IHDKEHEPIS TIPOTPAMHOT'O 3ABE3ITEYEHH I
Ne3—4(11-12) 2012

004.415.2.045 (076.5)
O.P. Dyshlevyy, M.M. Kostiv
National Aviation University

TOOL FOR

CALCULATION OF

METRIC’S

ABNORMAL
VALUES OF
SOFTWARE

The article is dedicated to creation the tool of
calculation of metrics abnormal values. The analysis of
statistical techniques has been made for measurement of
abnormal metrics, and technique of calculation of
metrics abnormal values of software has been proposed.
Main software metrics have been described for
determination of program maintenance complexity. Tool
of calculation of metrics abnormal values has been
developed, and it's functionality has been demonstrated
on example of several projects.

Cmamms npucesuena CMEOpeHHI0 3aco6y
PO3PAXYHKY AHOMANbHUX 3HaAYeHb Mempuk. [Iposoouscs
AHANi3 CMAMUCIMUYHUX MEMOOUK OJisl GUMIPIOGAHHSL
AHOMAILHUX 3HAYEHb MempuK, ma Oyia 3anponoHO8aHa
MEmoOUKa pO3pPaAxyHKy AHOMAJbHUX 3HAYEHb MempUuK
npoepamnozo 3abesnedents. Onucami 0CHO8HI MEMPUKU
npoSpamHo2o 3abe3neyens onst GUZHAYEHHSL
cknaonocmi niompumxu npozpamu. Pospobnsecsa 3zaci6
OJ151 PO3PAXYHKY AHOMANbHUX 3HAYEHb MEMmpUK, ma 6yia
NPOOEMOHCIMPOBAHA 11020 (YHKYIOHATbHICMbG — HA
NPUKIA0i 0eKiIbKOX NPOEKMis.

Cmamps noceaujena co30anuio cpedcmea paciema aHoMalbHuIX 3navenul mempux. IIposodunca ananuz cmamucmudeckux
Memooux 0Jia UsMepeHuss AHOMANbHLIX 3HAYEHUL MEMmpUK, U Oblia NPeonodicena MemoouKa paciema aHOMAalbHbIX 3HAUeHU MEmPUK
npoepammtoeo obecnevenus. Onucanvl OCHOGHbIE MEMPUKU NPOSPAMMHO20 0becneyenus 0iisl OnpedeneHus: CL0HCHOCHU NOOOePICKU
npoepammvl. Paspabamvisanoce cpedcmeo 01 pacuema AHOMATbHBIX 3HAYEHUN Mempuk, U Oblid NPoOeMOHCMPUPOBAHA €20

¢yHKL{u0HLUZbHOCn1b Ha npumepe HeCKONbKUX NpoeKmaoes.

Key words: Abnormal value, Measurement, Goal-Question-Metric paradigm, Arithmetical mean, Standard deviation, Metric

Introduction

There are many examples of project that have
overrun their budgets and schedules [1, 2].
Software engineers have addressed these
problems by continually looking for new
techniques and tools to improve development and
maintenance process and product. One of them is
software measurement [1, 3].

Measurement is important for three basic
activities [4].

First, there are measures that help to
understand what is happened during development
and maintenance. Engineers assess the current
situation, establishing baselines that help to set
goals for future behavior. In this sense,
measurements make aspects of process and
product more visible, giving better understanding
of relationships among activities and the entities
they affect.

Second, the measurements allow engineers to
control what is happening on projects. Using
baselines, goals and understanding of
relationships, engineers predict what is likely to
happen and make changes to processes and
products that help to meet their goals. For
example, it is possible to monitor the complexity
of code modules, giving through review only to
those that exceed acceptable bounds.

Third, measurement encourages engineers to
improve processes and products.

With using any metric it is necessary to know
what is too high or too low, too much or too little.
In other words, some reference points are
required, some means to link a particular metric
value to useful semantics. Thresholds are based in
statistical information [5].

Once the metric’s values are existed, it is
necessary to judge whether the value indicates
critical situation or not. Thresholds can help to
judgment. When design metrics exceeds a certain
threshold, the design element can then be consider
“critical” and must be redesigned.

Thresholds are defined as in heuristic values
used to set ranges of desirable or undesirable
metric values for measured software. These
thresholds are used to identify abnormal values,
which may be or not be an actual problem [6].

Abnormal values can help to detect bad
smells from metrics, support refactoring and
regenerate code. Relations between metrics and
bed smells were defined on the basis of
thresholds. Thresholds can be customized either
by a product manager or by special application.

The main purpose of appearing of abnormal
values is present classes for which refactoring is

47

IHDKEHEPIS TIPOTPAMHOT'O 3ABE3ITEYEHH I
Ne3—4(11-12) 2012

necessary. But it is very important to correlate
size of class and the metric’s value for class.

Last research review

There are many approaches to use software
metrics [3, 5, 7, 8].

There is situation when many metrics still is
not used in practice. It was suggested there are
several reasons:

e Companies must change lifecycle,
development processes to making measurement of
a part of their activities;

e Software engineers don’t know software
metrics;

e Many metrics are not described very well.

e It is hard to explain measurement results
by software engineers.

Some software researches try to change
current situation. They describe some features of
software metrics, principles of using them and
explaining results. And they use statistics rules for
this purpose [5, 7-12]. All of them didn’t consider
abnormal values of software metrics as present
classes for which refactoring is necessary.

This paper describe technique and tool for
funding abnormal values, several case studies
which explain how to use results of this work in
practice.

Developing of technique for finding of
abnormal values

The most pragmatic issue is how to use
metrics values so that they provide real
information and not just a numbers. In this
context, GOQM model define the necessity
obligations for settings objectives before
embarking on any software measurement activity
[13]:

1) List the major goal for which metrics are
going to be employed.

2) From each goal derive the questions that
must be answered to determine if the goal is met.

3) Decide what metrics must be collected to
answer the questions.

Having this amount of data simple statistical
techniques were employed in order to determine
for each of these metrics:

o the typical values, i.e., the range of values
that includes the data from most projects;

o the lower and respectively the higher
margins of the typical interval,

o the extreme high values, i.e., a value
beyond which a value can be consider as outlier.

Two statistical means were used to find what
the typical high and low values are:

1) AVG, to determine the most typical value
of the data set (i.e., the central tendency);

2) STDEV, to get a measure of how many
the values in the data set are spread.

Knowing the AVG and STVED values and
assuming a normal distribution for the collected
data (i.e., that most values are concentrated in the
middle rather than the margins of the typical
values interval for a metric and the threshold for
very high values. These are:

e Lower margin: AVG - STDEV;,

e Higher margin: AVG + STDEV.

These margins tell the researcher the meaning of
low, high for a given metric [5].

The steps of technique were shown in the

flowchart diagram (Fig 1).

Defining of goal for measurement >
v

Asking questions to determine if the goal is met

l

Choosing metrics

k.

Choosing projects with versions which have medium and
large size

l

Performing statistical calculations for every version of
project

i

Visualizing results by means of charts

< Making conclusions >

Fig. 1. The steps of technique for finding of
abnormal values

The technique can be used both during
software development and maintenance by
developers, product managers and analytics. It
helps to detect code smells, such as, for example,
large classes, big conditional complexity. It is
important to have several product versions. More
product versions are, better statistical results will
be.

Statistical calculations

The main purpose of the work is finding of
abnormal values. That’s why it is necessary to
calculate the values of confidence interval using
statistical formulas. The calculation can be
divided in several steps:

e finding of average mean for
generalizing;

48

IHDKEHEPIS TIPOTPAMHOT'O 3ABE3ITEYEHH I
Ne3—4(11-12) 2012

e determining the value standard deviation
using the value of average mean;

e calculating of Ilimits for confidence
interval by means of using the value of standard
deviation.

In statistics, the average mean gives a very
good idea about the central tendency of the data
being collected [14-15]. The main significance of
average mean is generalizing function:
replacement of various individual values by
average mean, which characterizes all range of
values. Average mean is calculated by means of
the ne>§t formula (1):

E=infi 1)

i=1

Standard deviation gives a measure of how
the data are distributed according to average mean
(2). x;-x is a distance from a given number to a
mean. Standard deviation is used for determining
of limits for confidence interval [14-15].

index.php

xls.loader []

js.is

éhan—data.php

chart-data2.php chart-data3.php

opén-f lash-chart.php

(2)

For calculating the values of limits for
confidence interval the three-sigma rule can be
used. The value must be lain in the interval
[X—30;X+30]. That's why a=X—o and
b=X-—o, where a and b upper and lower limit
relatively. By means of these formulas it is
possible to develop program for finding of
abnormal values. If the value of metric is less
than a and greater than b and the frequency of
metric is very low it means that the value is
abnormal.

Tool development and description

Application components are displayed on
figure 2. Data is displayed for user into open-
flash-chart.swf component. It depends on from
open_flash_chart_object.php that connects to the
open-flash-chart.php that contains functions for
charts calculations.

jquery .js formbuilder

ajaxResponce2

\getGraph2 getGraph getGraph3 ajaxResponce3

open-flash-
chart.swf

open_flash_chart_object.php

Fig.2 Component diagram of application

This need data that it can get from chart-data files
(chart-data.php, chart-data2.php, chart-data3.php).
Chart data files relates from ajax files (ajax.php,
ajax2.php, ajax3.php). Ajax files depend on

xlIs_loader.php or js.js file in conjunction of type
of getting data. File js.js contain complex
functions that work with DOM, create form and
send ajax request to the ajax files.

49

IHDKEHEPIS TIPOTPAMHOT'O 3ABE3ITEYEHH I
Ne3—4(11-12) 2012

Developed application calculates upper and
lower limits of possible values of metrics and
other statistical values. By means of application it
is possible to find abnormal values of different
values of metrics. By means of program software
engineer can find class with abnormal values of
metrics and then analyze and define why this
values appear.

For using application it is necessary to gather
data by means of iPlasma or other measurement
tool and enter data to application: import data
from Excel or use special input fields. Then it is
necessary to analyze charts and make conclusions.

Case study

Selecting metrics. The goal is to analyze the
complexity of classes for the purpose of
improving, controlling maintenance. The metrics
were chosen according this goal.

It is necessary to find the classes in
application with very high complexity according
to average mean of complexity for all classes. A
very high complexity — complicates the
maintenance.

Complex classes need more time to develop
and test. Therefore, excessive complexity should
be avoided. Too complex should be simplified by
rewriting or splitting.

WMC, CYCLO, NOM, DIT, LOC are
metrics which were chosen in respect to goal of
measurement.

Selecting products for research. Main
principles of selecting products are size (medium
or large) and many versions.

Lower range =—Upper range ==Verion's Metrics

. .
L 2

L]

The selected products are: jfreechart,
jhotdraw, jedit, struts, jcoverage, jfreemind.
Sizes of different versions of jedit product are
in table 1.
Table 1
Versions of jedit

Version Number of classes
jedit-4.3pre4 | 453
jedit-4.3pre7 | 518
jedit-4.3prell | 550
jedit-4.3prel4 | 546
jedit_4.4pre2 | 441
jedit4.5prel 536

There are other metrics for versions of jedit
in table 2.

Table 2

JEdit results
WMC | DIT | LOC | NOM
jedit-4.3pre4 | 22,12 | 0,63 55 6,57
jedit-4.3pre7 | 21,35 | 1,27 | 1435 | 7,43
jedit-4.3prell | 20,93 | 1,27 | 1435 | 7,43
jedit-4.3preld | 19,83 | 1,24 | 1425 | 7,07
jedit_4.4pre2 | 16,48 | 1,3 140 6,53
jedit-4.5prel | 6,54 | 1,22 | 1434 | 7,12

The charts for WMC , DIT , LOC and NOM
were built. Consider the chart of WMC metric
(Fig 3) and chart of LOC metric(Fig 4). These
charts represent results for two metrics of jedit.
Other products and their metrics have the same
tendency.

25 -

22.91 -

.—-—_.____________

20.82 -

18.73 -

18,65

Metric

14.56

12.47

10.39 o

8.2 =

6.21

T T
jedit-4.3pred jedit-4.3pre7

T
jedit-4.3preil

Version

T T T
jedit-4.3preid jedit_4.4prez jedit4.5prel

Fig.3 The chart with upper and lower limits of WMC metrics

50

IHDKEHEPIS TIPOTPAMHOT'O 3ABE3ITEYEHH I
Ne3—4(11-12) 2012

Lower range —Upper range =Verion's Metrics

179.57

167.79 -

156.01 -

144,23 & A

13Z2.44 -

120.66 -

Metric

108.88 -

o97.1

L]
L]

85.31 -

73.52 -

/

61.75

T T
jedit-4.3pred jedit-4.3pre7

T
jedit-4.3prel1

Version

T T T
jedit-4.3pre14 jedit_4.4pre2 jedit4.5prel

Fig.4 The chart with upper and lower limits of LOC metrics

In the jedit-4.5prel the outlier appeared (fig.
4). It can be caused by decreasing of quantity of
total number of paths in the classes. Fig. 3 and 4
show LOC changes without outliers and doesn’t
influence on WMC. The complexity of some
classes changed. The value WMC for class jEdit
in jedit-4.3prel is 17 and in the last version is 10.
The LOC for this class in jedit-4.3prel is 73 and
in the last version is 70. The number of the total
number of possible program paths decreased and
application become less complex and less efforts
and costs are necessary for maintenance.

Conclusions

Outliers can appear due to small conditional
complexity of the last version of and mean the
reducing of efforts and cost for maintenance and
complexity. Users can see tendency of metrics
changing in different application versions.

Sometimes abnormal values can be obtained
by small functionality of application in the first
versions in comparison to later versions. In most
cases abnormal values can show the presence of
code smell and indicate the necessary of
refactoring when metric value go out the upper or
lower range line.

References

1. Commepsun HMan, VIHxKeHepHst IpOrpaMMHOTO
obOecrieueHus, 6-¢ msmanme. : Ilep. ¢ anrin. — M. :
Wzparenbckuii nom «Bumbsamcey, 2002. — 624 ¢. : wi. —
IMapan. TUT. aHII.

2. Hemapxo T., Jlucmep T. YenoBeuecKuii
(akTOp: yCHenIHbIe MPOSKTHl U KOMAHBI, 2-¢ M3/IaHue.
— Ilep. ¢ anrn. — CII6.: CumBoa-ITmoc, 2005. — 256 c.,
nl.

3. Christof Ebert, Reiner Dumke, Manfred
Bundschuh, Andreas Schmietendorf. Best Practices in

Software Measurement: How to use metrics to improve
project and process performance. — Springer-Verlag
Berlin Heidelberg 2005.-295p.

4. Rakesh.L, Dr.Manoranjan Kumar Singh,
Dr.Gunaseelan Devaraj, (IJCSIS) International Journal
of Computer Science and Information Security,Vol. 8,
No. 2, 2010, Software Metrics: Some degree of
Software Measurement and Analysis, 7 pages.

5. Michele Lanza, Radu Marinescu and S.
Ducasse . Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and
Improve the Design of Object-Oriented Systems.
Springer-Verlag Berlin Heilderbeg, 2006. — 213 pages.

6. Knowledge-based software engineering,
Proceedings of the Seventh Joint Conference on
Knowledge-based Software Engineering — 2006, 340
pages.

7. Norman E. Fenton, Shari Lawrence Pfleeger
Software Metrics: A Rigorous and Practical Approach.-
Cambridge University Press,1996.-638p.

8. Linda M. Laird, M. Carol Brennan Software
Measurement and Estimation: a practical approach.
John Wiley & Sons, Inc., Hoboken, New Jersey 2006.-
257 p.

9. Forrest Shull, Janice Singer, Dag I.K. Sjoberg
Guide to Advanced Empirical Software Engineering. —
Springer-Verlag London Limited 2008.-394p.

10.John C. Munson. Software Engineering
Measurement. — Auerbach publications 2003. — 564 p.

11. Juwnesuii O.I1. TlpeaMeTHO-Opi€HTOBaHUH
METOJl TOOYyIOBH 3aJI)KHOCTEH MK METPUKaMH
nporpamaoro 3a6esneuenas / O.I1. JlumuteBmit //
Bicauk HAY. — 2009. — Ne3. — C. 206-212.

12. JJuwinesun O.I1. Tlinhbip MeTpuk st
BIIACTHBOCTEH Tmporpamuoro 3adesrmedenas / O.I1.
Juumesuii // TIPOBJIEMU TIPOTPAMYBAHHSL.
HaykoBuii sxxypHai. — 2010. — Ne2-3. — C. 237-242.

13. Basili V.R., Weiss D.M. A method for
collection valid software engineering data // IEEE
Transaction on Software Engineering, 10(6), pp. 728-
38, 1984.

51

[HDKEHEPIS [TIPOTPAMHOT'O 3ABE3ITEYEHHSI
Ne3—4(11-12) 2012

14. Benmyens E.C. Teopus BeposiTHOCTEH: YueO. 15. babax B.Il., bineyvkuii A.A., Ilpucmaska
JUIsl By30B. — 7-¢ u3a. crep. — M.: Berem. mik., 2001. — O.I1., Ilpucmasxa I1.0. CratuctnaHa o0poOKa JaHuX/
575 c.: un. Momnorpadis. — Kuis: «MIBBI», 2001. — 388 c.

BinomocTi npo aBToOpiB:

Jumnesuii Ogexciii IlerpoBuy

cTapmuii BUKIagad Kadenapu iHKeHepil mporpaMHOro 3a0e3redeHHs
daxynpTeTy KOMIT IOTepPHUX HayK, HarlioHanpHMIA aBialliiiHIi YHIBEPCHUTET.
E-mail: oleksiy.dyshlevyy@livenau.net

Koctie Minana MukosaaiBHa

ctyneHTka (marictp), S5 kypc @DakympreTy KOMITIOTEPHHX HayK,
Hamionanenuii ABianiiinnii YuiBepcuter. HaykoBuil Hampsm — emmipuyHa
1HKeHepis mporpaMHoro 3ade3neueHHst, HaioHansHuii aBianiiHui yHIBEpCUTET.

E-mail: milanabl@yahoo.com

52

