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A micromechanical model is developed to determine effective inelastic properties of nanocom-
posite under monoharmonic deformation by taking into account detailed micro-structural 
geometries and constitutive models of the constituents. By using the Correspondence Principle in 
Viscoelasticity and the modified Mori-Tanaka method, the effects of interface between inclusion 
and matrix is taken into account. By applying the presently developed model, a numerical analysis 
for determination of complex moduli for polymeric nanocomposite reinforced by nanofibers 
composed from carbon nanotubes (CNTs) is conducted at the isothermal conditions. Analysis of 
the complex moduli dependence on frequency and amplitude of strain intensity is performed. 
Composites reinforced with both unidirectionally aligned and randomly oriented nanofibers are 
considered. Results demonstrate a weak dependence of loss moduli on the frequency of the loading 
within the wide range of it. 

Keywords: complex moduli of material, storage modulus, loss modulus, mono-
harmonic loading, nanocomposite, nanofiber. 

 
Introduction. Cyclic loading is one of the most important and widely used types of 
loading imposed on structural elements. Materials of structures and their members 
experiencing cyclic deformation can exhibit specific time dependent properties and can 
be deformed inelastically being exposed to high stress levels. At the present, there are 
two approaches to address and characterization this behavior. In the frame of the first 
approach, the complex set of constitutive equations governing response of numerous 
internal parameters is introduced while within the second approach, the approximate 
amplitude relations are used to characterize the cyclic response of the material, i.e. the 
relations between amplitudes of the main mechanical field parameters over the cycle 
[1-3]. The key point of the amplitude theories is concept of complex moduli [2]. For an 
inelastic (particularly viscoelastic) material, the modulus governing the relation 
between strain and stress amplitudes is represented by a complex quantity with real and 
imaginary parts referred to as storage and loss modulus respectively. 

Under relatively high stress levels, polymeric composites exhibit time-dependent 
and inelastic deformations. The time-dependent and inelastic deformations become 
more pronounced at elevated temperatures and environmental conditions. As 
mentioned above, depending on the applications, composites are often subjected to 
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harmonic loading. To accurately predict an overall performance and lifetime of poly-
mer composites, it is necessary to model time dependent and inelastic responses of the 
constituents (inclusions and polymer) and to incorporate microstructural characteristics 
of the composites, such as size, shape, and compositions of the constituents. While 
micromechanical formulations that include detailed micro-structural characteristics can 
give good response characteristics, it is often difficult to obtain exact closed form solu-
tions especially when material nonlinearity is also considered. Limited experimental 
studies have been done on understanding the inelastic behavior of particulate rein-
forced polymer composites under cyclic loading.  

In present investigation, the analytical modeling approach based on micro-
mechanical modeling concept which allows incorporating various micro-structural 
geometries and properties of the constituents to evaluate the effective inelastic 
responses of composites is employed. This micromechanical model is formulated in 
terms of exact stress-strain fields of the micro-structural geometries. However, it is 
often difficult to obtain the exact closed form solutions especially when material 
nonlinearity or inelastic behavior is also considered. Some of the micromechanical 
models have been extended to predict inelastic or viscoplastic behaviors of polymer 
based composites [4-9]. Weng [10] used the self-consistent method for analyzing 
effective creep behavior of composites. It was assumed that inclusion and matrix 
exhibit elastic and linear viscoelastic behavior, respectively. Levesque et al. [11] 
proposed a linearized homogenization scheme for predicting nonlinear viscoelastic 
responses of particulate reinforced composites. In this scheme, the homogenized 
micromechanical model of the Mori and Tanaka [12] was used. The particle was 
modeled as linear elastic, while the Schapery nonlinear viscoelastic model [13] was 
applied for the matrix phase. Li and Gao [14] investigated viscoelastic responses of 
carbon nanotube (CNT) particles embedded in polyamide. The viscoelastic response of 
nanocomposite was obtained via the Mori-Tanaka model while the matrix and 
inclusion was considered viscoelastic and elastic materials, respectively.  

Weng and co-worker [15] have presented a homogenization scheme, and applied 
it to uncover the interface effect on its time-dependent behavior, and storage and loss 
moduli at various CNTs loadings. They used the Burgers four parameter model for the 
description time dependent behavior of polypropylene according to the Maxwell and 
Voigt spring and dashpot models. It is important to notice that, some polymers used as 
constituents in composite systems exhibit combined viscoelastic-viscoplastic 
responses, e.g. high density polyethylene and polycarbonate and Epoxy resins. These 
combined responses can occur at early loading (small stress/strain levels). Aboudi [16] 
has developed a micromechanical model to predict the viscoelastic-viscoplastic 
responses of multiphase materials. The viscoelastic-viscoplastic model for polymer 
developed by Frank and Brockman [17] is implemented in the multiphase composites. 

This paper is devoted to the modeling and characterization of cyclic response of 
PR-520 (Epoxy resin) reinforced by nanofiber composed of CNTs subjected to 
monoharmonic kinematic loading. To predict the inelastic behavior of the polymeric 
matrix, the Goldberg constitutive model is used. To simulate the response in terms of 
amplitudes at different frequencies, the relations between the amplitudes of main field 
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variables are established with making use of complex moduli concept (the approximate 
amplitude relations). We have developed a micromechanical model to predict the 
inelastic responses of multiphase nanocomposites by taking to account effects of the 
interface condition by using Qu model [18]. 

1. Procedure of complex moduli derivation 

In this investigation, the approximate model of inelastic behavior developed in [1, 2] 
for the case of proportional harmonic loading has been used. In this case, the cyclic 
properties of the polymer are described in terms of complex moduli. It is important to 
notice that the inelastic deformation is considered to be incompressible and thermal 
expansion is dilatational, it may be more convenient in some applications to separate 
the isotropic stress-strain relations into deviatoric and dilatational components that can 
be shown by equations as  

    = 2 , = 3in
ij ij ij kk V kks G e K       , 

where G  is the shear modulus, VK  is the bulk modulus, i , j , =1,2,3k  and repeated 
index implies a summation over. Due to incompressibility of plastic deformation, 

= 0in
kk , i.e. the plastic strain rate is deviatoric: =in in

ij ije  . According to this model, if a 
body as a system subjected to harmonic deformation or loading, then its response is 
also close to harmonic law  

 ( ) cos sin , ( ) cos sinij ij ij ij ij ije t e t e t s t s t s t           . 

The complex amplitudes of the deviator of total strain, ije , inelastic strain, in
ije , 

and the stress deviator, ijs , are related in the N th cycle by the complex shear modulus, 

NG , and plasticity factor, N , as shown below  

 2 in
ij ij ij ijs = G e , e = e ,      

here ij ij ije e ie   , ij ij ijs = s is  , in in in
ij ij ije = e ie  , N NG = G iG  , N N= i      and 

N  is the cycle number, N = 1, 2, 3, …; ( )  and ( )  denote the real and imaginary 
parts of complex quantities. 

The shear modulus and plasticity factor are functions of the intensity of the 
strain-range tensor, frequency and temperature  

 0 0= ( , , ), = ( , , ),N N N NG G e e          (1) 

where the square of the intensity of strain-range tensor is calculated as 
2
0 ij ij ij ije = e e e e    . 

The imaginary parts of the complex moduli are determined from the condition of 
equality of the energies dissipated over a period and are calculated according to the formula  
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 2 ( 1)00

1 2= , = , ( ) = ( ) , =
TNN N

N N N T N

D GG dt T
G Te 

     
  , (2) 

where D  is the rate of dissipation of mechanical energy, G0 is the elastic shear 
modulus. The real parts are found with making use of the condition that generalized 
cyclic diagrams  0= ,aN aNs s e   and  0= ,paN paNe e e  , which relate the ranges of 
the stress and plastic-strain intensities in the N th cycle, coincide in the frame of the 
complete and approximate approaches  

      
1/22

0 2
0 02

0

,
, = ,

4
aN

N N
s e

G e G e
e

 
    

  
, 

      
1/22

0 2
0 02

0

,
, = ,

4
paN

N N
e e

e e
e

 
      

  

. (3) 

where NG  and N  are the sought-for real part of shear modulus and plasticity factor. 
In spite of the fact that the single-frequency approximation based on harmonic 

linearization has a good agreement with precise model of nonlinear behavior, it's 
necessary to analyze its practical accuracy for specific classes of problems. 

As mentioned in the beginning of this section, the second approach is based on 
the concept of complex moduli, which are determined by standard and modified 
techniques of equivalent linearization. It is important to notice that, the imaginary parts 
of complex moduli are defined by the exact expression for rate of dissipation averaged 
over the period of cyclic loading while to improve the accuracy of real parts of 
complex moduli the modified approach is proposed as shown in equation (3). Accor-
ding to equation (1), the complex moduli for isothermal loading case depend on the 
frequency and amplitude of kinematic loading only. The purpose of this investigation 
is to study the influence of these parameters on complex moduli of polymeric 
nanocomposites. 

2. Description of mechanical behavior of matrix, nanofiber and interface 

Inclusions are very stiff and their mechanical response can be assumed as predomi-
nantly elastic. Nonlinear or inelastic isothermal behavior of polymer matrix will be 
represented by Goldberg model [19] under kinematic harmonic loading at the wide 
range of amplitudes. The condition of load transfer in interface of inclusion and matrix 
will be modeled by a displacement jump that was proposed by Qu [18]. Though the 
interface has negligibly small volume concentration, the effects of interface can signifi-
cantly lower the overall stiffness and properties of the nanocomposite at the high 
volume fraction of inclusions [20]. 

3. Mechanical response of nanofiber 

According to reported effective elastic properties for nanofiber composed of unidirec-
tionally oriented carbon nanotubes, it is considered as transversely isotropic. 
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Consequently, the stress-strain relations are determined by five independent elastic 
constants. By using the Hill's notation, symmetric fourth-order stiffness tensor for 
inclusion can be represented by the equation [21]:  

  P P= 2 , , , 2 ,2 ,p p p p pk l n m pL L  

where PL  is the elastic stiffness tensor and pn , pk , pl , pm  and pp  are the Hill's elastic 
moduli for particle, which they indicate the uniaxial tension modulus, the plane-strain 
bulk modulus, the associated cross modulus, the transverse shear modulus and the axial 
shear modulus, respectively. It can be presented in terms of the common engineering 
constants as  P P

23 12 11 23 12= 2 , , ,2 ,2 ,K C C G GL L  when the CNTs are aligned in direc-
tion 1x . Considering this notation, the all moduli and major Poisson's ratio, 12 , are 
given by:  

 2
11 12 23= , = 2 , =p p p p p pE n l k l k K k  , 

 
 2

22 12 232

4
= , = , =

p p p p
p p

p p p p p

m k m l
E G p G m

k n l m n



 
. 

The relation between Hill's constants and components of elastic stiffness tensor, 
P
ijklL , can be rearranged as follows:  

    22 23 22 23
12 11 66= , = , = , = , = .

2 2p p p p p
C C C C

k l C n C m p C
 

 

Consequently, if the nanofiber is considered to be isotropic, the stress-strain 
relations are governed by two independent elastic constants and isotropic stiffness 
tensor can also be represented using the Hill's notation and the aforementioned 
quantities are defined as:  

 = / 3, = 2 / 3, = 4 / 3, = = ,p p p pk K G l K G n K G m p G    

where K  and G  are bulk and shear modulus, respectively. 

3.1. Effects of the interface 

In the model developed by Qu [18], the interface can be introduced by using a layer of 
negligible thickness in which traction remains continuous and displacement becomes 
discontinuous. The equations that model the interfacial traction continuity and the 
displacement jump were introduced in [18]. The second order compliance tensor of the 
spring layer, ij , was proposed by Qu in the same paper. According to it, if the tensor ij  
tends to zero (infinite stiffness) then the displacement jump is zero and continuity in 
displacements are recovered. This tensor is chosen to be symmetric and positive defi-
nite and components of second order compliance tensor can be expressed in the form [20] 
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  = ,ij ij i jn n      (4) 

where ij  is the Kronecker delta and in represents the unit outward normal vector. It is 
important to address the physical meaning of the parameters   and  . They are the 
quantities that represent the compliance in the tangential and normal directions 
respectively as shown in Fig.1. These terms are usually defined through the analysis of 
a scheme where a horizontal surface divides the matrix and the inclusion material [18] 
(see Fig. 1).  

3.2. Constitutive equations of the polymer matrix 

To accurately predict an overall performance and lifetime of polymer, it is necessary to 
model time dependent and inelastic responses. Viscoelastic materials such as polymer 
materials have the particularity of possessing viscous, elastic and, under some con-
ditions, plastic behavior. Constitutive material models of viscoelastic solids have been 
proposed for isotropic materials undergoing small deformation gradients whereas the 
inelastic strain can be calculated as the difference of the total strain and elastic strain. 

Goldberg et al. [19-22] proposed a model for predicting the viscoplastic 
response of neat polymers, utilizing a set of state variables as an indication of the 
resistance of polymeric chains against flow. It should also be mentioned that polymer's 
mechanical properties and loading/strain rate are the two main parameters that govern 
the nonlinear response of the polymer. 

According to this model, the inelastic strain components can be expressed in 
terms of the deviatoric stress components as follows  

 
2

0
2

1= 2 exp ,
2 2

n
ijin

ij ij
e

sZD
J

   
             
  (5) 

where, in
ijε  is the inelastic strain rate tensor which can be defined as a function of 

deviatoric stress and Z  and   are the state variables; 2J  is the second invariant of the 
deviatoric stress tensor that can be expressed as a function of ij ; the variable   is a 
state variable which controls the level of the hydrostatic stress effects; 0D  and n  are 
material constants; 0D  represents the maximum inelastic strain rate and n  controls 

Fig. 1. Scheme for matrix and inclusion location 
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the rate dependency of the material. The effective stress, e , also be defined as a func-
tion of the mean stress, such that the summation of the normal stress components kk  
is three times of the mean stress. The evolution of the internal stress state variable Z  
and the hydrostatic stress state variable   are defined by the equations  

 1= ( ) ,in
eZ q Z Z e      1= ( ) ,in

eq e     (6) 

where q  is a material constant representing the “hardening” rate, and 1Z  and 1  are 
material constants representing the maximum values of Z  and  , respectively. The 
initial values of Z  and   are defined by the material constants 0Z  and 0 . The term 

in
ee  in equations (6) represents the effective deviatoric inelastic strain rate. 

4. The viscoelastic response of nanocomposite and  
modified Mori-Tanaka (MT) approach 

By employing the Correspondence Principle in Viscoelasticity the constitutive 
relations for the behavior of the viscoelastic material can be represented by:  

            ˆ ˆˆ ˆ ˆ ˆ= , = ,s s s s s sσ L ε ε M σ  

where  ˆ sL  and  ˆ sM  are the stress relaxation stiffness and creep compliance tensors 
in transformed domain, respectively. Every symbol with hat indicates the transformed 
function in the transformed domain, and s  is the transform variable.  

In fact, according to the Correspondence Principle in Viscoelasticity, if a 
Laplace transformable, analytical solution exists for a problem in linear elasticity, the 
solution for the corresponding problem in linear viscoelasticity in the transformed 
domain can be directly obtained from the former by replacing L  or M  with its 
viscoelastic counterpart L̂  or M̂ . 

As mentioned in section 3, by using the approximate amplitude relations, the 
complex shear moduli are derived at different frequency for various strain amplitudes. 
Also, due to incompressibility of plastic deformation, the bulk modulus of polymer is 
considered to be constant and real. Then the stress relaxation stiffness tensor of 
polymer matrix, ML̂ , is determined as function of frequency and amplitude. 

After introducing the effect of interface into the equivalent inclusion method, a 
modified expression for the Eshelby's tensor is found for the case of ellipsoidal 
inclusions with slightly weakened interfaces. The new expression is written as:  

    M Mˆ ˆ ˆ ˆˆ= ,  S S I S HL I S  (7) 

where Ŝ  is the original Eshelby's tensor in transformed domain that components of it 
are given in [26]. I  and ML̂  are the fourth order identity tensor and the matrix 
relaxation stiffness tensor of matrix, respectively. The second term in the right hand 
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side of equation (7) is present to introduce the interface effects. The components of 
tensor H  are presented as:  

  = ,ijkl ijkl ijklH P Q      (8) 

expressions for components of tensor P  and Q  are given in [15]. 
Once the modified Eshelby's tensor based on equation (7) has been included into the 

analysis, the modified MT estimate is introduced. The expression for the modified MT 
estimation for a two phase aligned composite is obtained in transformed domain as:  

    1C M P P
0 1 0 1 1

ˆ ˆ= dil dil dilc c c c c


  L L L A I A HL A , (9) 

where 0c  and 1c  are volume fraction of matrix and inclusion, respectively. Here CL̂  
and PL  are the relaxation stiffness tensor of composite and inclusion, respectively. 
Also the dilatation tensor dilA  is recalculated as:  

   1M M 1 P Mˆ ˆ ˆ= .dil 
   A I S L L L  

According to equations (8) and (9) if the parameters   and   are set to zero, the 
tensor H  vanishes and the new expressions for the relaxation stiffness tensor of com-
posite reduce to the original MT expression. It is worth mentioning that the expression 
for the effective elastic properties in equation (8) depends on the inclusion length in 
contrast to the original MT which is aspect ratio dependent. 

When the randomly oriented inclusions are embedded to the matrix, determi-
nation of the effective viscoelastic properties can be obtained following the same 
procedure in transformed domain. Using the result obtained above for the total average 
strain, the MT expression with considered interface effects for the case of randomly 
oriented inclusions is:  

         1C M P P
0 1 0 1 1

ˆ ˆ= ,dil dil dilc c c c c


  L L L A I A A HL  

where the brackets {∙} designate the average over all passible orientations. In 
particular, for a transversely isotropic composite containing unidirectionally aligned 
identical inclusions along the 1x  direction of a Cartesian coordinate system 1 2 3Ox x x , 
five independent parameters in the Laplace-transformed domain based on Hill’s 
notation can be derived [14]. Also, when transversely isotropic inclusions are randomly 
oriented in a composite, only two properties are required to define the tensor 
completely. The bulk modulus and shear modulus of the composite in the transformed 
domain, K̂  and Ĝ  can be obtained from their corresponding elastic counterparts, 
respectively [21]. 

Once these two quantities are obtained, we can form the new isotropic tensor by 
using Hill’s notation in transformed domain.  
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5. Numerical technique and the material properties 

In the present work, for the determination of the nonlinear response of matrix, the 
numerical integration of Goldberg equations was adopted. To solve the implicit 
equation (5), one should utilize an appropriate numerical integration technique. Three 
step scheme of attacking the problem of complex moduli determination was designed. 
At the first step, the elastic-viscoplastic response of the material to harmonic defor-
mation was calculated numerically for different amplitudes of loading strain at various 
frequencies. At the second step, the stabilized cyclic stress-strain and inelastic-strain-
strain diagrams were obtained for the whole set of calculated data. At the final step, the 
complex moduli were calculated by the averaging over the period of vibration of the 
results of direct integration and making use of cyclic diagrams and formulae (2) and 
(3). The system of nonlinear ordinary differential equations that describes the polymer 
response to harmonic loading in the case of pure shear consists of the one-dimensional 
equations of Goldberg model comprising equation (5) and evolutionary equations  

  
2

0 12
1 2

1212

2 1= exp
23 3

n
qD SZ

SS

            
 ,   

  
2

0 12
1 2

1212

2 1= exp
23 3

n
qD SZZ Z Z

SS

          

 ,  
2

12
12 0 2

1212

1= 2 exp
2 23

n
in SZD

SS

          
 . 

The law of strain deviator variation 0= sine e t , as well as Hooke law for shear 

stress  12 12 12= 2 ins G e   , should be added to the system. It is important to notice that 

the known relations between the complex-value moduli, E , G  and  , and real valued 
bulk modulus, VK , exist in the form:  

   3 2= 2 1 , = .
6 2

V

V

K GE G
K G


  



     

According to the Correspondence Principle in Viscoelasticity the relaxation stiff-
ness tensor of matrix, ML̂ , can be derived using two determined independent constants 
E  and  . 

The modified MT method is applied here to obtain the effective viscoelastic 
properties of the nanocomposite. To obtain reasonable values for the parameter  , we 
used the values which was obtained by Namilae and Chandra [24] with molecular 
dynamics. The value for the parameter   is chosen for all cases in this section 0.01  
nm/GPa and   is set to zero to prevent material interpenetration. In this investigation, 
computations for nancomposites reinforced by unidirectionally aligned or randomly 
oriented nanofibers composed of the unidirectionally aligned CNTs are presented. 

The values of material constants for both RP-520 (Epoxy resin) that was used as 
matrix and CNTs used for calculations have been taken from [22-25]. The list of the 



ISSN 1816-1545   Фізико-математичне моделювання та інформаційні технології 
2016, вип. 23, 92-107 

 101 

values is given below: = 3250E  MPa, 6
0 = 10D  s–1, = 0.92n , = 253.6q , 0 =Z  

= 407.5 MPa, 1 = 768.6Z  MPa, 0 = 0.571 , 1 = 0.122 , = 0.4  and for CNTs 
= 10pl  GPa, = 30pk  GPa, = 1pm  GPa, = 450pn  GPa, = 1pp  GPa, length and 

diameter of CNTs were chosen to be 6 and 1.7 nm, respectively. 

6. Numerical results and discussion 
In this section, the results of study for examining the viscoelastic behavior of poly-
meric nanocomposite reinforced with nanofibers under kinematic harmonic loading are 
presented. Controlling parameters include frequency, amplitude of loading, nanofiber 
volume fraction and orientation. Interval of frequency 1 to 100 Hz and volume fraction 
3, 5 and 10 percent are considered, respectively. In this investigation for determination 
of nanofibers orientation effects, a transversely isotropic nanocomposite system 
containing unidirectionally aligned nanofibers and isotropic nanocomposite system 
with randomly oriented nanofibers are considered. According to microstructural 
geometry of CNTs, the nanofiber aspect ratio for both the transversely isotropic 
nanocomposites and the isotropic nanocomposites is chosen to be equal to 3.5. 

It is important to notice that for the transversely isotropic nanocomposites, five 
independent paramerers, i.e., 11Ê , 22Ê , 12Ĝ , 12̂  and 23K̂ , are used to illustrate their 
viscoelastic responses, while the behavior of the isotropic nanocomposites is charac-
terized by two independent parameters, i.e., Ê , ̂ . 

For isotropic nanocomposites containing randomly oriented nanofibers, the 
effects of nanofiber volume fraction, Vf, and amplitude of harmonic loading on the 
complex shear moduli and complex axial moduli at the constant frequency, = 1f  Hz, 
are displayed in Fig. 2, 3. According to these results, both storage and loss moduli 
increase as the volume fraction increases. It is also seen, the strain intensity amplitude, 
which, the nonlinear behavior of nanocomposite starts at (about =ie 2.5%) does not 
change with the increase of the volume fraction of nanofiber because it is related to 
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nonlinear behavior of matrix. It is interesting to notice, that the maxima of the loss 
moduli for various volume fraction occur at the same amplitude of harmonic loading 
(about ei = 6 %).  

The effect of frequency is easily observable. In Fig. 4, 5 the effects of frequency on 
complex shear moduli and axial moduli are shown. According to the presented results in 
complex shear moduli diagram, the storage moduli increase as the frequency increases in 
the inelastic region at the constant volume fraction of the nanofibers, while the loss modulus 
decreases slightly as the frequency increases below the value of strain intensity amplitude 
providing its maximum. The maximum values of the loss modulus increase insignificantly 
and occur later with frequency increasing. The cyclic diagrams at stabilized stage of the 
vibration are shown in Fig. 6. The curves are calculated for cyclic pure shear loading for 
3% nanofibers volume fraction for different frequencies (1, 50, 100 Hz) at 25°C. 
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For the transversely isotropic nanocomposites reinforced with unidirectionally 
aligned nanofibers, the effects of volume fraction, Vf, and amplitude of harmonic 
loading on the complex axial Young's moduli, 11Ê , complex transverse Young's 
moduli, 22Ê , Poisson ratio, 12̂ , and complex axial shear moduli, 12Ĝ , at the constant 
frequency ( f = 1 Hz) are displayed in Fig. 7-9.  

These figures show that nanofibers volume fraction has little effect on the comp-
lex axial shear moduli, 12Ĝ , and the transverse Young’s moduli, 22Ê , while its influ-
ence on the complex axial Young’s moduli, 11Ê , is profound. In Fig. 9, the effect of 
volume fraction on real and imaginary parts of Poisson ratio, 12̂ , are presented. 

These results indicate that the influence of fV  for both the unidirectionally 
aligned fibers and randomly oriented fibers on the Poisson ratio is small. 
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The cyclic diagrams for neat polymer and nanocomposites with different volume 
fraction at 1 Hz and 25°C are shown in Fig. 8a. The effect of nanofiber volume fraction 
is easily observable. It is worth mentioning that real and imaginary parts of complex Poisson 
ratio exhibit weak dependence on the Vf (see small difference in curves in Fig. 9).  

In Fig. 10 the influence of frequency at the constant volume fraction on the 
complex axial shear modulus, 12Ĝ , and the complex axial Young's modulus, 11Ê , are 
shown. The storage moduli increase with increasing frequency in the inelastic region, 
while the loss moduli decrease slightly as frequency increases in interval of strain 
intensity below the value, which provides the maximum for the modulus. 

The maximum values of the moduli increase insignificantly and occur later with 
increasing frequency. It is worth to mention here, that this behavior is governed by the 
nonlinear response of matrix. This indicates that the stiffness of material increases as 

2 4 6 8 10
-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

e
i
, %

Im
ag

in
ar

y 
pa

rt 
of

 P
oi

ss
on

 ra
tio

 ( 
'' 12

 )

 

 
Neat Epoxy
Vf=3%

Vf=5%

Vf=10%

2 4 6 8 10
0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

e
i
, %

R
ea

l p
ar

t o
f P

oi
ss

on
 ra

tio
 ( 

' 12
 )

 

 

Neat Epoxy
Vf=3%

Vf=5%

Vf=10%

a b 

Fig. 9. Macroscopically transversely isotropic nanocomposite with uniaxially oriented nanofibers at 1 Hz 
a) imaginary parts of Poisson ratio, b) real parts of Poisson ratio 

2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

7000

8000

e
i
, %

E
' 11

, E
'' 11

, M
P

a

 

 
E'11-1Hz

E''11-1Hz

E'11-50Hz

E''11-50Hz

E'11-100Hz

E''11-100Hz

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

e
i
, %

G
' 12

, G
'' 12

, M
P

a

 

 
G'12-1Hz

G''12-1Hz

G'12-50Hz

G''12-50Hz

G'12-100Hz

G''12-100Hz

a b 

Fig. 10. The effects of frequency for the transversely isotropic nanocomposites at Vf =3 %  
a) complex axial Young’s moduli, b) complex axial shear moduli 



ISSN 1816-1545   Фізико-математичне моделювання та інформаційні технології 
2016, вип. 23, 92-107 

 105 

the frequency increases. The cyclic diagrams are shown in Fig. 11. The curves are 
calculated for cyclic pure shear loading for 3 % of volume fraction of the nanofibers at 
different frequencies (1, 50, 100 Hz) under isothermal condition. According to Fig. 7a 
and cyclic diagram for neat polymer, increasing of volume fraction for the transversely 
isotropic nanocomposites has little effect on complex axial shear modulus. 

Conclusions. In the paper, a micromechanics model is developed to determine effec-
tive inelastic properties of nanocomposite under monoharmonic loading by taking into 
account detailed micro-structural geometries and constitutive models of the constitu-
ents. By using the Correspondence Principle in viscoelasticity, the modified Mori-
Tanaka method and effects of interface between inclusion and matrix is extended to the 
transformed domain. By applying the presently developed model, a numerical analysis 
for determination of the complex moduli of polymeric nanocomposite reinforced with 
nanofibers is conducted under the isothermal condition. Characterization of the comp-
lex moduli dependence on frequency and amplitude of strain intensity is performed. 
Composites reinforced with both unidirectionally aligned and randomly oriented nano-
fibers are considered. The volume fraction and orientation of nanofiber are considered 
as the controlling parameters. Results demonstrate the weak dependence of loss moduli 
on the frequency of the loading within the wide interval of it. For nanocomposites 
containing unidirectionally aligned nanofibers, numerical results indicate that the incre-
ase of the nanofibers volume fraction significantly enhances their axial complex 
moduli but has insignificant influences on their transverse, shear and plane strain bulk 
complex moduli. It is found that the random orientation of nanofibers provides more 
effective plane strain bulk complex moduli but less effective axial complex moduli 
than the aligned orientation. In addition, the effect of the nanofiber orientation on the 
shear complex moduli is negligibly small. Furthermore, for nanocomposites with 
uniaxially aligned or randomly oriented nanofibers, both the storage and loss moduli 
are found to increase monotonically with the increase of the nanofiber volume fraction. 

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

e
i
, %

S
i, M

P
a

 

 

1Hz
50Hz
100Hz

Fig. 11. The cyclic diagrams for different frequencies for nanocomposite with uniaxially 
oriented nanofibers (macroscopically transversely isotropic material) at Vf = 3 % 



Yaroslav Zhuk, Mohammad Hashemi 
Frequency and amplitude dependence of complex moduli of composite material reinforced ... 

 106 

References 
[1] Zhuk Y., Senchenkov I. Modelling the stationary vibrations and dissipative heating of thin-walled 

inelastic elements with piezoactive layers // Int. Appl. Mech. — 2004. — Vol. 40, № 5. — P. 546-556. 
[2] Senchenkov I., Zhuk Y., Karnaukhov V. Modeling the thermomechanical behavior of physically nonlinear 

materials under monoharmonic loading // Int. Appl. Mech. — 2004. — Vol. 40, № 9. — P. 943-969. 
[3] Beards C. Structural Vibration: Analysis and Damping. — London: Arnold, 1996. — 276 p. 
[4] Belayachi, N. Benseddiq, N., Aait-Abdelaziz, M. Behaviour of the heterogeneous glassy polymers: 

computational modeling, experimental approach // Composites Sci. Technol. — 2008. — Vol. 68. — 
P. 367-375. 

[5] Eshelby, J. The determination of the elastic field of an ellipsoidal inclusion, and related problem // 
Proc. Roy. Soc., London. — 1957. — Vol. A241. — P. 376-396. 

[6] Hill, R., Al, J. A self consistent mechanics of composite materials // Mech. Phys. Solids. — 1965. — 
Vol. 13. — P. 213-222. 

[7] Hashin, Z, Shtrikman, S. On some variational principles is anisotropic, nonhomogeneous elasticity 
// J. Mech. Phys. Solids. — 1965. — Vol. 10. — P. 335-342. 

[8] McLaughlin, R. A study of the differential scheme for composite materials // Int. J. Eng. Sci. — 
1977. — Vol. 15. — P. 237-244. 

[9] Aboudi, J. Mechanics of Composite Materials: A Unified Micromechanical Approach / — 
Elsevier, 1991. — P.984. 

[10] Weng, G. A self-consistent relation for the time-dependent creep of polycrystals // Int. J. Plasticity. 
— 1993. — Vol. 9. — P. 181-198. 

[11] Numerical inversion of the Laplace-Carson transform applied to homogenization of randomly 
reinforced linear viscoelastic media / M. Levesque, M. Gilchrist,N.  Bouleau, K. Derrien, 
D. Baptiste // Computational Mechanics. — 2007. — Vol. 40. — P. 771-789. 

[12] Mori, T., Tanaka, K. Average stress in matrix, average elastic energy of materials with misfitting 
inclusions // Acta Metall. — 1973. — Vol. 21. — P. 571-574. 

[13] Schapery, R. On the characterization of nonlinear viscoelastic materials // Polymer Eng. Sci. — 
1969 — Vol. 9. — P. 295-310. 

[14] Li, K., Gao, X. Micromechanical Modeling of Viscoelastic Properties of Carbon Nanotube-
Reinforced Polymer Composites // Mechanics of Advanced Materials and Structures. — 2006. — 
Vol. 13. — P. 317-328. 

[15] Pan, Y., Weng, G. Interface effects on the viscoelastic characteristics of carbon nanotube polymer 
matrix composites // Mechanics of Materials. — 2013. — Vol. 58. — P. 1-11. 

[16] Aboudi, J. Micromechanically established constitutive equations for multiphase materials with 
viscoelastic-viscoplastic phases // Mechanics of Time-Dependent Materials. — 2005. — Vol. 9. — 
P. 121-145. 

[17] Frank, G., Brockman, R. A viscoelastic-viscoplastic constitutive model for glassy polymers // Int. 
J. Solids Struct. — 2001. — Vol. 38. — P. 5149-5164. 

[18] Qu, J. The effect of slightly weakened interfaces on the overall elastic properties of composite 
materials // Mech. Mater. — 1993. — Vol. 14. — P. 269-281. 

[19] Goldberg, R. Computational simulation of the high strain rate tensile response of polymer matrix 
composites / — 2002. — NASA/TM-2002-211489. — p.1-16. 

[20] Esteva, M., Spanos, P. D Effective elastic properties of nanotube reinforced composites with 
slightly weakened interfaces // J. Mech. Mater. Struct. — 2009. — Vol. 4. — P. 887-900. 

[21] Hill, R. Theory of mechanical properties of fiber-strengthened materials: I. Elastic behavior // J. 
Mech. Phys. Solids. — 1964. — Vol. 12. — P. 199-212. 

[22] Gilat, A. R.Goldberg, R., Roberts, G. Incorporation of the effects of temperature and unloading 
into the strain rate dependent analysis of  polymer materials utilizing a state variable approach // J. 
Earth and Space. — 2006. — Vol. 4. — P. 1-8. 

[23] Li, F., Pan, J. Plane-Stress Crack-Tip Fields for Pressure-Sensitive Dilatant Materials // J. Eng. 
Frac. Mech. — 1990. — Vol. 35. — P. 1105-1116. 

[24] Namilae, S., Chandra, N. Multiscale model to study the effect of interfaces in carbon nanotube-based 
composites / S. Namilae, // J. Eng. Mater. Technol. ASME. — 2005. — Vol. 127:2. — P. 222-232. 



ISSN 1816-1545   Фізико-математичне моделювання та інформаційні технології 
2016, вип. 23, 92-107 

 107 

[25] The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon 
Nanotube-Reinforced Composites / D.-L. Shi, X.-Q. Feng, Y. Huang, K.-C. Hwang // J. Eng. 
Mater. Technol. — 2004. — Vol. 126. — P. 250-257. 

[26] Qiu, Y., Weng, G. On the application of Mori-Tanaka's theory involving transversely isotropic 
spheroidal inclusions // Int. J. Eng. Sci. — 1990. — Vol. 28. —  P. 1121-1137. 

[27] Barai, P., Weng, G. A theory of plasticity for carbon nanotube reinforced composites // Int. J. of 
Plasticity. — 2011. — Vol. 27. — P. 539-559. 

 
Частотні й амплітудні залежності комплексних модулів 
композитного матеріалу, зміцненого нановолокнами 

Ярослав Жук, Мохамед Хашемі 

Розвинуто мікромеханічну модель для визначення ефективних непружних власти-
востей нанокомпозиту у разі моногармонічного деформування, в якій врахо-
вуються особливості мікроструктурної геометрії та визначальні моделі пове-
дінки складників. За допомогою принципу відповідності для в’язкопружності та 
модифікованого методу Морі-Танака враховано вплив інтерфейсу між включен-
ням і матрицею на ефективні модулі. Із застосуванням розвинутої моделі й 
числової процедури визначено комплексні модулі полімерного нанокомпозиту, 
армованого нановолокнами з вуглецевих нанотрубок, в умовах сталої темпера-
тури. Проведено аналіз залежності комплексних модулів від амплітуди інтенсив-
ності деформації та частоти моногармонічного деформування. Розглянуто 
нанокомпозити, армовані як однонаправленими волокнами, так і волокнами, 
орієнтованими випадковим чином. Отримані результати демонструють слабку 
залежність модуля втрат від частоти в широкому інтервалі її зміни. 

Частотные и амплитудные зависимости комплексных модулей 
композитного материала, упрочненного нановолокнами  

Ярослав Жук, Мохамед Хашеми 

Развита микромеханическая модель для определения эффективных неупругих 
свойств нанокомпозита при моногармоническом деформировании, в которой учи-
тываются особенности микроструктурной геометрии и определяющие модели 
поведения составляющих. При помощи принципа соответствия для вязкоупру-
гости и модифицированного метода Мори-Танака учитывается влияние интер-
фейса между включением и матрицей на эффективные модули. С применением 
развитой модели и численной процедуры определены комплексные модули поли-
мерного нанокомпозита, армированного нановолокнами из углеродных нанотру-
бок, в условиях постоянной температуры. Проведен анализ зависимости комп-
лексных модулей от амплитуды интенсивности деформации и частоты моно-
гармонического деформирования. Рассмотрены нанокомпозиты, армированные 
как однонаправленными волокнами, так и волокнами, ориентированными случай-
ным образом. Полученные результаты демонстрируют слабую зависимость 
модуля потерь от частоты в широком интервале ее изменения. 

                Отримано 27.03.16 


