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A micromechanical model is developed to determine effective inelastic properties of nanocom-
posite under monoharmonic deformation by taking into account detailed micro-structural
geometries and constitutive models of the constituents. By using the Correspondence Principle in
Viscoelasticity and the modified Mori-Tanaka method, the effects of interface between inclusion
and matrix is taken into account. By applying the presently developed model, a numerical analysis
for determination of complex moduli for polymeric nanocomposite reinforced by nanofibers
composed from carbon nanotubes (CNTs) is conducted at the isothermal conditions. Analysis of
the complex moduli dependence on frequency and amplitude of strain intensity is performed.
Composites reinforced with both unidirectionally aligned and randomly oriented nanofibers are
considered. Results demonstrate a weak dependence of loss moduli on the frequency of the loading
within the wide range of it.
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Introduction. Cyclic loading is one of the most important and widely used types of
loading imposed on structural elements. Materials of structures and their members
experiencing cyclic deformation can exhibit specific time dependent properties and can
be deformed inelastically being exposed to high stress levels. At the present, there are
two approaches to address and characterization this behavior. In the frame of the first
approach, the complex set of constitutive equations governing response of numerous
internal parameters is introduced while within the second approach, the approximate
amplitude relations are used to characterize the cyclic response of the material, i.e. the
relations between amplitudes of the main mechanical field parameters over the cycle
[1-3]. The key point of the amplitude theories is concept of complex moduli [2]. For an
inelastic (particularly viscoelastic) material, the modulus governing the relation
between strain and stress amplitudes is represented by a complex quantity with real and
imaginary parts referred to as storage and loss modulus respectively.

Under relatively high stress levels, polymeric composites exhibit time-dependent
and inelastic deformations. The time-dependent and inelastic deformations become
more pronounced at elevated temperatures and environmental conditions. As
mentioned above, depending on the applications, composites are often subjected to
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harmonic loading. To accurately predict an overall performance and lifetime of poly-
mer composites, it is necessary to model time dependent and inelastic responses of the
constituents (inclusions and polymer) and to incorporate microstructural characteristics
of the composites, such as size, shape, and compositions of the constituents. While
micromechanical formulations that include detailed micro-structural characteristics can
give good response characteristics, it is often difficult to obtain exact closed form solu-
tions especially when material nonlinearity is also considered. Limited experimental
studies have been done on understanding the inelastic behavior of particulate rein-
forced polymer composites under cyclic loading.

In present investigation, the analytical modeling approach based on micro-
mechanical modeling concept which allows incorporating various micro-structural
geometries and properties of the constituents to evaluate the effective inelastic
responses of composites is employed. This micromechanical model is formulated in
terms of exact stress-strain fields of the micro-structural geometries. However, it is
often difficult to obtain the exact closed form solutions especially when material
nonlinearity or inelastic behavior is also considered. Some of the micromechanical
models have been extended to predict inelastic or viscoplastic behaviors of polymer
based composites [4-9]. Weng [10] used the self-consistent method for analyzing
effective creep behavior of composites. It was assumed that inclusion and matrix
exhibit elastic and linear viscoelastic behavior, respectively. Levesque et al. [11]
proposed a linearized homogenization scheme for predicting nonlinear viscoelastic
responses of particulate reinforced composites. In this scheme, the homogenized
micromechanical model of the Mori and Tanaka [12] was used. The particle was
modeled as linear elastic, while the Schapery nonlinear viscoelastic model [13] was
applied for the matrix phase. Li and Gao [14] investigated viscoelastic responses of
carbon nanotube (CNT) particles embedded in polyamide. The viscoelastic response of
nanocomposite was obtained via the Mori-Tanaka model while the matrix and
inclusion was considered viscoelastic and elastic materials, respectively.

Weng and co-worker [15] have presented a homogenization scheme, and applied
it to uncover the interface effect on its time-dependent behavior, and storage and loss
moduli at various CNTs loadings. They used the Burgers four parameter model for the
description time dependent behavior of polypropylene according to the Maxwell and
Voigt spring and dashpot models. It is important to notice that, some polymers used as
constituents in composite systems exhibit combined viscoelastic-viscoplastic
responses, €.g. high density polyethylene and polycarbonate and Epoxy resins. These
combined responses can occur at early loading (small stress/strain levels). Aboudi [16]
has developed a micromechanical model to predict the viscoelastic-viscoplastic
responses of multiphase materials. The viscoelastic-viscoplastic model for polymer
developed by Frank and Brockman [17] is implemented in the multiphase composites.

This paper is devoted to the modeling and characterization of cyclic response of
PR-520 (Epoxy resin) reinforced by nanofiber composed of CNTs subjected to
monoharmonic kinematic loading. To predict the inelastic behavior of the polymeric
matrix, the Goldberg constitutive model is used. To simulate the response in terms of
amplitudes at different frequencies, the relations between the amplitudes of main field
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variables are established with making use of complex moduli concept (the approximate
amplitude relations). We have developed a micromechanical model to predict the
inelastic responses of multiphase nanocomposites by taking to account effects of the
interface condition by using Qu model [18].

1. Procedure of complex moduli derivation

In this investigation, the approximate model of inelastic behavior developed in [1, 2]
for the case of proportional harmonic loading has been used. In this case, the cyclic
properties of the polymer are described in terms of complex moduli. It is important to
notice that the inelastic deformation is considered to be incompressible and thermal
expansion is dilatational, it may be more convenient in some applications to separate
the isotropic stress-strain relations into deviatoric and dilatational components that can
be shown by equations as

Si :2G(eij —aZ’), Ok :3Ky(skk —se),

where G is the shear modulus, K, is the bulk modulus, i, j, £ =1,2,3 and repeated
index implies a summation over. Due to incompressibility of plastic deformation,
épr =0, i.e. the plastic strain rate is deviatoric: SZ’ =é l’j” According to this model, if a

body as a system subjected to harmonic deformation or loading, then its response is
also close to harmonic law
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The complex amplitudes of the deviator of total strain, & s inelastic strain, é[j-” ,

and the stress deviator, s, are related in the N ™ cycle by the complex shear modulus,

y’ 9
@N , and plasticity factor, by ~ » as shown below
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here é[j =e;j +ie;j', 3‘[] = Sl;- +iSl;»' , éé-n Iegn +iegm, G= Gy +iGy, 7127\,;\, +iAy and
N is the cycle number, N=1, 2, 3, ...; () and (-)"” denote the real and imaginary
parts of complex quantities.

The shear modulus and plasticity factor are functions of the intensity of the
strain-range tensor, frequency and temperature

GN :GN(807(D76)7 XN :XN(8070‘)’6)’ (1)

where the square of the intensity of strain-range tensor is calculated as
2 1 "o
e =eje; +ejel .
The imaginary parts of the complex moduli are determined from the condition of

equality of the energies dissipated over a period and are calculated according to the formula
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where D' is the rate of dissipation of mechanical energy, G, is the elastic shear
modulus. The real parts are found with making use of the condition that generalized

cyclic diagrams s,y = s,y (€),®) and e,y =e,.y (€.®), which relate the ranges of

the stress and plastic-strain intensities in the N ™ cycle, coincide in the frame of the

complete and approximate approaches
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where G, and Ay are the sought-for real part of shear modulus and plasticity factor.

In spite of the fact that the single-frequency approximation based on harmonic
linearization has a good agreement with precise model of nonlinear behavior, it's
necessary to analyze its practical accuracy for specific classes of problems.

As mentioned in the beginning of this section, the second approach is based on
the concept of complex moduli, which are determined by standard and modified
techniques of equivalent linearization. It is important to notice that, the imaginary parts
of complex moduli are defined by the exact expression for rate of dissipation averaged
over the period of cyclic loading while to improve the accuracy of real parts of
complex moduli the modified approach is proposed as shown in equation (3). Accor-
ding to equation (1), the complex moduli for isothermal loading case depend on the
frequency and amplitude of kinematic loading only. The purpose of this investigation
is to study the influence of these parameters on complex moduli of polymeric
nanocomposites.

2. Description of mechanical behavior of matrix, nanofiber and interface

Inclusions are very stiff and their mechanical response can be assumed as predomi-
nantly elastic. Nonlinear or inelastic isothermal behavior of polymer matrix will be
represented by Goldberg model [19] under kinematic harmonic loading at the wide
range of amplitudes. The condition of load transfer in interface of inclusion and matrix
will be modeled by a displacement jump that was proposed by Qu [18]. Though the
interface has negligibly small volume concentration, the effects of interface can signifi-
cantly lower the overall stiffness and properties of the nanocomposite at the high
volume fraction of inclusions [20].

3. Mechanical response of nanofiber

According to reported effective elastic properties for nanofiber composed of unidirec-
tionally oriented carbon nanotubes, it is considered as transversely isotropic.
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Consequently, the stress-strain relations are determined by five independent elastic
constants. By using the Hill's notation, symmetric fourth-order stiffness tensor for
inclusion can be represented by the equation [21]:

L =1F(2k,.0,,n,,2m,.2p, ).

where L is the elastic stiffness tensor and n - kp 1 b M, and p , are the Hill's elastic
moduli for particle, which they indicate the uniaxial tension modulus, the plane-strain
bulk modulus, the associated cross modulus, the transverse shear modulus and the axial

shear modulus, respectively. It can be presented in terms of the common engineering
constants as L” =L" (2K,;,C},,C}1,2G,3,2G,, ), when the CNTs are aligned in direc-
tion x; . Considering this notation, the all moduli and major Poisson's ratio, v,,, are
given by:

Ey=n,~17[k,, vi,=1,/2k,, Ky=k,,
4m, (kpmp —lp2)

Ezzzk e
pltp —lp tMpn

Gp=p,, Gpu=m,.
P
The relation between Hill's constants and components of elastic stiffness tensor,

Lf;-k, , can be rearranged as follows:

(sz -Cy )
2

k= (Cx +Cy3)

» 5 s 1, =Cp, n,=Cy, m, =

s Pp= Ces-

Consequently, if the nanofiber is considered to be isotropic, the stress-strain
relations are governed by two independent elastic constants and isotropic stiffness
tensor can also be represented using the Hill's notation and the aforementioned
quantities are defined as:

k,=K+G/3, 1,=K-2G/3, n,=K+4G/3, m,=p=QG,
where K and G are bulk and shear modulus, respectively.

3.1. Effects of the interface

In the model developed by Qu [18], the interface can be introduced by using a layer of
negligible thickness in which traction remains continuous and displacement becomes
discontinuous. The equations that model the interfacial traction continuity and the
displacement jump were introduced in [18]. The second order compliance tensor of the
spring layer, n;; , was proposed by Qu in the same paper. According to it, if the tensor n,;

tends to zero (infinite stiffness) then the displacement jump is zero and continuity in
displacements are recovered. This tensor is chosen to be symmetric and positive defi-
nite and components of second order compliance tensor can be expressed in the form [20]
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x

Fig. 1. Scheme for matrix and inclusion location

Ny =18 +(B—v)mn;, (4)

where §;; is the Kronecker delta and »;represents the unit outward normal vector. It is

important to address the physical meaning of the parameters y and . They are the

quantities that represent the compliance in the tangential and normal directions
respectively as shown in Fig.1. These terms are usually defined through the analysis of
a scheme where a horizontal surface divides the matrix and the inclusion material [18]
(see Fig. 1).

3.2. Constitutive equations of the polymer matrix

To accurately predict an overall performance and lifetime of polymer, it is necessary to
model time dependent and inelastic responses. Viscoelastic materials such as polymer
materials have the particularity of possessing viscous, elastic and, under some con-
ditions, plastic behavior. Constitutive material models of viscoelastic solids have been
proposed for isotropic materials undergoing small deformation gradients whereas the
inelastic strain can be calculated as the difference of the total strain and elastic strain.

Goldberg et al. [19-22] proposed a model for predicting the viscoplastic
response of neat polymers, utilizing a set of state variables as an indication of the
resistance of polymeric chains against flow. It should also be mentioned that polymer's
mechanical properties and loading/strain rate are the two main parameters that govern
the nonlinear response of the polymer.

According to this model, the inelastic strain components can be expressed in
terms of the deviatoric stress components as follows

2n
. 1{ Z S
SZ? =2D06Xp[—E(G—JJ (2 lf] +a8[jJ, (5)
e 2

where, e,’j” is the inelastic strain rate tensor which can be defined as a function of

deviatoric stress and Z and o are the state variables; J, is the second invariant of the

;5 the variable a is a

state variable which controls the level of the hydrostatic stress effects; D, and n are

deviatoric stress tensor that can be expressed as a function of &

material constants; D, represents the maximum inelastic strain rate and n controls
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the rate dependency of the material. The effective stress, c,, also be defined as a func-
tion of the mean stress, such that the summation of the normal stress components &,

1s three times of the mean stress. The evolution of the internal stress state variable Z
and the hydrostatic stress state variable o are defined by the equations

Z=q(Z,-2)é!', &=q(a,—a)é, (6)

where ¢ is a material constant representing the “hardening” rate, and Z;, and o, are
material constants representing the maximum values of Z and o, respectively. The
initial values of Z and o are defined by the material constants Z, and o, . The term

e'é” in equations (6) represents the effective deviatoric inelastic strain rate.

4. The viscoelastic response of nanocomposite and
modified Mori-Tanaka (MT) approach

By employing the Correspondence Principle in Viscoelasticity the constitutive
relations for the behavior of the viscoelastic material can be represented by:

A A

6(S) = L(S)é(s), é(s) = M(S)&(s),

where L(s) and M(s) are the stress relaxation stiffness and creep compliance tensors

in transformed domain, respectively. Every symbol with hat indicates the transformed
function in the transformed domain, and s is the transform variable.

In fact, according to the Correspondence Principle in Viscoelasticity, if a
Laplace transformable, analytical solution exists for a problem in linear elasticity, the
solution for the corresponding problem in linear viscoelasticity in the transformed
domain can be directly obtained from the former by replacing L. or M with its

viscoelastic counterpart L or M.

As mentioned in section 3, by using the approximate amplitude relations, the
complex shear moduli are derived at different frequency for various strain amplitudes.
Also, due to incompressibility of plastic deformation, the bulk modulus of polymer is
considered to be constant and real. Then the stress relaxation stiffness tensor of

polymer matrix, LM, is determined as function of frequency and amplitude.

After introducing the effect of interface into the equivalent inclusion method, a
modified expression for the Eshelby's tensor is found for the case of ellipsoidal
inclusions with slightly weakened interfaces. The new expression is written as:

SM=S+(1—S)HLM(I—S), 7)

where S is the original Eshelby's tensor in transformed domain that components of it

are given in [26]. I and IM are the fourth order identity tensor and the matrix
relaxation stiffness tensor of matrix, respectively. The second term in the right hand

98



ISSN 1816-1545 ®izuko-maTemaTUyHe MoAeNiOBaHHA Ta iHcdopmauiiHi TexHonorii
2016, Bun. 23, 92-107

side of equation (7) is present to introduce the interface effects. The components of
tensor H are presented as:

H =Py +(B=v) Oy (8)

expressions for components of tensor P and Q are given in [15].

Once the modified Eshelby's tensor based on equation (7) has been included into the
analysis, the modified MT estimate is introduced. The expression for the modified MT
estimation for a two phase aligned composite is obtained in transformed domain as:

A

~ . . a\—1
L€ = (ol + qLP A ) (col + ¢ A™ + HLA™ ) 9)

where ¢, and ¢; are volume fraction of matrix and inclusion, respectively. Here L°

and L are the relaxation stiffness tensor of composite and inclusion, respectively.
Also the dilatation tensor A" is recalculated as:

Adil = [I L §MfM- (LP _[M )}_1 ‘

According to equations (8) and (9) if the parameters y and [ are set to zero, the

tensor H vanishes and the new expressions for the relaxation stiffness tensor of com-
posite reduce to the original MT expression. It is worth mentioning that the expression
for the effective elastic properties in equation (8) depends on the inclusion length in
contrast to the original MT which is aspect ratio dependent.

When the randomly oriented inclusions are embedded to the matrix, determi-
nation of the effective viscoelastic properties can be obtained following the same
procedure in transformed domain. Using the result obtained above for the total average
strain, the MT expression with considered interface effects for the case of randomly
oriented inclusions is:

€= (coﬂM +¢ {LPAd” }) (COI +¢ {Ad”} +¢ {A“WHLP})_1 ,

where the brackets {-} designate the average over all passible orientations. In
particular, for a transversely isotropic composite containing unidirectionally aligned
identical inclusions along the x; direction of a Cartesian coordinate system Ox;x,x;,

five independent parameters in the Laplace-transformed domain based on Hill’s
notation can be derived [14]. Also, when transversely isotropic inclusions are randomly
oriented in a composite, only two properties are required to define the tensor
completely. The bulk modulus and shear modulus of the composite in the transformed
domain, K and G can be obtained from their corresponding elastic counterparts,
respectively [21].
Once these two quantities are obtained, we can form the new isotropic tensor by

using Hill’s notation in transformed domain.
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5. Numerical technique and the material properties

In the present work, for the determination of the nonlinear response of matrix, the
numerical integration of Goldberg equations was adopted. To solve the implicit
equation (5), one should utilize an appropriate numerical integration technique. Three
step scheme of attacking the problem of complex moduli determination was designed.
At the first step, the elastic-viscoplastic response of the material to harmonic defor-
mation was calculated numerically for different amplitudes of loading strain at various
frequencies. At the second step, the stabilized cyclic stress-strain and inelastic-strain-
strain diagrams were obtained for the whole set of calculated data. At the final step, the
complex moduli were calculated by the averaging over the period of vibration of the
results of direct integration and making use of cyclic diagrams and formulae (2) and
(3). The system of nonlinear ordinary differential equations that describes the polymer
response to harmonic loading in the case of pure shear consists of the one-dimensional
equations of Goldberg model comprising equation (5) and evolutionary equations

. 24D, 122\ s,
o= o, —a)exp| —| — | |—=,
5 (e 2[35@} S,
. 2¢D, 122\ sy . 1 22| s,
Z= Z,—Z)exp| ——| — | |—=, &, =2D,exp| ——| — .
N 2[35@} I A I X W PITN

The law of strain deviator variation e = e, sinwt , as well as Hooke law for shear

stress s, = 2G(e12 - 8’1”2) , should be added to the system. It is important to notice that

the known relations between the complex-value moduli, E, G and v, and real valued
bulk modulus, K, , exist in the form:

_ 3K, -2G
6K, +2G

According to the Correspondence Principle in Viscoelasticity the relaxation stiff-

E=2G(1+7), ¥

ness tensor of matrix, L™, can be derived using two determined independent constants
E and V.

The modified MT method is applied here to obtain the effective viscoelastic
properties of the nanocomposite. To obtain reasonable values for the parameter vy, we
used the values which was obtained by Namilae and Chandra [24] with molecular
dynamics. The value for the parameter y is chosen for all cases in this section 0.01
nm/GPa and [} is set to zero to prevent material interpenetration. In this investigation,
computations for nancomposites reinforced by unidirectionally aligned or randomly
oriented nanofibers composed of the unidirectionally aligned CNTs are presented.

The values of material constants for both RP-520 (Epoxy resin) that was used as
matrix and CNTs used for calculations have been taken from [22-25]. The list of the
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values is given below: E =3250 MPa, D, = 10° s', n=0.92, q=253.6, Z,=
=407.5MPa, Z, =768.6 MPa, a,=0.571, o,=0.122, v=04 and for CNTs
lp =10 GPa, kp =30 GPa, m, =1 GPa, n, =450 GPa, P, =1 GPa, length and

diameter of CNTs were chosen to be 6 and 1.7 nm, respectively.

6. Numerical results and discussion

In this section, the results of study for examining the viscoelastic behavior of poly-
meric nanocomposite reinforced with nanofibers under kinematic harmonic loading are
presented. Controlling parameters include frequency, amplitude of loading, nanofiber
volume fraction and orientation. Interval of frequency 1 to 100 Hz and volume fraction
3, 5 and 10 percent are considered, respectively. In this investigation for determination
of nanofibers orientation effects, a transversely isotropic nanocomposite system
containing unidirectionally aligned nanofibers and isotropic nanocomposite system
with randomly oriented nanofibers are considered. According to microstructural
geometry of CNTs, the nanofiber aspect ratio for both the transversely isotropic
nanocomposites and the isotropic nanocomposites is chosen to be equal to 3.5.

It is important to notice that for the transversely isotropic nanocomposites, five

independent paramerers, i.e., £, E,,, @12 , Vq, and 1323 , are used to illustrate their
viscoelastic responses, while the behavior of the isotropic nanocomposites is charac-
terized by two independent parameters, i.e., E,V.

For isotropic nanocomposites containing randomly oriented nanofibers, the
effects of nanofiber volume fraction, V}, and amplitude of harmonic loading on the
complex shear moduli and complex axial moduli at the constant frequency, f =1 Hz,

are displayed in Fig. 2, 3. According to these results, both storage and loss moduli
increase as the volume fraction increases. It is also seen, the strain intensity amplitude,

which, the nonlinear behavior of nanocomposite starts at (about e; =2.5%) does not
change with the increase of the volume fraction of nanofiber because it is related to
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nonlinear behavior of matrix. It is interesting to notice, that the maxima of the loss
moduli for various volume fraction occur at the same amplitude of harmonic loading
(about ¢; = 6 %).

The effect of frequency is easily observable. In Fig. 4, 5 the effects of frequency on
complex shear moduli and axial moduli are shown. According to the presented results in
complex shear moduli diagram, the storage moduli increase as the frequency increases in
the inelastic region at the constant volume fraction of the nanofibers, while the loss modulus
decreases slightly as the frequency increases below the value of strain intensity amplitude
providing its maximum. The maximum values of the loss modulus increase insignificantly
and occur later with frequency increasing. The cyclic diagrams at stabilized stage of the
vibration are shown in Fig. 6. The curves are calculated for cyclic pure shear loading for
3% nanofibers volume fraction for different frequencies (1, 50, 100 Hz) at 25°C.
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For the transversely isotropic nanocomposites reinforced with unidirectionally
aligned nanofibers, the effects of volume fraction, V; and amplitude of harmonic

A

loading on the complex axial Young's moduli, E;;, complex transverse Young's
moduli, £,,, Poisson ratio, ¥,,, and complex axial shear moduli, G,,, at the constant
frequency (f = 1 Hz) are displayed in Fig. 7-9.

These figures show that nanofibers volume fraction has little effect on the comp-
lex axial shear moduli, @12 , and the transverse Young’s moduli, Ezz , while its influ-

A

ence on the complex axial Young’s moduli, E;,, is profound. In Fig. 9, the effect of
volume fraction on real and imaginary parts of Poisson ratio, V,,, are presented.
These results indicate that the influence of ¥, for both the unidirectionally

aligned fibers and randomly oriented fibers on the Poisson ratio is small.
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Fig. 7. Macroscopically transversely isotropic nanocomposite with uniaxially oriented nanofibers at 1 Hz
a) complex axial Young’s moduli, b) axial shear moduli
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Fig. 8. Macroscopically trahsversely isotropic nanocomposite with uniaxially oriented nanofibers at 1 Hz
a) cyclic diagrams, b) complex transverse Young’s moduli
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Fig. 9. Macroscopically transversely isotropic nanocomposite with uniaxially oriented nanofibers at 1 Hz
a) imaginary parts of Poisson ratio, ) real parts of Poisson ratio

The cyclic diagrams for neat polymer and nanocomposites with different volume
fraction at 1 Hz and 25°C are shown in Fig. 8a. The effect of nanofiber volume fraction
is easily observable. It is worth mentioning that real and imaginary parts of complex Poisson
ratio exhibit weak dependence on the V; (see small difference in curves in Fig. 9).

In Fig. 10 the influence of frequency at the constant volume fraction on the
complex axial shear modulus, @12 , and the complex axial Young's modulus, EH, are
shown. The storage moduli increase with increasing frequency in the inelastic region,
while the loss moduli decrease slightly as frequency increases in interval of strain
intensity below the value, which provides the maximum for the modulus.

The maximum values of the moduli increase insignificantly and occur later with
increasing frequency. It is worth to mention here, that this behavior is governed by the
nonlinear response of matrix. This indicates that the stiffness of material increases as
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Fig. 10. The effects of frequency for the transversely isotropic nanocomposites at V=3 %
a) complex axial Young’s moduli, ) complex axial shear moduli
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Fig. 11. The cyclic diagrams for different frequencies for nanocomposite with uniaxially
oriented nanofibers (macroscopically transversely isotropic material) at V;=3 %

the frequency increases. The cyclic diagrams are shown in Fig. 11. The curves are
calculated for cyclic pure shear loading for 3 % of volume fraction of the nanofibers at
different frequencies (1, 50, 100 Hz) under isothermal condition. According to Fig. 7a
and cyclic diagram for neat polymer, increasing of volume fraction for the transversely
isotropic nanocomposites has little effect on complex axial shear modulus.

Conclusions. In the paper, a micromechanics model is developed to determine effec-
tive inelastic properties of nanocomposite under monoharmonic loading by taking into
account detailed micro-structural geometries and constitutive models of the constitu-
ents. By using the Correspondence Principle in viscoelasticity, the modified Mori-
Tanaka method and effects of interface between inclusion and matrix is extended to the
transformed domain. By applying the presently developed model, a numerical analysis
for determination of the complex moduli of polymeric nanocomposite reinforced with
nanofibers is conducted under the isothermal condition. Characterization of the comp-
lex moduli dependence on frequency and amplitude of strain intensity is performed.
Composites reinforced with both unidirectionally aligned and randomly oriented nano-
fibers are considered. The volume fraction and orientation of nanofiber are considered
as the controlling parameters. Results demonstrate the weak dependence of loss moduli
on the frequency of the loading within the wide interval of it. For nanocomposites
containing unidirectionally aligned nanofibers, numerical results indicate that the incre-
ase of the nanofibers volume fraction significantly enhances their axial complex
moduli but has insignificant influences on their transverse, shear and plane strain bulk
complex moduli. It is found that the random orientation of nanofibers provides more
effective plane strain bulk complex moduli but less effective axial complex moduli
than the aligned orientation. In addition, the effect of the nanofiber orientation on the
shear complex moduli is negligibly small. Furthermore, for nanocomposites with
uniaxially aligned or randomly oriented nanofibers, both the storage and loss moduli
are found to increase monotonically with the increase of the nanofiber volume fraction.
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YacToTHi 1 amMnniTyAHi 3aneXHOCTi KOMNMEKCHMX MmoAayniB
KOMMNO3UTHOro MaTepiany, 3MiLLHEHOro HAaHOBOJTIOKHaMM

Apocnas XKyk, Moxamepn, Xaluemi

Po3zsunymo mikpomexaniuny mooens 0Jisi GUSHAUEHHS eDEKMUBHUX HENPYIHCHUX GACTU-
ocmell HAHOKOMNO3Umy y pasi MOHO2APMOHINHO20 OedopMy6anHs, 6 SKill 6paxo-
BYIOMbCSL 0COOIUBOCMI MIKDOCMPYKIMYPHOL 2eomMempii ma 6UsHA4dIbHI MOOeli noge-
OIHKU CKIAOHUKIB. 3a 00nomo20i0 NPuUHYUNy 6i0N06IOHOCME O 8 SI3KONPYICHOCHI ma
Moougirosanozo memoody Mopi-Tanaxa épaxoeano eniue inmepericy mixc 6KIOUeH-
HAM | Mampuyero Ha egekmusni Mooyai. I3 3acmocy8anusam po3eunymoi mooeni i
YuUCn060l npoyeoypu BUIHAYEHO KOMNIEKCHI MOOYIL NONIMEPHO20 HAHOKOMNO3UMY,
ApMOBAHO20 HAHOBOJIOKHAMU 3 GYeleyeeux HAHOmpYOOK, 8 yMo8ax cmaioi memnepa-
mypu. IIposedeno ananiz 3anexcHocmi KOMAAEKCHUX MOOYIIE 80 AMNIIMYOU IHMEHCUB-
Hocmi Oepopmayii ma uacmomu MOHO2APMOHIUH020 Oeghopmyeanns. Poszenamnymo
HAHOKOMAO3UMU, APMOBAHI 5K OOHOHANPAGICHUMU BOJOKHAMU, MAK | 60JOKHAMU,
OPIEHMOBAHUMU BUNAOKOBUM HUHOM. Ompumani pe3yiemamu 0eMOHCMPYIOMb CAAOKY
3ANeACHICMb MOOYJISL 6MPAm 6i0 4acmomu 6 WUPOKOMY THMepeaJi ii 3MiHuU.

YacToTHble n aMnmnuTygHble 3aBUCUMOCTU KOMMIIEKCHbIX MO.D,Yﬂeﬁ
KOMNO3UTHOINro Mmatepuana, ynpo4yHeHHoro HaHOBOJIOKHaMu

Apocnas XKyk, Moxameq Xawemu

Pazeuma mukpomexanuueckas mooenv 0N Onpedeienus IPHeKmusHbIX Heynpyaux
CBOUICME HAHOKOMNO3UMA NPU MOHO2APMOHUHECKOM 0ehOPMUPOSAHUL, 8 KOMOPOU Vi~
MbIBAIOMCSL OCOOEHHOCMU MUKPOCMPYKMYPHOU 2eOMempuu U onpeoeusiouue Mooeu
nosedenus cocmasnsiowux. Ilpu nomowu npunyuna coomeemcmeusi Oisi 6A3K0YNPY-
2ocmu u mooupuyuposanno2o memooa Mopu-Tanaxa yuumeisaemcs euusHue urmep-
¢hetica medxncoy exmouenuem u mampuyei nHa d¢p@exmusnvie mooynu. C npumenenuem
Pazeumoti MoOenu U 4UCIeHHOU Npoyedypsbl OnpedesieHbl KOMIIAEKCHbIe MOOYIU NOdU-
MEPHO20 HAHOKOMNO3UMA, APMUPOSAHHO20 HAHOBOJOKHAMU U3 YAEPOOHbIX HAHOMP)-
00K, 6 YCI06UAX NOCMOSHHOU memnepamypol. [Iposeden ananus 3a6ucumocmu KOMn-
JIEKCHbIX MOOYIell Om aMuIumyObl UHMEHCUBHOCIU OehopMayuu U 4acmomsl MOHO-
2apMOHUHecKo20 Oedhopmuposanus. Paccmompenvl HAHOKOMRO3UMbL, APMUPOBAHHBIE
KaK 0OHOHANPAGLEHHbIMU BOJIOKHAMU, MAK U BOJIOKHAMU, OPUCHMUPOSAHHLIMU CJIYYAl-
Holm  obpazom. ITlomnyuennvie pes3yrbmamvi OeMOHCHMPUPYIOm CAaAOYI0  3a6UCUMOCHIb
MOOY/I5L HOMEPL OM HACTNOMbL 8 UUPOKOM UHMEPBALE ee USMEHEHUSL.

Orpumano 27.03.16

107



