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VIBRATIONS OF LAMELLAR AND ROD STRUCTURES WITH

Ua

Ru

ENERGY DISSIPATION

PosrnsinaroTbes KOIMBaHHS HENIHIAHO MPYXHIX CTEP’KHIB Ta IUIACTUH 3 ypaxy-
BaHHSM ricTepe3ucHoro Tepts. HemiHiiiHa 3amada po3BS3yeThCs 3a JIOTIOMOIOI0 Me-
TOAA PO3KIAy 3a MaJIUM MapameTpoM. J[Jis BU3HAUYEHHS BJIACHUX YacTOT Ta GopMm
KOJIMBaHb BUKOPHCTOBYETHCS BapialliifHO-CITKOBUH MiAXiJ MOOYyA0BU (YHKITIOHATIB
tuny Penest Ta MiHIMI3aIlsA X METOIOM TO-KOOPAMHATHOTO CHYCKy. 3amada Tpo
BUMYIIIEHI KOJMBAHHS PO3B’S3YEThCS IUISIXOM PO3KIIAAY 3a BIACHUMH (pOpMaMH.

PaccmaTpuBaroTcst koneOaHusl HEIMHEHMHO YIPYTrUX CTEp’KHEH U IJIACTHH C y4e-
TOM THUCTEpEe3UCHOro TpeHus. HenuneiHas 3amaua pemiaercsi ¢ MOMOMIbIO METOJA
pasoKeHHs 0 MaJIoMy mapameTpy. Jiis onpenenenrs COOCTBEHHBIX 4acTOT U (GopM
KoJe0aHUN UCHONB3YEeTCs] BapUAIIMOHHO-CETOYHBINM MOAXOA MOCTPOSHUS (YHKIHO-
HaJIoB THNa Pasiess 1 MUHMMUA3ALKS UX METOJOM MOKOOPJAMHATHOTO CITycKa. 3ajada o
BBIHYK/ICHHBIX KOJICOAHMSIX PEIIaeTCsl MyTeM Pa3lIoKEeHUs MO COOCTBEHHBIM (op-
MaM.
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Introduction

It is known that plate and rod designs are widely used in the aircraft in-
dustry because the research of oscillations with considering the energy dissipa-
tion is very topical task. It should be stressed, to solve the problem of vibration
of the mechanical system, we first need to determine the spectrum of frequen-
cies and forms of oscillations. In this paper we are confine ourselves to the
bending vibrations of thin plates and rods. In the derivation of differential equa-
tions we will use the simple assumption [1], the dependences between defor-
mation and movement are linear, and there are linear physical equations instead
of Hooke's law.

Formulation and solving the problem

Been using the method and the designation [1], we’ll get from the condi-
tions of dynamic equilibrium of the plate elements

o°M O’M 8 2
2y+2, XyaM2X+p_lhaoz:

OX oxoy  Oxy g oxt
The moments that were introduced in equation (1) should be expressed
through the plate deflection o(x, y) . We’ll use the formula of recorded stresses

in the plate theory for the nonlinear case for this purpose, [1]

0, =3K| 1= (b, +B,1"")e" |+ 2G[1-23 (d, +8,1"")y," (24 —0),  (2)

(1)

0, =3K| 1= (b, +B,1"")e" |+ 2G| 1-£3 (d, +8,1")y," |(e, €),  (3)
o =G|1-£)(d,+5,1")y," Jes,, @)

where € —is a small parameter,

c,, +O
whereas c,, =0, then o :% and

Gy 0y
oK[1-cY (b, +B,1")e"] ()

Substituting the (5) in (2) and (3), after transformations we obtain

e=
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On :%[]—_SZ n(dn +6,1 n+1)yun:|(811 _11822)’
G (6)
O3 :ﬁ[l_gz n(dn +9,1 n+l)yun](822 _}1811)-
Where
 13K[1-gY" (b, +B,1")e" |- 26| 1€ (d, +8,1")y," | -
==
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If e=0,1.e. b,—B,=d, =5, =0, then (7) will transformed into a known
expression Poisson's ratio . through the modules of elasticity G i K:
_13K-2G

2 3K+G

u (8)

Method of calculation

For the calculation the approximate asymptotic methods of the theory of
nonlinear oscillations were used [2]. Schedule (7) in a Taylor series in the vicini-

ty =0 of quantities degrees a(bn +B, ”+1), S(dn +5. | n+1)

]:Lz “—8(1+ H):(;-— 2“) Z[(bﬂ +Bn| n+1)en _(dn +8n| n+1)yuni|_82m (9)

Thus, Poisson's ratio in real bodies is not constant, but varies in depending
on the magnitude of deformation (e , Yu) .
By using the analytical decomposition we will get

1 n+l\4n n+l n 2
ﬁ:ﬁ{u—g(ler)an:[(bnjLBnl Je" —(d, +3,! )yu]—g..} (10)

By substituting (9) and (10) to (6), we get up to a &° (of equal accura-
cy (4))
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C, = E(g11 +HE,, ) — aﬁzn:[(1+ u)Q(bn +B,1 1)e (€ +€p)—
_(dn +6,1 nﬂ)yun (H4811 T Hs€p ):| ,
2G 2G (1)
Oy = —(822 + Hgn)_g—z @+ H)Q(bn + B, n+1)en (6 +85) -
1_H 1—M n
- (dn +5,1 nﬂ)yun (94822 + H5811):| ,
1-2n
where the constants p, =Q1+p) -1, p,=Q+pn)—u, Q= 31’
—H
From the theory of plates is known that
o’® o°® o°®
Sll:_yz’ 822=—WZ, 812:_5X6y Z, €3=84=0. (12)

The relatively small transverse deformation e,,, that enters through the
e, y, only into members of equations (4) and (11) that are proportional to a

small parameter €, should be taken up to ¢, 1.e. can be taken, as in the linear the-
ory,

3) TR LR 8203)
€p=—"(€,+€y)=— + Z. 13
oo )= 2242 @)
Then
e=Q(e, +¢5), (14)
2 |2 2 5 1,
Yu :ﬁ 3 M1(811+822)+H2811822+§812 , (15)
or with considering (12) 1 (13)
2 2
e:—Q(ZT?+ZT?jZ, (16)
8 |(d0) (do)| o do o)
Yu =y |q M ( 2} + 2 +H2_2'—2+3 Z. (17)
9" ox oy ox% oy’ \ oxoy

Where the constants p, and p, are determined by Poisson coefficient i,
which is appropriate to linear case (the endangered small deformation):
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By replacing in the formulas (4) and (11) moving through the strain in ac-
cording to dependencies (12), (16) and (17) and setting the necessary moments
by using the obtained ratios.

h h

e N | T

2 2
M, = jcsllzdz, M, = _[cszzzdz, M,, = | o,,zdz.
: : :
We obtain
R0 O’
M, =—D(W+u—2 +eD[L(x,¥) + N, (x, )], (18)
0*® 0’®
My:—D W—l—“? +8D[L(X,Y)+ NZ(X,Y)]a
e (18)
M, =—-D(l-p) oxdy +eD@—p)- Ny(X,y).
Here is
TORRNR) 3 (RT AL R
’ =\ J x> o)
O’ 0°®
Nl(X7Y):N(X’Y)'(H4y+H5W ;

O’ RO
N, (X, y) = N(X, y)-(m?wsy

0’®

oxoy

N, (X, y) =N(x,y)
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h —is the plate thickness;
N —is an even integer.

For odd n, J, :J.J.(F)z””dF =0, if only nonlinear terms in (4) and (11)

with odd indices are not adopted to describe the a skew- symmetric deformation
diagrams and, as a result, [e™], 3| are not taken in magnitude. In the latter
case [, #= 0 for odd N.

After substitution (18) into (1), we obtain the equation of physically non-
linear oscillations of the constant thickness plate, which is by using the harmon-
iC operator

3t &
:_+_
x> oy°
IS written as:
2 2 2 2
Mo+ IEO_ PO T AL voa-p L | (19)
gD o> D | &x X

Equation of physically nonlinear flexural vibrations of the rod can be ob-
tained if instead of a linear ratio
82
M=EJ—
OX?

the equality which is coming out from the linear relationship between stress and
deformation [2] will be accepted

2 2 n+1
M:EJ-ZX—?—sE-Z(an+anI”+l)-Jn-(gx—?) : (20)

Where w(x) is the deflection of the rod: J:”(F)z2

J, =I_[(F)z”*2dF, ¢— is a small parameter.

We’ll come to the equation of the rod bending vibrations with nonlinearity
by substituting the obtained expression (20) to the equation of oscillations of the
rod [1]

RO 8 ® NGO
—EJ— +g —EJ a +al"™)(—)""]. 21
aX[ I+ Fog =predsalBh(aal™)G™ ] @

A distributed external load p is small as compared to the forces of elastici-
ty and inertia forces in forced resonant vibrations. Therefore, before it is possi-
ble to put a small parameter ¢ in equations (21) and (19). Then for solving these
nonlinear equations asymptotic methods N. M. Krylov — N. N. Bogolyubov can
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be applied [2]. If the distributed load p is not small, that it is possible, for exam-
ple, in the non-resonant forced oscillations, that, by the relevant change of vari-
ables [2] the equation is need to be converted to the form when the asymptotic
methods are applied.

It should be emphasized that the problem of forced vibrations cannot be
solved if the spectrum of natural frequencies and forms of vibrations is not de-
termined. For the determination of natural frequencies and forms of the plate
and rod structures vibrations is proposed to use an approach which is based on
the variational - grid method of forming the finite-dimensional Rayleigh’s type
functional, and its minimization by a method coordinate-wise descent, which is
one of the methods of nonlinear programming [3]. For building of the necessary
functionals are invited to apply the increase stiffnesses method [3]. Then, the de-
termination of natural frequencies and forms of the mechanical system vibra-
tions comes down to minimization problem:

(Ku,u)+cli(Mzk,u)
(Mu.u)

Where (Ku,u) and (Mu,u) are the quadratic forms, that are correspond-

ing to the potential and kinetic energy of the system; K and M are the stiffness
and mass matrices, respectively, U is the vector of displacement, Z is the de-
sired form of vibrations. From the Rayleigh ratio type (2.4.15) follows that in
the calculation process there is no need to build projectors that are correspond-
ing to found eigenvector, but enough to keep in computer memory only its own
vector, and greatly simplifies its denominator. This allows to find the spectrum
of frequencies and forms with less computational costs in comparison with the
traditional approach. After the determination of natural frequencies and forms of
vibrations the problem of forced vibrations of structures can be found by ex-
panding their own forms of vibrations.

(22)

2 _ -
o, =inf _,

Conclusions

In this work the nonlinear vibrations of elastic rods and plates with taking
into account the hysteresis friction were examined. The problem was solved by a
method of decomposition on the small parameter. For the determination of me-
chanical systems natural frequencies and forms of vibrations was used the varia-
tion- grid method of forming the Rayleigh’s type functionals and their minimi-
zation by coordinate-wise descent method. This approach will allow to solve the
problem of nonlinear oscillations of elastic plates and rods, as the elements that
are used in the aircraft industry.
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