimates a, =O(n’”),

b, = O(n’”) are true, then remainder (13) tends to zero when o — oo . If the estimates

(9) are true, then remainder (13) tends to zero when o — oo under the condition

o' —va>0 or v>1.

Based on the estimate of the remainder (13) we have necessary condition for
existing of generalized sum of the series.

Theorem. Let generalized sum of series exist (3), ie the limit equality (5) be true.
Then implementation of the inequality (7) is provided by the choice of values N,

N >aN,, at the same time, if for the coefficients of series (3) the estimates are true

a, = O(n’”) , b, = O(n’” ) , then we put v>0, a>1 and parameter p is calculated by

the formula (12) when » =1; if the estimates (9) are true, then we put v>1, a>v"'"

and parameter p is calculated by the formula (12).

Remark 3. The maximum value of sequence variants {(pn (p,r,m)} significantly

0
n=0
increases with parameter p approaching one. Therefore we can not reach sufficient
precision of calculations of generalized sum with parameter p approaching one.

Example 1. Let us consider trigonometric Fourier series of the function f'(x)=x/2,
(_1)n+l

n

sin(nx) , |x| <T.

=3
n=1
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The derivative of this function of k-th (k >2) order is equal to zero. We will

find approximate value of generalized sum of derivative of the sixth order from the
considered series

SO~ £ )= i(—l)”“ 0" n® sin(nx) .

n=1

If p=0,999, N =200, then /®(0,5)~1-107"°, 7 ©®3)=1-1071°.
Example 2. Trigonometric series of the function

rsinQ

= ir” sin(no) ,

n=1

1
r,0)=Im =
J(r.9) -z 1+r2—2rcoscp

where z = re™® | converges (in the classic sense of the sum) in the circle » <1, 0< ¢ <2n
and diverges in the point (r=1,1; ¢=m/4). The function f(r,¢)=Im[l/(1-2)] in
this point takes the value f(1,1;7/4)=1,188. We will find approximate value of the

generalized sum of series in this point using formula f(r,0)~ f, y(r,0)=

N 2
=D r"p" sin(ng). Ifp=0,9999 and N =1500, then f; \ (11;7/4)=1,189.
n=l1

Conclusions. Since the coefficients of the divergent (in the classic sense) series incre-
ase with increasing values of their serial numbers, it is important to find effective
methods of finding the generalized sum of this series. Adding smaller units of multip-
liers to the expression of coefficients (by which methods of power factors are realized)
and implementating sufficient conditions for the existence of the generalized sums of
series provide construction algorithm for finding numerical value of this sum. Given
examples confirm the possibility of calculating the generalized sum with the precision
large enough. However, all numerical algorithms are not stable enough since the
computation of generalized sum of series is accompanied with performing arithmetic
operations with big numbers (coefficients values).
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MiacymoByBaHHA TPUrOHOMETPUYHUX PAAIB
MeToAaMM CTeNeHEeBUX MHOXHUKIB

["anuHa IBacuk

Jlocniooceno niocymosyeants po30idCHUX MPULOHOMEMPUYHUX D08 MEMOOAMU CMENeHesuUx
muoxcnuxis. Ilokazano, wo memooom Ilyaccona-Abens mosicna niocymosamu minbku paou, nopsi-
00K 3DOCMAHHSL YJIeHI8 AKUX NPONOPYIUHULL CMENeHesill 3aNelCHOCHI 810 HoMepa NIOCYMOBYBAHHSI.
Memoo Beiicpwumpacca-I'aycca ma inwi memoou cmeneHesux MHOJICHUKIE MOJICHA 3ACMOCY8amu
Maxooc 00 psodie, WieHu AKUX 3p0CMaroms NPONOPYIIHO NOKAZHUKOGIU 3AIedHCHOCHE 810 HoMepa
NiOCYMOBYBAHHSL.

CYMMVIpOBaHVIe TPUTOHOMETPU4YEeCKUX psaaoB
MeToAaMU CTeNeHHbIX MHOXUTeneun

["anunHa MBacblk

Hccnedosano cymmuposanue pacxooauyuxcst mpueoHoMempuiecKux psoos Memooamu CmeneHHoix
muodxcumenei. Iloxkasano, umo memooom Ilyaccona-Abenss moeym 6bimb NpoCyMMUpOSaHbvl
MONLKO POk, NOPAOOK 803PACMANUS YIEHO8 KOMOPbIX NPONOPYUOHATbHYIL CIMENeHHOU 3a8UCU-
Mocmu om Homepa cymmuposanus. Memoo Betiepwmpacca-Iaycca u opyeue memoouvt cmenen-
HbIX MHOJICUMeENell MO2ym UCHONb308AMbCA MAKdCce 05l PSO08, 4leHbl KOMOPLIX 803DACMAlOm
NPONOPYUOHATLHO NOKA3AMENbHOU 3A8UCUMOCIIU O HOMEPA CYMMUPYEMOCU.

Ipencrasiaeno npodecopom M. CyxopoabCbKUM
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