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METOA MAIIMHHOI'O OBYYEHUA NJI5s1 AETEKTUPOBAHUS
BPEJOHOCHOI'O 110, UCITOJIB3YIOILINHN N3BJIEYEHUE
MMPU3HAKOB 13 UCIIOJTHAEMBIX ®AXJIOB

A malicious software is generally an executable program which usually settles itself in the system, replicates
by copying itself, and has a malicious effect. Modern antivirus systems detect malware by knowing its pattern and
detect a new virus quite difficult. There are a lot of heuristic techniques are used for detecting an unknown malware
which are usually consume a lot of system memory and CPU resources. This load can be overcome by training a
machine learning model which collects features from Portable Executable (PE) file which are used for identifying an
unknown virus patterns. A technique to collect these features from PE file is proposed in this paper.
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Bpenonocnoe 10, kak npaBuiIo, IpeACTaBIIET cOOOH MCHIONHAEMYIO IPOTPaMMy, KOTOpasi 0OBIYHO pacHoiara-
eTCsl B CHCTEME, PEIUINIMPYETCs IyTeM KONMPOBAHWS M OKa3bIBAET BPEJIOHOCHOE Bo3JelicTBue. COBpEMEHHBIE aHTH-
BUPYCHBIE CHCTEMBI OOHapykuBaroT BpenoHocHoe I10, 3Has ero marrepH, a 0OHapyKUBATh HOBBII BUPYC JOBOJBHO
cioxHO. CyIIecTByeT MHOXKECTBO IBPHUCTHYECKUX METOJOB, UCIIONB3YEMbIX ISl OOHAPYXECHHUS HEU3BECTHBIX BPENIO-
HOCHBIX TIPOTPaMM, KOTOpPbIE OOBIYHO MOTPEOIISIOT MHOTO CUCTEMHON MaMSTH U PECYPCOB Tpolieccopa. DTy Harpy3Ky
MOXXHO TIPEOOJIETh IyTeM OOYYCHHS MOJAENM MAIIMHHOTO OOydeHHus, KoTopas coOupaer naHHble u3 Portable
Executable (PE) ¢aiina, koTopble HCIONB3YIOTCS U1l MACHTH(GHUKAIMNA HEU3BECTHBIX BUPYCHBIX NMATTEPHOB. B naHHOM
CTaTbhe MpeyIaraeTcst MeTos coopa 3Tnx xapakrepucTuk u3 PE-daiina.

KiroueBble ciioBa: BpenoHocHsle porpammsl, MamumHHOE 00ydeHue, OBpuctuka, PE-daitisr

Introduction

Nowadays one of the main problems
of the informational security is the identi-
fying new malicious software and threats.
Known viruses do not pose a particular
danger since they are easily detected by hash
analysis. But detection of new threats requi-
res advanced heuristic methods. There are
several ways to identify such threats:
1. Reveal similarities between malware

features which are compared with known
virus patterns.

2. Implement a set of algorithms that emu-
late the decision-making strategy of a
human analyst. A human malware ana-
lyst can determine that a Windows PE
program appears malicious, without
actually observing its behavior, by
briefly analyzing the file structure and
taking a quick look at the disassembly of

families by focusing on the biggest mal-
ware groups. It usually based on such
machine learning (ML) algorithms as
Bayesian networks or genetic algo-
rithms. The input file produces several
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the file. The analyst would be asking the
following questions: Is the file structure
uncommon? Is it using tricks to fool a
human? Is the code obfuscated? Is it
using any anti-debugging tricks? If the
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answer to such questions is “yes”, then a
human analyst would suspect that the
file is malicious.

3. Analyze a suspected file in a “sandbox”
which require implementing User-mode
and kernel-mode hooks. This approach
allows to execute a suspected file in a
virtual environment to look for suspi-
cious activities. It means that we can
observe the real behavior of the
executable file [1].

Limitations of the existing approaches

As described, there are several approa-
ches for detecting an unknown malware.
However, each of the approaches has its
limitations:

1. The first method can cause a large
number of false positives and consume a
lot of resources, which is acceptable in
malware research lab environment and is
not suitable for desktop solutions.

2. The second method is more reliable than
any other approach because it involves
actually looking at the true runtime
behavior. However, it’s too complex and
consumes a lot of system memory and
CPU resources.

3. The third method largely depends on the
quality of the corresponding CPU emu-
lator engine and the quality of emulated
operation system APIs. Even if it is
effective it is time consuming and costly.

The proposed approach

This paper describes the method of
PE-files features extraction to determine if
the file is malicious and the performance
evaluation of this method. The method was
tested on unpacked Windows x86 execu-
table files.

The main approach allows determi-
ning what is the suspected file supposed to
do by collecting the following features:

1. Common features — features of the file
itself.

2. PE structure features — features of PE
header and Import table.

3. Code features — features taken from
disassembler listing.

4. Behavioral features — most common
patterns for the malware.
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A virus usually needs to settle itself in
the system. It means it should use functions
for accessing and editing the Windows
registry. Also it can copy itself to system
directories which means it has to use func-
tions for escalating privileges and coping a
file. After a malware is settled in the registry
and spread itself over the system it can
access the remote host for requesting a
command from it. It can be done by calling
networking functions.

All these functions are combined such
a way that we can likely predict the behavior
of the analyzed file. Since we know from PE
header the exact location of IAT and
because of its relatively small size we can
collect the functions combination set of a
suspected file without consuming a lot of
OS resources. A neural network which was
trained with a set of functions combination
of malicious and legitimate files can deter-
mine a supposed behavior of the suspected
file without actually executing it.

Moreover, a PE file contains a lot of
data which helps to determine if the file was
edited. We can check several values such as
sizes of code and data sections, the offset of
Original Entry Point (OEP), the Relative
Virtual Address (RVA) of PE Image, the
RVA and size of Import Address Table
(IAT), Export Address Table (EAT) and
Resource Table.

These features can prove us that the
file was patched in case if its OEP was
rewritten or it has a certain section size for
one particular virus.

The most of code and behavioral featu-
res are non-numerical. The machine learning
model of our approach needs data in nume-
rical form but we can’t encode these features
as numbers because they won’t be true cate-
gorical features. Instead these features will be
converted into a separate binary feature that
has value 1 for instances for which the cate-
gory appeared and value 0 when it didn’t.
Hence, each categorical feature is converted to
a set of binary features, one per category. [2]

Common features include three values:
1. File type (DLL, console, GUI, native) —

categorical feature.
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2. File entropy — may point that the file con-
tains en encrypted content.
3. File size.

PE structure features include Import
table (IAT) features and the values of PE
header fields.

For collecting the IAT features the set of
96 Win32 API functions was created. There
are functions which are commonly used by
malware as well as antiviruses such as
AdjustTokenPrivileges, CreateRemoteThread,
GetProcAddress, VirtualProtectEx,
WriteProcessMemory and a lot of others.

Based on statistics from 46000 mali-
cious programs only 56 functions were kept.
These most popular functions are used as
categorical features.

Code features include the periodicity
of CPU registers and instructions using.
Control flow graph features are also related
to code features: vertex count, edge count,
delta max and density.

The periodicity of registers using can
help detecting different malicious technics
such as a current virtual address revealing
which was a well-known technic of file
viruses. This technic is illustrated in the

Figure 1.
call 45
pop eax
Fig. 1. Current RVA revealing

When a malware uses register for rela-
tive addressing like in the example above or
for storing the address of a dynamically load
library the periodicity of using this register
usually grows or falls respectively.

Behavioral features represent the po-
pular behavior patterns which is typically
used by the malware. The features are
collected by parsing the disassembler listing.
The most popular 20 malicious technics
were selected: 1) Current RVA revealing;
2) VirtualAlloc  with RVA rights;
3) WriteProcessMemory to the current
process memory; 4) WriteProcessMemory to
the remote process memory; 5) DLL
injection; 6) Keylogger routine; 7) Registry
modification; 8) WinlInet API using; 9) PEB
address obtaining; 10) Process replacement;
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11) User Mode APC injections; 12) Process
Hollowing; 13) Thread Execution Hijacking;
14) SetWindowsHookEx using; 15) Extra
Window memory Injection (EWMI);
16) Inline Hooking; 17) Kernel Mode APC
hooking; 18) SSDT hooking; 19) IDT
hooking; 20) SYSENTER/SYSCALL hook.

Features collection

The basic idea of Fisher Score is to
find a subset of features of the data such that
in the data space spanned by selected featu-
res, distance between data points in different
classes are as large as possible and distance
between data points in the same class are as
small as possible. Fisher score computes the
difference, in terms of mean and standard
deviation, between positive and negative
examples relative to a particular feature. It
assigns ranks to each feature. Rank of a fea-
ture is defined as the ratio between absolute
difference between the means of positive
and negative examples and the sum of the
standard deviations of the positive and
negative examples, when considering that
feature [3-11]. A large value of a rank
implies greater difference in positive and
negative examples, considering that feature,
hence is more important for separating
positive and negative values. Thus, this
feature is relevant. A small value of rank
would imply a lesser difference in positive
and negative examples, hence is less impor-
tant for separating positive and negative
values [12-15]. Thus, this feature is
irrelevant.

R = ‘#i,p —Hi,

1)
o, to,

where R; — the rank of i feature, pip

and pin — the mean of legitimate and

malicious examples features correspond-

dently, oip and oin — the standard deviations.

The Fisher Score approach was

applied to PE header features and Code

features. Figures 2 and 3 show Fisher ranks
for these groups of features.
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Fig. 2. 30 code features with highest ranks
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Fig. 3. Ranks of PE header features

Only 29 code features were left from
119 in total. PE header features number were
reduced to three. The selected PE header
features are ImageBase, FileAlignment,
DlICharacteristics.

Model testing

The training set consists of 26628
malicious samples and 9115 legitimate
samples. The testing set consists of 9115
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malicious and 814 legitimate samples.

The model was trained and tested using
five machine learning algorithms: 1) Decision
Tree (DT); 2) «Random Forest» (RF);
3) Gradient Boosting (GB); 4) Adaptive
Boosting (AB); 5) Naive Bayes classifier
(GNB).

The results of the model testing are
shown in the Table 1.
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Table 1. Classification results
Tm Rm | T Ri FP FN
GNB 1839 385 | 30.4% | 11.1%
DT 1085 1139 | 18.6% | 33.2%
RF 1410 | 859 | 814 | 1365 | 13.4% | 38.1%
AB 1593 631 | 19.9% | 11.7%
GB 1830 394 | 27.1% | 8.2%

Tm and T, are numbers of malicious
and legitimate sample in the testing set. Rm
and R, are the number of samples that were
detected as malicious and legitimate respec-
tively. FP and FN are False-positive and
False-negative rates.

The best result was shown by Gradient
Boosting algorithm. Only 8.2% of malicious
samples were classified as legitimate.

Conclusion

In this paper, the feature selection ap-
proach for PE files was described. The ap-
proach includes the selection of static featu-
res (such as PE header fields values and file
entropy) and behavioral features (the popu-
lar malicious patterns).

The described approach was applied to
a set of malicious and legitimate samples to
demonstrate its efficiency.

The model optimization and classifier
improvements can be executed in further.
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PE3IOME

A.A. Boponos, 51.B. I'opoxoBuk

Metoa MAalIIMHHOTO OOy4eHHs IS
AeTekTupoBaHust  BpegoHocHoro IO,
HCNOJIB3YIOIINI W3BJIeYeHHEe NPH3HAKOB
U3 UCIIOJIHsIeMbIX GailiioB

B nanHolf paboTe ONMHMCBHIBAeTCSI METOJ
M3BJICYEHUS PA3IMYHbIX PU3HAKOB U3 HCIIOJI-
HSEMBIX (AMIOB C LIENBI0 00Y4YEHHsT MOJIENH
MAaIlIMHHOTO OOy4YeHHus Uil AETEeKTUPOBaHMS
BPEZIOHOCHOTO POrPaMMHOI0 00eCIeYEeHUs].

B HacTos1ee BpeMst 01HON M3 OCHOB-
HBIX NpoOsieM HH(POPMALMOHHOM Oe3omac-
HOCTU SIBJISIETCS BBISIBJIEHME HOBBIX BHOB
BPEJIOHOCHOTO IPOrpaMMHOro olecreye-
Hus. U ecnu yxe WM3BECTHBbIE BPEJOHOCHBIE
IporpaMMbl He IPEACTaBISIOT 0CO00H omac-
HOCTH, TaK KakK JIETKO OIpPEeNestoTCs ¢ MOo-
MOILBI0O CHUTHaTYpHOTO aHanu3a, TO M
OoOHapy»eHHsI HOBBIX, paHEe HE BbISBISIB-
IIUXCS, YTPO3 UCIIONIB3YIOTCS O0Jiee Mpo/IBU-
HYTbIE 3BPUCTUYECKHE METO/BI.

OrpomMHO€ KOJIMYECTBO 3SBPUCTHYEC-
KHX METOJIOB, UCIOJIb3YEMBIX ISl AETEKTH-
pOBaHMSI  BPENOHOCHOTO  MPOTrPaMMHOIO
oOecrnieyeHns pa3IMYHbIMUA aHTUBUPYCHBIMU
IPOAYKTaMH, OOBIYHO MOTPEONISIOT 3HAYM-
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TeIbHOE KOJHYECTBO PECYpCOB 3IIEKTPOH-
HOW BBIYMCIUTEIBHOW MAIlWHBI U IPOLEC-
copa. JlanHas Harpy3Ka MOKeT ObITh CHIKE-
Ha 3a c4€T 0OydeHus HEHPOHHOI ceTH, KO-

TOpasi, Ha OCHOBAHWUU COOpPAHHBIX MpPHU3HA-

KOB HCIOJHSAEMBIX (hailioB, ompeaenser

11a0JI0HBI TIOBECHHS BUPYCOB.

[IpennaraeMplii METOM 3aKJIIOYAETCS B

U3BJICYCHUH CTAaTUYECKUX M TUHAMHYECKHX

NpU3HAKOB 0Oe3 wucrnonHeHus (aina u B

ornpezeNieHuu HauboJiee BECOMBIX U3 HHUX C

nomoInbio kpurepus dwuiiepa U COOTBETCT-

BYET CJIEAYIOUIUM TPEOOBAHUSAM:

1. Jlna aHanu3a MOBEACHHS MPOTPAMMBI
TpeOyeTcsi TONBKO €€ HCIOIHIEMBbIi
¢aiin. He npennonaraercst 3amyck mpo-
rpaMMBbl 17 €ro JUHAMHYECKOTro aHa-
JM3a ¢ MOMOIIBI0 BUPTYaAJIbHBIX MAIIIWH,
APIl-norrepoB ¥ JIONOJIHATEIIBHOTO
MIPOrpaMMHOTO 00€CTICUCHUSI.

2. Ananus (aiina ocymecTBiIseTcsl HA OCHO-
BaHWU OOJBIIOTO KOJMYECTBA IPHU3HA-
KOB, TMOJYYEHHBIX HEMOCPEICTBEHHO HUX
UCIIOJIHAEMOTO (ailna.

3. Ilpu3Hakm MOTYT OTHOCHTHCS KaK K
CTPYKType HCIONHAEeMOTo (aiina, Tak u
K €r0 TIOBEICHHUIO.

4. Tlpu MoIenupoBaHUM TMPU3HAKOB MPE-
MOYTEHUE OTAAETCS YHMCIICHHBIM, HEXe-
JIU KaTerOpUaIbHBIM.

5. Bce xareropuasibHble NMPU3HAKU TpeoOpa-
3YIOTCS B UMCIICHHbIE OMHApHBIE MPH3HA-
KM, JJIi TOTO YTOOBI M30€XaTh Clydaii-
HOCTH TIPY UHAEKCUPOBAHUU KaTETOPHIA.

. Hnst oOy4eHuss U TECTUPOBAHUSI MOJIEIU
UCIIONIB3YIOTCS TONBKO «HEYMaKOBaH-
Heie» PE-daitnbr.

OnucbiBaeMblii METO/ MOJKPEIIIEH pe-
3yJIbTaTaMU TECTUPOBAHUS TATH AJITOPHUT-
MOB MamIMHHOTO 00y4eHus: JlepeBo pere-
Hui, «Ciy4dailHelii nec», ['panueHTHBI U
AnanTtuBHbl OycTuHT W HauBHbBINH Oaife-
COBCKHI KJIacCU(pUKATOP.

(3]

Haoinuna oo pedaxyii 25.10.2018
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