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АЛГОРИТМИ СЕГМЕНТАЦІЇ БІОМЕДИЧНИХ ЗОБРАЖЕНЬ: 

РОЗРОБКА ТА КІЛЬКІСНА ОЦІНКА 
 

The article presents the comparative analysis of the biomedical image segmentation methods. The work 

discusses segmentation methods on the basis of previous labeling and spatial moments. The experimental results 

show that the developed methods have higher accuracy by signal-noise ratio compared to the nowadays known. 

Moreover the authors have developed the quantitative evaluation of the segmentation algorithms based on the 

metrical approach. 
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У статті представлений порівняльний аналіз методів сегментації біомедичних зображень. У роботі 

досліджуються методи сегментації на основі попередньої розмітки та просторових моментів. 

Експериментальні результати показують, що розроблені методи мають більш високу точність за 

співвідношенням сигнал-шум у порівнянні з відомими. Крім того, автори розробили алгоритм кількісної 

оцінки алгоритмів сегментації на основі метричного підходу. 

Ключові слова: біомедичні зображення, сегментація, розмітка, просторові моменти, оцінка. 
 

Introduction 

Biomedical images are used for diagnostics and treatment. The images of normal and 

abnormal cells and tissues are obtained from light microscopes. Those images are modern 

histology and cytology research objects. The tasks of microscopic image analysis automation 

are solved with the help of automated microscopy systems (AMSs). AMSs consist of 

hardware and software systems for digital processing of the microscopic images [1]. One of 

the most important stages of optical and geometrical parameter automation measurement is 

the selection of microobjects on histological images [2, 3]. The biomedical image analysis 

appears to be difficult because of the high variability of parameters and the weak contrast of 

most microobjects. 

The microobjects of histological images are sections of certain organs’ tissues. The 

tissue consists of rounded cells, which are placed in layers. Cells dimensions range from 

several micrometers with the smallest of them being from 0.5 to 1.2 microns. Microobjects on 

cytological images are the individual cells that are placed randomly. 

The histological image analysis, performed with the help of AMSs, consists of the 

following stages: imagery, manual and automatic selections of the microobjects (cells, nuclei, 

segments of different colour or brightness, etc.), size measurement, shape, position and 

optical parameters of the selected microobjects or their parts, their classification and statistical 

processing of the measurement results. 

Images segmentation leads to the division of images into regions with similar 

characteristics. Some of the main image attributes for segmentation are brightness for 

monochrome images and colour component for colour images. Edges and textures are also 
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used for segmentation. The segmentation process divides only the image and doesn't identify 

individual segments and their relationship [6]. 

Currently there are no universal methods of the segmentation process. They often use a 

set of specialized methods that are the most common for this class of problems. In the work 

[2] are proposed the characteristics for the segments after segmentation. 

Image segmentation method based on previous labeling 

Several approaches to the segmentation algorithm classification are known, namely: Fu 

and Mui [8], Pal and Pal [9], Skarbek and Koshana [10], Lucchese and Mitra [11], Jipkate 

[12]. The approaches are based on the following criteria: the properties of points, regions, 

region edge, a priori knowledge about microobjects, etc. Let’s see the other criteria for the 

algorithms segmentation separation. They are: image type (colour, grayscale, binary), nature 

of the segmentation process (parallel or sequential processing) [13, 14, 15]. However, these 

characteristics are ambiguous. For example, threshold segmentation can occur in parallel or in 

sequential modes and handle both binary and grayscale images. It leads to ambiguity in the 

classification algorithms for segmentation. In our opinion, the further discussed criteria allow 

more complete classification of segmentation algorithms. 

Algorithms based on texture properties. The decision to include a point into the segment 

is taken on the basis of texture features similarity at that point. This type of algorithms is 

recommended to use for images with repetitive regions.  

Task definition. The analysis of the segmentation algorithms and biomedical image 

features shows that segmentation methods development on the basis of the relations between 

points and texture features of regions is a vital task [18]. 

As can be seen from the above review, there is no universal method of segmentation 

and each algorithm has its advantages and disadvantages. The proposed approach uses the 

characteristics of individual image points and the relationship between them. 

We introduce the notation: 

I  – input image; 

iIs – input image marked by i- type labeling; 

ijV  – j  homogeneous region in the input image marked by і type labeling; 

8..1,..1,..1),,,(  zmylxzyxMk  – the array of coefficients for the relationships k  

labeling, l  –  the width of the input image, m  –  the height of the input image, z  –  the 

number of the neighboring pixels. 

The array of total interconnections coefficients sumM  equals  (1):  
 





n

k
ksum MM

1

,       (1) 

 

where n  – the number of previous labeling used in the process of segmentation. 

Definition 1. Labeling is the process of splitting the input image I  into an array of 

homogeneous regions jV  based on the criterion of homogeneity KO. Homogeneity criterion 

is defined previously by the analysis of the input image I     }{ j
KO VI   

Definition 2. If two neighboring points ),( 11 yxI  and ),( 22 yxI  are in homogeneous areas, 

the relationship between them equals 1: )),(()),((,1 2211 yxIPyxIPR  . Here ),( 11 yxI  and 
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),( 22 yxI  is two neighboring pixels; 

)),(( 11 yxIP  – identification of a homogeneous region to which the pixel represents ),( 11 yxI ; 

)),(( 22 yxIP – identification of a homogeneous region to which the pixel represents ),( 22 yxI ; 

R  – the coefficient of the correlation between two pixels. 

Definition 3. If two neighboring points ),( 11 yxI  and ),( 22 yxI  are in different 

homogeneous regions then the correlation between them equals 0: 

)),(()),((,0 2211 yxIPyxIPR  , 

Definition 4. The total coefficient of the relationship between two pixels ),( 11 yxI  and 

),( 22 yxI  is defined as the amount of bonds at n  labeling is (2): 
 

  niRRsum i ..1, ,      (2) 
 

where R  – coefficient of the relationship between two neighboring pixels ),( 11 yxI  and 

),( 22 yxI ; 

This approach analyzes previous labeling of the image and sets anchor points not only 

to a specific area, but also to the neighboring points. Algorithms of the previous labeling can 

be selected depending on the input image. The image of stable relationships will be 

recognized as homogeneous. 

The segmentation algorithm is the following: 

1) We provide previous labeling input image I  via n  labeling; 

2) We form the array of factors relationships kM  between neighboring points for each 

one with n  labeling of the input image; 

3) We form the total array of factors relationships sumM  between neighboring points 

for each one with  n  labeling of the input image; 

4) We provide the group input image points I  in the homogeneous region based on 

the relationships of the total interconnection coefficients sumM . 

The previous labeling can be carried out in three ways. 

Manual. Labeling of the image on the homogeneous region is carried out manually by n 

independent users. This way is time-consuming and subjective because the previous labeling 

is influenced by a human factor. The advantage of this approach is that the number of 

previous labeling can be minimal. 

Automated. The process of the previous labeling uses the known methods of 

segmentation, but a user sets the input parameters. The advantages of this approach are high 

accuracy and speed with increasing objectivity of the previous labeling. 

Automatic. Previous labeling is based on an automatic analysis of the input image, such 

as the histogram analysis of brightness distribution and definition of thresholds for labeling. 

Since this algorithm was developed for the segmentation of colour images during the 

previous auto- labeling images, it offers the transition from a three-dimensional representation 

of colour to a one-dimensional. The representation of images in one-dimensional space allows 

the automatic analysis of colour distribution histograms of the algorithms to determine thresholds. 

Previous labeling can be made in different colour bases. 

We use the following rules for the complete segmentation process to classify the input 

image points in the homogeneous region based on the relationships between the neighboring points: 
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1) if the relationship between two neighboring points ),( 11 yxI  and ),( 22 yxI  is max 

maxsumM  for the input image, then the data points are combined into a homogeneous 

region jV  (Fig. 1,а). 

2) If the point of interconnection ),( 11 yxI  with the neighboring point ),( 22 yxI  is 

bigger than the relationship with the other neighboring points, these points are combined into 

a homogeneous region jV ; 

3) If the point ),( 11 yxI  has the same relationship with two (or more) neighboring points 

),,(),,(),,( 332211 zyxMzyxMzyxM sumsumsum  , which are combined in a homogeneous 

region jj VyxIVyxI  ),(,),( 3322 , then this point is connected to the corresponding 

homogeneous region jVyxI ),( 11  (Fig. 1,b); 

4) If the point ),( 11 yxI  has the same relationship with two (or more) neighboring points 

),,(),,(),,( 332211 zyxMzyxMzyxM sumsumsum  , which do not belong to one homogeneous 

region jiVyxIVyxI ji  ,),(,),( 3322 , the point is connected to the area with more 

neighbors (fig. 1,c). 
 

 
a)                                               b)                                          c) 

Fig. 1  Example of points integration 
 

The result of the algorithm is a set of homogeneous regions. Because microobjects in 

the image usually consist of groups of homogeneous regions, we use the procedure for an 

additional association of homogeneous regions. 

Texture segmentation algorithm 

Texture segmentation algorithm consists of the following steps [15] 

a) calculation of the texture features for each image point within the sliding window 

size WW,  

b) the constructed texture field segmentation.  

We use textural features based on spatial moments of the field and the distribution of 

gray levels matrix. 

The texture image can be quantitatively described by simple statistical characteristics, 

such as mathematical expectation, dispersion and moments of higher order [10]. The term 

spatial moments (SMs) comes from mechanics. When SMs are being applied to the images, it 

reflects the distribution of gray levels in the image along its axis. On their basis we can 

calculate the features of the region that are invariant to rotation, translation and scale [11]. 

Spatial moments of the region in the point with the coordinates ),( yx  and function value of 
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the gray level ),( yxf  are calculated as (3): 

 dxdyyxfyxm qp
qp ),(,      (3) 

 

We consider the image as a function of two variables f(x,y) and calculating the number 

of lower-order moments for each pixel in the image for 2)( qp . The moments are 

calculated within the local window size  WW around each pixel. 

In the discrete version of the SMs, within the window bounders, with the center pixel 

being (i, j), moments are calculated as the sum with normalized coordinates (xm, yn): 
 

 
 


2/

2/

2/

2/
, ),(

W

W

W

W

q
n

p
mqp yxnmfm      (4) 

 

where m,n – the coordinates of the point related to the window. 

In our algorithm we use moment of inertia m1,1. 

In gray levels of the distribution matrix (GLDM) [18] Pd for translating vector d=(dx, 

dy), value pi,j is the number of gray level of pair value occurrences, where i and j are placed at 

a distance d. Thus, for each image point f(x, у) the matrix Pd can be associated, which 

characterizes the distribution of brightness in the window size WW centered at coordinates 

(x, i). The elements of the matrix Pd are defined as the following: 
 





Dnm

dndmnmjid xxfjiP
),(

,,, );(),(      (5) 

 

where D – window with WW dimensions (W - odd), 

i, j = 0,255 – the brightness value of the point, 

nmx ,  – the brightness value of the point with coordinates (m,n). 

The function );( ,,, dndmnmji xxf   is defined as: 

 













 





else

ixandjxor

jxandix

xxf dndmnm

dndmnm

dndmnmji

,0

)(

)(,1

);( ,,

,,

,,,   (6) 

 

The function is an indicator of the fact, that points that are located at a given distance, 

have certain levels of brightness. The parameter d determines the distance at which 

neighboring points are analyzed. On the basis of GLDM the textural features are determined: 

energy, entropy, contrast, homogeneity and correlation. 

Texture features are calculated on the matrix Pd(i, j), that describes the distribution of 

brightness within the region with its center in the point (x, у). After processing the entire 

image for each feature of the matrix, the field of texture features is formed. The matrix 

contains the values of features in all processed points. To describe the features, we use the 

auxiliary values: 
 


j

j jijPm ),( , 
j

j jiPp ),( ,     (7) 
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mathematical expectation 
i

iipMx ;  

The following formulas, that enable to calculate the characteristics, are presented below. 

1. Total mean value: 
 


i

ii pmF1         (8) 

 

2. Inertia: 
 

 
i j

jiPjiF ),()( 2
2      (9) 

 

The proposed algorithm of image texture segmentation consists of the following steps: 

1. Construction of the texture field G, every point of which is Gg  according to (1) 

 

g(i,j) = m1,1 =  
 

2/

2/

2/

2/

),(
W

W

W

W
nm yxnmf     (10) 

 

2. Normalization G, g [0, 255]. 

3. Search for the thresholds t1, t2,..., tn using the following steps: 

a) Setting the interval R=[a, b]; a=0 and b=255. 

b) Calculation the mathematical expectation µ and the standard deviation  of all pixels 

from the interval R. 

c) Calculation of the thresholds t1 і t2 as t1 =  k   and  t2 =  k ; 

d) Calculation of the intervals 11  ta , 12  tb ; 

e) Repeat steps da , n/2 times (n – number of thresholds) setting new limits of the 

interval 11  ta , b  and 1a , 12  tb . 

4. Segmentation of the texture field G and as a result we obtain n+1 binary masks si, 

i={1, ...,n+1}: 
 



 




else

tyxgtif
yxs

ii

i
0

),(1
),(

1
    (11) 

 

where t0 =0, tn+1 = 255. 

5. Segmentation of the input image aiming to obtain n+1 images is


, i={1, ...,n+1} 

 



 


else

yxsifyxf
yxs

i

i
0

1),(),(
),(



    (12) 
 

To test the GLDM (5) as a texture feature we must perform this algorithm constructing 

g(i,j) = F5 in step 1. The parameter k serves to control the spacing between the lowest and 

highest thresholds. 

The optimal number of thresholds n (the number of algorithm iterations respectively) 

may be set a priori based on the application. The number of thresholds can also be chosen on 

the basis of signal/noise ratio changes  . The value of   can be calculated between the 

original and segmented image of the average values of pixels inside the segments. 
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The quantitative evaluation algorithms 

The quantitative evaluation of the segmentation algorithms quality is based on the 

following algorithms [23]. 

The algorithm for determining the discrete Frechet distance. 

 Сonsider the algorithm for determining the discrete Frechet distance, in case of two 

contours (Fig. 2). 

1. Let the contour of each segment C  and R  be presented in the form of the 

polygonal  curves (11). 
 

),...,()( 1 rvvC  , ),...,()( 1 swwR  ,   (11) 
 

where r , s  – the number of linearly approximated segments. 

2. Let’s form a sequence L  between the curves C  and R  
 

)(),...,(),( ,,, 2211 mm bababa wvwvwvL  , 11 a , 11 b , ram  , sbm  . 
 

3. We obtain the Euclidean norm of the sequence ),(max||||
,...1, ji ba

mji
wvdL


 , 

using the following steps. 

3.1. If i=1 and j=1, then the distance is given as the Euclidean distance between the 

points (Formula 12).  
 

2)(
ij ab vwd  ;     (12) 

 

3.2. If i>1 and j=1, then the distance is given by the formula (13).        
 

)}(),(max{
111 ,, baba wvdwvd

ii
    (13) 

 

3.3. If i=1 and j>1, then the distance is: 
 

)}(),(max{ ,, 111 jj baba wvdwvd


     (14) 

 

3.4. If i>1 and j>1, then the distance is given by the formula 15.  

 

 ),,(),,(min(max
111  iiii baba wvdwvd )),(),,(

1 iiii baba wvdwvd


   (15) 

 

 
 

Fig. 2   Determining the discrete Frechet distance 
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The algorithm for determining the Hausdorff distance 

Let’s use the results of the regions contours representation. Let’s present the regions 1O  

and 2O  in the form of the convex polygons ),...,,( 211 mvvvO   and ),...,,( 212 nwwwO  , 

where iv  ( mi ,1 ), iw  ( ni ,1 ) – the sequences of vertices linearly approximated sections of 

the external borders of the regions. Then the Hausdorff distance between the convex regions 

1O  and 2O  is calculated according to formula 16:  

 

)},(max),,(maxmax{),( 22

,...,1

11

,...,1
21 12 iiO

ni
iiO

mi
H badbadOOd


 ,   (16) 

 

where ),( 11
2 iiO bad  – the projections of the vertex region 1O  to the region 2O , 

),( 22
1 iiO bad  –  the projections of the vertex region 2O  to the region 1O  [24]. 

The projections 
lOd  ( 2,1l ) are calculated according to the expression: 





 


casesother  in     0

),(),(,),(),(
),(

lO
O

OInteriowvwvProjwv
wvd l

l
where ),( wvProj

lO  – the point at 

which a minimum Euclidean distance is implemented from a point ),( wvP  to the region lO  

[23]. 

Let’s present the Hausdorff determining distance algorithm by the following steps: 

1. Let’s set up the polygonal regions with the sequences vertices ),...,,( 211 mvvvO   and 

),...,,( 212 nwwwO  that are obtained from the previous algorithm. We find the distances 
lOd  

( 2,1l ) for all vertices of regions 1O  and 2O   according to the expression (3).  

2. According to the expression (2) we obtain Hd . 

Experimental results 

In order to carry out computer experiments the software module has been developed in 

Java programming language using the OpenCV computer vision library. This module is 

designed for pre-processing & image segmentation and the evaluation segmentation results. It 

implements segmentation algorithms developed by the authors. The segmentation algorithms 

are evaluated, based on the metric approach [16]. The preprocessing algorithm is presented in 

details [19].  

Fig. 7 shows the fragment of a histological image of a breast tissue slice. Histological 

images contain such complex micro-objects as parietes of  glands and ducts. The texture 

analysis is calculating of textural features space based on PM (Fig. 8b) and its threshold 

processing. 
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a)original image b) expert 

segmentation 

c) k – means d) Watershed e)  Algorithm on 

the basis of 

previous 

labelings 

Fig. 7 Previous labeling images by different algorithms 

 

  
a) initial image b) space of texture features 

 

Fig. 8  A fragment of the initial image and the image space of texture features 

 

As a result of threshold processing we have obtained labeling (Fig. 9,a) as well  as have 

identified the breast duct paries (Fig. 9,b). 

 

  

a) labeling b) ducts paries image 

 
Fig. 9  Labeling image and the ducts parietes identification 

 

Table 1 shows the comparison of image segmentation algorithms. The Hausdorff, 

Frechet, Gromov – Hausdorff, Gromov – Frechet metrics are used for the comparison. 
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Table 1. Comparison of segmentation algorithms 

 

metric algorithm Hausdorff 

metric 

Gromov-

Hausdorff 

metric 

Frechet 

metric 

Gromov-

Frechet 

metric 

k-means 67.89 64.63 67.89 64.63 

watershed 130.9 125.7 132,76 126.1 

The algorithm is based on the 

previous labeling 

64,38 63,27 64,38 63,27 

 
Table 2 shows the results of the evaluation of the texture segmentation algorithm. 
 

Table 2. Evaluation of texture segmentation algorithms 

 

Standard image Texture 

segmentation 

1 Hausdorff metric 

2 Gromov-Hausdorff metric 

3 Frechet metric 

4 Gromov-Frechet metric 

  

1 124.14 

2 121.64 

3 260.93 

4 165.92 

  

1 342.06 

2 333.95 

3 342.06 

4 333.95 

  

1 113 

2 108.17 

3 412.95 

4 393.07 

  

1 431.18 

2 430.72 

3 432.65 

4 430.75 

  

1 190.06 

2 190.06 

3 224.61 

4 224.61 
 

Conclusion 

1. Using of connection points for the segmentation of biomedical images has a number 

of advantages compared to the characteristics of the individual points: 

- the ability to process images of any type;  

- the increased resistance to image segmentation when the micro-objects are close to 

each other.  
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- reducing of the input image noise and distortion effect on the overall result by 

analyzing of images with different segmentation algorithms. 

2. The texture segmentation application, based on spatial moments, allows identifying 

complex micro-objects such as cell layers, the parietes of blood vessels and ducts.  

3. Using of the Hausdorff, Fréchet, Gromov – Hausdorff, Gromov - Fréchet metrics 

provides quantifying of the segmentation algorithms quality in automatic mode.  
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RESUME 

O.M. Berezsky, Yu.M. Batko, G.M. Melnyk, S.O. Verbovyy, O.Y. Pitsun  

Segmentation algorithms of biomedical images: development and quantitative evaluation 

The article presents the comparative analysis of the biomedical image segmentation 

methods. The work discusses segmentation methods on the basis of previous labeling and 

spatial moments. The experimental results show that the developed methods have higher 

accuracy by signal-noise ratio compared to the nowadays known.  

This paper showing that the using of connection points for the segmentation of 

biomedical images has a number of advantages compared to the characteristics of the 

individual points such as: the ability to process images of any type; the increased resistance to 

image segmentation when the micro-objects are close to each other, reducing distortion effect 

on the overall result by analyzing of images with different segmentation algorithms. 

The texture segmentation application, based on spatial moments, allows identifying 

complex micro-objects such as cell layers, the parietes of blood vessels and ducts.  

Moreover the authors have developed the quantitative evaluation of the segmentation 

algorithms based on the metrical approach. Using of the Hausdorff, Fréchet, Gromov – 

Hausdorff, Gromov - Fréchet metrics provides quantifying of the segmentation algorithms 

quality in automatic mode.              

 

Надійшла до редакції  04.09.2016 
 


