[HOOPMATUKA TA MATEMATHUYHI METOZI B MOJIEJIKOBAHHI = 2014 = Towm 4, Ne4

UDC 004.056 Informatics and Mathematical Methods in Simulation
Vol. 4 (2014), No. 4, pp. 342-348

FACTORIZATION ALGORITHMS FOR CRYPTOGRAPHIC
ANALYSIS OF ASYMMETRIC CRYPTO SYSTEMS

L.M. Timoshenko', K.V. Verbik', Ya.M. Nikolaichuk?, S.V. Ivasiev’

! Odesa National Polytechnic University,
1 Shevchenko Str., Odesa, 65044, Ukraine; e-mail: Imt0902@gmail.com
? Ternopil national economical university,
1, Lvivska Str., Ternopil, 46020, Ukraine; e-mail: stepan.ivasiev@gmail.com

Improvement of existing factorization methods is one of the most urgent problems of
modern asymmetric cryptography. RSA factorization problems (from RSA-968 no RSA-
2048) have not been solved yet. Any factorization problem has high computational
complexity and requires seeking ways to reduce this complexity for factorization methods,
including a well known Fermat’s method. This paper shows an approach — using
Chrestenson basis and Jacobi symbols — for such a reduction. The basis allows reducing the
computational complexity by reducing the length of the numbers subjected to operations.
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Introduction

Currently, asymmetric encryption is used for identification and authentication of users,
prevention of data intrusion, and protection of electronic documents against counterfeiting
and copying.

RSA system, the most known and popular public-key encryption system, is based on the
computational intensiveness of factorization problem for long integers. The cryptographic
strength of RSA system is based on the following fact: an encrypted message cannot be easily
revealed without knowledge of factors P and Q, and finding these factors and N is

considered a hardly solvable problem [1].

Today’s computer networks are high speed networks and ensure high capacity for data
processing and storage. Therefore, they require more reliable protection than stand-alone
computers, since with the increase in network speed, the time for parallel implementation of
cryptanalytic algorithms decreases. This gives a chance for unauthorized access to computer
networks. Paralleling of cryptanalytic algorithms will allow performing the cryptanalysis of
user messages not at the expense of increased capacity of an individual computer, but due to
distribution of personal computers and connecting them to computer networks, including
Internet.

Extended key length should compensate for any improvement to factorization
algorithms. The question of an asymptotic upper bound on the running time of a factorization
algorithm remains open. Currently, determining the prime factorization of a number is
considered a computationally intensive problem. However, this statement is not proved; and
this ambiguity encourages specialists to refine the existing algorithms and to develop the new
ones. The potential exists to prove the computational intensiveness of factorization. This
would guarantee the security of RSA system within a domain of keys.

Factoring a three hundred digit number is at the limit of current capabilities, whereas
factoring a number having more digits is still a task for the future. The problems of factoring
RSA-896 to RSA-2048 remain open.
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A polynomial-time algorithm for prime factorization on a quantum computer has been
already developed. The question of existence of such an algorithm for a common computer
remains one of the key open issues in number theory. Therefore, improvement in the speed of
existing factoring methods is one of the most urgent tasks in information security [2].

Purpose and tasks of the study

To increase the reliability of data-flow security in computer networks, it is required to
increase the cryptographic strength of asymmetric cryptographic security systems. The
purpose of this paper is to reduce the computational complexity of the factorization algorithm
for assessment of cryptographic strength of RSA compatible systems by improvement of
Fermat’s factorization method. To implement this purpose, the following tasks should be
solved:

1.  analysis of modern methods of solving cryptanalytic problems,
2. substantiation of the use of the system of remainder classes,
3.  improvement of Fermat’s factorization method,

4.  assessment of computational complexity of the algorithm proposed, and
5. comparative analysis of efficiencies of the improved and common Fermat’s
factorization methods.

Main Body

Factorization and discrete logarithm approaches are commonly used to solve
cryptanalytic problems for public-key encryption systems. They not only present a threat
currently, but have a potential for increase in value in the future. In [8], the following methods
for factorization of natural numbers have been discussed: Fermat’s factorization method,
Pollard’s rho algorithm, Shanks square forms factorization method, Lehman’s method,
Dixon’s algorithm, continued fraction method, quadratic sieve, elliptic curve method, and
number field sieve algorithms (special number field sieve and general number field sieve).

Depending on the complexity, factorization algorithms are generally divided into two
groups. The first group comprises exponential algorithms, with their complexity exponentially
depending on the lengths of input parameters (i.e., on the length of a binary represented
number). To denote their complexity, it is common practice to use «O notation». This
notation allows taking into account in function f(n) only the most significant elements and

neglecting the less significant elements. The second group comprises subexponential
algorithms that run in the time greater than polynomial time but less than exponential time.
While studying the operation of the algorithms, the following has been revealed: Fermat’s
factorization method is the most efficient when near factors are present; elliptic curve method
is the most efficient when a relatively small factor is present; Shanks and Pollard’s methods
are the two most effective methods when the factors are small. Therefore, Fermat’s
factorization method is the best available for common RSA compatible crypto systems [9].

The emergence of new cryptographic phenomena and methods resulted in the
emergence of new cryptographic applications of number theory. Along with elementary and
analytic number theory, algebraic number theory and analytic arithmetic geometry are
becoming more and more commonly used. Currently, quadratic sieve algorithm is commonly
used. It is an exponential and computationally intensive algorithm.

Let us consider the use of Fermat’s factorization method for large numbers. As is
known, Fermat’s factorization method is an odd number factorization algorithm that was
proposed by Pierre Fermat as early as 1643. It is effective when N is the product of two
integer numbers that are near to each other [3]. The factorization of a natural number into a
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product of primes exists and is unique up to rearrangement of the factors, as it follows from a
basic theorem of arithmetic.
Fermat’s factorization method is based on finding the two integers, x and y, satisfying

x> —y* = n, that leads to factorization n = (x— y)(x+ y). Encoding schemes are specified by

the theoretical-and-numeral bases used for representation.

Commonly used are unitary, Haar, Gray, Rademacher, Chrestenson and Galois bases.

Chrestenson basis produces a system of remainder classes and is successfully used to
develop special data compression processors and to implement high-capacity processors in
cryptographic security systems [4].

It is well known that parallel processing is the most promising approach to speed up
computation [7]. This feature is pertinent to the system of remainder classes (SRC) [2].
Although it has some shortcomings, the system ensures efficient performance of some
operations (addition, subtraction, multiplication, and exponentiation for large numbers),
which is very important, particularly when solving asymmetric cryptography problems.

Representation of decimal number N in SRC conforms to the least remainders b, of

this number in the system of mutually coprime modules p,, that is, b, = N mod p,. Here the

calculation range should be within 0<N<P-1, where P= H p; - SRC-to-decimal

i=l

conversion is performed based on the Chinese remainder theorem: N :(ZIJI.BI.]modP,
i=1

P .
where B, = M,m,, M, =— , and basis numbers m, are found from (M,m,)mod p, =1 [11].
2
The need for calculating basis numbers m, = M, ' mod p, significantly increases the
computational complexity of SRC-to-decimal conversion. The complexity of this problem is
reduced for a full SRC form (SRC FF), when all m, =1 [4]. In [5], a modified SRC FF (SRC
MFF) has been proposed, with basis numbers m; =+£1, which excludes the need of seeking

for the reciprocal number. To reduce the computational complexity of Fermat’s factorization
method, in [10] it has been proposed to use numerical Chrestenson basis that represents a
number as the remainder when this number is divided by a fixed module.

We shall apply SRC to equation

x'=y-n, (D
and perform the following conversion
x*modp = y* —nmodp. (2)
to get x°=(y°—n)mod p. In order to solve this equation, it is advantageous to use Jacobi

symbols that allow specifying explicitly whether a square root modulo is computed. This

approach reduces the computational complexity of the algorithm.

Let n>3 be an odd integer, and it is known that n = p{" p}>...p" | where p, are prime

numbers. Jacobi symbol (ﬁ) is defined as follows:

CRGIGEG)
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It follows from the properties of Jacobi symbols [1] that if z is an odd integer, and a is
represented as a = 2*a,, where g, is an odd integer, then

EREOIECOERS

This formula allows computing the Jacobi symbol without knowing the prime
factorization of n.
To find x, we need to perform the following conversion:

wa/iyz—nimodp. 3)

Then the improvement of Fermat method consists in the following: we shall deliberately
disregard the values of (y* —n) for which the root is not defined, and reduce the resolution at

the expense of modulo operation.

The flowchart of the improved factorization algorithm is shown in Fig.1.

In order to assess the complexity of the algorithm developed, we need to determine the
number of basic operations. It is worth to mention that the main computationally complex
operations of the algorithm developed are seeking for a Jacobi symbol, computation of a
modular square root, and computation of a root of the number. Table 1 presents the
estimations of complexity of the basic steps of the multidigit number factorization algorithm
developed.

Table 1.
Complexity of the basic operations of the algorithm developed
Complexity
Basic steps of the multidigit number factorization algorithm developed Valusssci)f the

operations
sqstart =Sqrt(P0) n
Difference = (sqstart+1) * (sqstart+1) nlog, n
Difference = Difference- PO n
sgstartm[i]= (sgstartm +2 ) mod Prime][i] log, n
If Jacobi symbol (sqstartm[i], Prime[i])#1 then Step 8 log22 n
If Jacobi symbol (sqgstartm[i], Prime[i])=1 then i++, Step 10 log22 n
If Sqrt(Difference) is fractional, then Step 6 n
Output of sqrt(Difference+sqstart*sqstart)+sqrt(Difference) n

Therefore, the total complexity of the algorithm developed is calculated as
O(nlog, n+2log,” n+4n) ~ O(nlog, n).

Since conventional Fermat’s factorization method is similar to the trial division
algorithm, the complexity of this method is estimated as O(n(log, n)*).

The results of our investigations show that the algorithm developed has lower
computational complexity than the conventional one, which is well seen in a graph showing
the algorithm complexity versus the length of the input number (Fig. 2).
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Since the operating efficiency of a factorization algorithm is estimated through its
computational complexity, the improved Fermat’s factorization method developed is more
efficient than the conventional one.

Input of Py

!

Input of Prime[0...n]

v

‘ i=0 \
v

‘ sqstart=Sqrt(Py) ‘
v

‘ sqstartm=Sqrt(Po) ‘

v

‘ Difference=sqstart*sqstart ‘

‘ Calculation of leference

‘ Difference=Difference-P, ‘

sqrt(Difference)
is fractionale

‘ sqstart=sqstart+2

‘ > Output of
Y sqrt(Diference+

sqstartm[i]= (sqstartm +2 ) sqstart*sqstart)+
mod Primel[i] sqrt(Diference)
J=Jakobi (sqstartm [i],
Prime[i])

5

Figure 1. Flowchart of the improved Fermat’s factorization algorithm

The operating efficiency gain of the algorithm developed compared to the conventional
one 1s then defined as their computational complexity ratio

n(log, n)’

E = flog, n)

=log, n

Therefore, the efficiency gain of the algorithm developed increases with the increase in
the bitlength of the number.

Based on the algorithm proposed and using C++ Builder 6.0 environment, we have
developed a software product to perform factorization of multidigit numbers for specified
module p.

For operations with extra long variables, a special A. Lenstra’s library (involving Lip.h
and Lip.c) was used. This library is optimized for use in crypto systems and incorporates a set
of functions which we used in the application developed. The results of numerical
experiments are in agreement with theoretical calculations and validate the scientific approach
proposed.
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Therefore, the efficiency of the Fermat’s factorization method improved to reduce the
computational complexity of factorization has been proved theoretically and experimentally.
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Figure 2. Computational complexity of the algorithm developed compared to that of the
conventional one.

Conclusion

The basic factorization methods have been discussed and it has been revealed that
Fermat’s method is the most efficient when near factors are present. Additionally, the use of
Chrestenson basis for the improvement of Fermat’s factorization method for multidigit
numbers has been substantiated.

Fermat’s method has been improved using Chrestenson basis and Jacobi symbols,
which allowed reducing its computational complexity.

Chrestenson basis allows reducing the computational complexity by reducing the length
of the numbers subjected to operations,

Jacobi symbols allow not to use the numbers for which the square root modulo does not
exist.

Thus, the operating efficiency gain of the algorithm developed compared to the
conventional one equals log, 7 .

Therefore, the improvement proposed in this paper for Fermat’s method is a promising
one for the assessment of the cryptographic strength of asymmetric cryptographic security
systems.
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AJITOPUTMU ®AKTOPU3ALII 1JI51 KPUIITOAHAJII3Y ACUMETPUYHUX KPUIITOCUCTEM
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Y 1ocKOHAJIEHHS ICHYIOUMX METO/IB (haKTOpH3allii € O/IHIEI0 3 HAWOLIBII aKTyalbHHX 3a/1a4
cydacHol kpunrtorpadii. 3amaui dakropmzanii RSA Bim RSA-968 no RSA-2048
3aJMIIAIOTBCA  BiAKpUTHMH. Ha cporogni 3amada Qakropusamii Mae  BENHKY
00UYHUCITIOBANIBHY CKIIAHICTh. CTaBUThCS Ba)XJTMBE 3aBJAaHHS IIOMIYKY IUIAXIB 3MEHIICHHS
OOYMCITIOBAIBHOI CKJIAJHOCTI, y TOMY 4YHCHi, i Bimomoro wmerony Depma. Jlane
JIOCITIJPKEHHS! TIPOTIOHYE OJIMH 3 HANPSIMIB HOro BUPILIEHHS. 3aIIPOIIOHOBAHO CKOPHUCTATHUCS
TEOPETHKO-YMCIOBUM Oa3ucoM KpecreHcoHa, SKHi J03BOJISIE 3MEHIIUTH OOYHCITIOBATIbHY
CKJIJIHICTh 334 PaxyHOK 3MEHIICHHS PO3PSIHOCTEH YHuCeN, Haj SIKUMH TPOBOISTHCS
orepartii.

KarouoBi caoBa: daxropusaris, meron ®epma, 6azuc Kpectencona, cumpon ko0i,
00YHMCITIOBANIbHA CKIIAJHICTh, acUMeTpu4Ha Kpunrorpadis, RSA.
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Y CcOBepIICHCTBOBAHUE CYIICCTBYIOIIUX METOMOB (haKTOPHU3AIMK SIBISCTCS ONHOW W3
HaunOoJee akTyalbHbIX 33124 COBpeMeHHOU Kpunrorpaduu. 3aaaun Gpakropuzanuu RSA ot
RSA-968 1o RSA-2048 ocratorcs OTKpHITBIMH. Ha ceromusiuiHuii JeHb 3ajaada
(haxTopH3aIMy UMeeT OOJIBINYIO BRIYUCIUTEIBHYIO CIIOKHOCTh., CTaBUTCS BaKHOE 3aJIaHKEC
MOMCKA ITyTell YMEHBIICHUS BBIUUCIUTECIBHON CIOKHOCTH, B TOM YHCIIC, U U3BECTHOTO
Metona Depma. /laHHOE MCCIEAOBAaHUE MpeIIaracT OJAHO M3 HANPABICHUI €ro peIIeHus.
[IpemiokeHO BOCIHOIB30BATHCS TCOPETUKO-YHMCIOBBIM 0OasncoM KpecTeHCOHa, KOTOpBIH
MTO3BOJISICT YMEHBIIUTh BHIYUCIIUTEIILHYIO CIIOKHOCTD 33 CUET YMEHBIIICHUS pa3psaHOCTEH
YKCel, HaJl KOTOPBIMU TIPOBOJISITCS ONEPAIIUU.

KiroueBnie ciioBa: daxropusarus, meron depma, 6asuc Kpecrencona, cumon Skobwu,
BBIUHCITUTEIbHAS CIIOKHOCTh, aCCUMETpHUHas Kpunrorpadus, RSA.
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