УДК 629.7.021

Король И. В., Молодчик А. Д.

ОЦЕНКА АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ОТСЕКА КРЫЛА ЧИСЛЕННЫМ МЕТОДОМ С УЧЕТОМ ВЯЗКОСТИ

Вступление

Требования к аэродинамическим характеристикам летательных аппаратов (далее ЛА) постоянно повышаются, что делает задачу улучшения аэродинамических характеристик крыловых профилей несущих поверхностей все более актуальной и злободневной. В связи с этим дальнейшие исследования в этой области должны быть направлены на создание специализированных аэродинамических профилей с заданными для выполнения конкретных задач, улучшенными аэродинамическими характеристиками. Выполнение этой задачи тесно связано с использованием численных методов, основанных на решении уравнений Навье-Стокса с моделированием условий, которые влияют на движение ЛА в реальной среде.

Постановка задачи

Провести численные исследования и определить основные аэродинамические характеристики модифицированного крылового профиля на основе профиля D-2 с максимальной относительной толщиной до 30%; а так же изыскать способы устранения отрыва потока на секции крыла с профилем P-III-15% на больших углах атаки.

Основные результаты исследования

Для решения поставленных задач использовалась расчетная программа «*FLOWORKS*» – новое поколение CFD-программ, предназначенное для моделирования процесса динамического движения среды. В этой программе используется численное решение уравнений Навье-Стокса с моделированием условий, влияющих на движение ЛА в реальной среде.

Результаты исследований сравниваются с результатами, полученными в работах [1], [2].

Для подтверждения сходимости результатов численного с физическим экспериментом была решена тестовая задача в пакете «*FLOWORKS*».

На первом этапе проводился расчет секции крыла, с профилем D-2, имеющим максимальную относительную толщину $\overline{c} = 20\%$ (рис. 1) и сравнение его характеристик с данными, приведенными в работе [1].

Результаты решения тестовой задачи приведены на рис. 2 – рис. 5 и в табл. 1.

Рис. 1. Аэродинамический профиль D-2

Таблица 1.

Параметр	C_{x0}	α ₀	Re	Сунаив.	C_{m0}
расч.	0.009	3.6°	1.7×10^{6}	0.39	0
meop.	0.01	3.3°	1.7×10^{6}	0.4	0

Анализ приведенных зависимостей результаты показал, что полученных результатов экспериментальными сравнения c аэродинамическими характеристиками секции крыла с профилем **D-2** [2] имеют хорошую сходимость.

рис. 6 показана обтекания Ha картина сечения крыла на наивыгоднейшем угле атаки ($\alpha_{\mu\beta} = 3^{\circ}$).

Полученные результаты позволяют сделать вывод о том, что для решения поставленных задач использование пакета «FLOWORKS» целесообразно.

Определение аэродинамических характеристик секции крыла с профилем *D*-2-30%

Ha проводился расчет аэродинамических втором этапе характеристик секции крыла с удлинением $\lambda = 5$ с профилем *D***-2-30%**.

Результаты расчетов приведены в табл. 2 и показаны в виде графических зависимостей на рис. 7 - рис. 10.

Рис. 9. График положения Рис. 10. Зависимость $c_{xa} = f(\alpha)$ аэродинамического фокуса

Інформаційні системи, механіка та керування

96

На рис. 11 показана картина обтекания кріла при угле атаки 3° В аэродинамических и дальнейшем, для улучшения аэростатических D-2, характеристик ЛА, набранного из 30% профилей требуется глубоких проведение более исследований по улучшению его характеристик.

Рис. 11. Картина обтекания потоком секции крыла ($\alpha_{HB} = 3^{\circ}$)

Определение аэродинамических характеристик секции крыла с вихрегенераторами

Проблемой оптимизации геометрии крыла, особенно вопросами, касающимися уменьшением индуктивной составляющей скорости, занимались как отечественные, так и иностранные ученые. Чаще всего рекомендуется использовать вихрегенераторы и концевые аэродинамические поверхности (КАПы).

В известных научно-технических источниках отсутствуют указания по поводу использования вихрегенераторов в виде волнообразного наплыва на передней кромке, но ближайшим аналогом будем считать работу [8], в ходе исследования которой в аэродинамической трубе были проведены исследования модели отсека крыла с установленными на передней кромке вихрегенераторами.

В работе [8] экспериментально были получены аэродинамические характеристики модели крыла с вихрегенераторами.

Проведем исследования классического крыла и крыла с вихрегенератором с помощью программного пакета *«FLOWORKS»*.

Был исследован отсек крыла с вихрегенераторами на передней кромке с использованием аэродинамического профиля Р-Ш-15% (рис. 12)

Рис. 12. Аэродинамический профиль Р-Ш-15

Модели отличаются геометрией вихрегенератора и выбором аэродинамического профиля, из которого была набрана секция крыла рис. 13 - рис. 14.

Рис. 13. Отсек крыла без Рис. 14. Отсек крыла с вихрегенератора, $\lambda=5$ вихрегенератором, $\lambda=5$

Выбранная форма вихрегенераторов дает качественную картину обтекания.

На рис. 15 - рис. 16 показаны результаты исследования основных аэродинамических характеристик отсека крыла с вихрегенераторами и без них, которые были получены численным методом.

Рис. 15. Зависимость $c_{ya} = f(\alpha)$ крыло без вихрегенераторов _____ крыло с вихргенераторами

 Рис. 16. Зависимость $c_{xa} = f(a)$

 крыло
 без

 вихрегенераторов
 с

 вихргенераторами
 с

Інформаційні системи, механіка та керування

98

Как видно из рисунков, при малых углах атаки лобовое сопротивление крыла с вихрегенераторами меньше на 9%, но при дальнейшем увеличении угла атаки становится на 3% больше, чем у классического крыла, при значительном возрастании подъемной силы; сама подъемная сила при использовании вихрегенераторов возрастает на 10% по сравнению с крылом классической формы. Столь малые значения объясняются тем, что в работе рассматривался один сегмент крыла.

Использование вихрегенараторов неклассической формы на крыле обеспечивает значительное увеличение подъемной силы, при небольшом повышение лобового сопротивления, а так же можно наблюдать явление исчезновения скачка давления.

Использование вихрегенераторов позволило эффективно бороться с вихрями, а так же увеличить производную c_y^{α} , характеризующую несущие свойства крыла (рис 17 – рис 18).

Дальнейшие исследования будут направлены на оптимизацию геометрии вихрегенераторов и их количества.

Рис. 17. Модель обтекания крыла без вихрегенератора

Рис. 18. Модель объекания крыла с вихрегенератором

На рис. 19 – рис. 20 можно наблюдать как качественно меняется картина обтекания в зависимости от выбранной конфигурации крыла. Так же можно наблюдать смещение точки отрыва потока в образце с установленным вихрегенератором.

Рис. 19. Визуализация обтекания модели крыла с вихрегенератором воздушным потоком в пакете *FLOWORKS*

Рис. 20. Визуализация обтекания модели крыла с вихрегенератором воздушным потоком в пакете *FLOWORKS*

Выводы

Были решены задачи с использованием расчетной программы «*FLOWORKS*», показавшей удовлетворительную сходимость в тестовом расчете с результатами параметрических данных.

Решение численной определению задачи ПО основных аэродинамических характеристик крыла на основе профиля *D*-2 с максимальной относительной толщиной 30% выявило ряд преимуществ, таких как смещение аэродинамического фокуса к 30% от носка крыла, доли увеличение площади самого профиля, соответственно, И газа. В дальнейшем планируется наполняемого подъемного профиль проектирования ЛА совершенствовать данный для С программы аэростатической поддержкой С помощью расчетной «FLOWORKS».

Были получены основные аэродинамические характеристики, из анализа которых можно сделать вывод о целесообразности использования крыла с вихрегенераторами по передней кромке. Уже в первом приближение видно, что вихрегенераторы, неклассической формы, установленные на передней кромке крыла обеспечивают значительное увеличение подъемной силы, при небольшом повышение лобового сопротивления. 100

Інформаційні системи, механіка та керування

Дальнейшие исследования будут направлены на оптимизацию геометрии вихрегенераторов и их количества, а так же на борьбу со срывом потока на больших углах атаки и малых *Re*.

Список использованных источников

- 1. Ушаков Б. А. Атлас аэродинамических характеристик профилей крыльев // Б. А. Ушаков, П. П. Красильщиков, А. К. Волков, А. Н. Гржегоржевский/ ЦАГИ, 1940. 339 с.
- **2.** Кашафутдинов С. Т. Атлас аэродинамических характеристик крыловых профилей. // С. Т. Кашафутдинов, В. Н. Лушин/ Новосибирск 1994. 80 с.
- 3. *Броуде Б.Г.* Воздухоплавательные летательные аппараты // Б. Г. Броуде/ – М.: Машиностроение 1976. –137 с.
- 4. Лемко О. Л. Аэродинамика и устойчивость летательных аппаратов схемы «Летающее крыло». Киев, НТУУ «КПИ» 2011. 321 с. ISBN 9789666224142.
- 5. Лемко О. Л. Методика параметрических исследований расчетной модели первого приближения летательного аппарата с аэростатической поддержкой // О. Л. Лемко, И. В. Король /- Информационные системы, механика и управления Київ, НТУУ «КПІ» 2013 162 с.
- 6. *Лемко О. Л.* Електронне навчальне видання «Аеродинамічні характеристики транспортних літаків та їх розрахунок» // О. Л. Лемко / Київ: НТУУ «КПІ», 2012, 75 с. Режим доступу <u>http://library.kpi.ua:8080/handle/123456789/2215</u>.
- 7. *Щербонос А. Г.* Экспериментальное исследование крыла с генераторами вихрей // А. Г. Щербонос, Е. П. Ударцев/ Харьков: ХАИ, 2009, с. 194-201.