УДК 519,85(075.8)

Informatics and Mathematical Methods in Simulation Vol. 5 (2015), No. 4, pp. 389-395

# УСКОРЕННЫЙ АЛГОРИТМ ОДНОСТОРОННЕГО ВЕТВЛЕНИЯ ДЛЯ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ С БУЛЕВЫМИ ПЕРЕМЕННЫМИ

#### Б.И. Юхименко

Одесский национальный политехнический университет, просп. Шевченко, 1, Одесса, 65044, Украина; e-mail: pm1987pm@gmail.com

В работе приведен ускоренный алгоритм решения задачи линейного программирования с булевыми переменными. Алгоритм относится к классу алгоритмов метода ветвей и границ с односторонним ветвлением. Особенностью является то, что приведен способ получения исходного варианта решения и способ приоритетного ранжирования компонент вектора решения. Дан пример определения оптимального решения согласно предполагаемому алгоритму.

Ключевые слова: отсеивание, приоритетная очередь, одностороннее ветвление.

#### Введение

Принятие решений в любой сфере деятельности человека неизбежная процедура. Решение всегда выбирается так, чтобы оно было более эффективным, а в некоторых случаях и оптимальным. Такое решение достигается путем сравнения отдельных альтернативных решений, количество которых может быть как бесконечным, так и конечным. С математических позиций конечное множество решений имеют дискретные задачи оптимизации. Дискретная оптимизация, как область науки, является постоянно развивающейся и привлекает множество специалистов. В настоящее время насчитывается большое количество алгоритмов, методов и подходов решения задач данного класса.

#### Цель статьи

Значительное место среди методов решения задач дискретной оптимизации занимают комбинаторные методы. В своей сущности эти методы используют конечность множества вариантов. Комбинаторные методы наиболее простые и достойны в практической реализации. Хорошо известный метод ветвей и границ [1] также относится к классу комбинаторных методов, является переборным методом, по своей сложности относится к классу NP-полных алгоритмов. В них полный перебор вариантов заменяется частичным перебором. Эффективность предопределяется выделением подмножества перебираемых (перспективных) вариантов. Чем это подмножество содержит меньше вариантов, тем алгоритм работает эффективнее в смысле скорости сходимости. Любой способ увеличения отсеивания вариантов в какой-то степени улучшает скорость сходимости. В данной статье приводится алгоритм метода ветвей и границ с односторонним ветвлением. Увеличение отсеивания неперспективных вариантов, в первую очередь, получается за счет изначального определения исходного варианта. Приведена очередь приоритетов компонент вектора решений. Это упрощает перебор вариантов и ускоряет получение оптимального.

## Анализ основных исследований и публикаций

В известных алгоритмах метода ветвей и границ для решения задачи целочисленного линейного программирования (ЦЛП) отсеивание неперспективных вариантов ведется различными способами.

В алгоритме Лэнд и Дойч [2], имеющего в основе симплекс метод, поочередно исключаются нецелочисленные значения в районе оптимального значения нецелочисленной компоненты. Пусть эта компонента  $x_{\kappa}$ . Множество вариантов делится на два подмножества. В одном подмножестве будут рассматриваться варианты, в которых  $x_{\kappa} \leq [x_{\kappa}]$ , а во втором  $-x_{\kappa} \geq [x_{\kappa}] + 1$  - где  $[x_{\kappa}]$  - целая часть  $x_{\kappa}$ . Варианты, в которых компоненты  $x_{\kappa}$  находится в интервале  $[x_{\kappa}] < x_{\kappa} < [x_{\kappa}] + 1$  не будут рассматриваться.

В алгоритме Литла и др. [3] для решения задачи о коммивояжере, которого можно считать предком метода ветвей и границ в целом, предусмотрено довольно сильное правило отсеивания вариантов. Подмножество вариантов, содержащее неперспективный переезд между парой городов, довольно часто безвозвратно исключается из рассмотрения. Не перспективность переезда оценивается потерей доли значения целевой функции в случае не включения рассматриваемой пары в цикл объезда городов.

В классических алгоритмах метода вервей и границ, использующих правило расширения — суждения множества вариантов [4] для получения оценок и последовательное построение решения [5] как средство разбиения множества вариантов на подмножества отсеивание вариантов осуществляется за счет удачно подобранного способа конкретизации переменных. В работе [6] экспериментально было показано, что на скорость сходимости значительной степени влияет процедура определения компоненты, включаемой в решение и являющейся параметром разбиения множества вариантов на подмножества. На отсеивание вариантов также влияет точность получаемых оценок. Признак оптимальности, практически не подвергавшийся обновлению от момента появления метода, выражается через оценки подмножеств вариантов. Чем ближе значение оценки подмножества к значению целевой функции варианта, тем больше подмножеств исключается из рассмотрения и быстрее выявляется оптимальность варианта.

Алгоритм Балаша [7] с так называемым односторонним ветвлением имеет другой способ отсеивания вариантов. Конкретизуются только единичные компоненты вектора решений. Компоненты принимают нулевые значения, если они не могли стать единичными по следующим причинам. Во-первых, из-за жесткости системы ограничений. Вторая причина состоит в том, что присвоение единичного значения не позволит улучшить значение целевой функции по сравнению с уже имеющимся рекордом. Предложенный автором алгоритма способ выбора компонент-претендентов на значение «1», довольно хороший и оптимальное решение получается быстро. Прием, заменяющий признак оптимальности, не достаточен. Процедура подтверждения того, что найденный вариант оптимальный, часто более вычислительноемкий, чем сама процедура его определения.

Способ отсеивания вариантов, стоящий во главе признака оптимальности в алгоритмах с односторонним ветвлением, полностью зависит от поиска перспективных компонент, которым будет присвоено значение «1». Модификации таких алгоритмов «усиливающих» процедуру отсеивания вариантов, увеличит скорость сходимости.

Ниже будет приведен алгоритм с односторонним ветвлением. Алгоритм навеян идеями алгоритма Балаша, однако имеет некоторые особенности, улучшающие скорость сходимости. Изначально определяется вариант решения, значение целевой функции которого рассматривается как рекорд. Процедура определения исходного варианта в вычислительном смысле несложная. В основу этой процедуры заложен способ упорядочения по перспективности компонент вектора решений. Сама перспективность оценивается величиной суммарных неувязок в системе ограничений, умноженной на относительную величину соответствующей компоненты вектора целевой функции. Такого типа упорядочение компонент использовалось в алгоритме с двухсторонним ветвлением и значительно увеличило скорость сходимости [6]. Остальная часть алгоритма это подтверждение оптимальности полученного варианта. Если вариант окажется не оптимальным, то идет его улучшение, используя те же оценки перспективности компонент. Не перспективные компоненты отсеиваются.

#### Основная часть

Алгоритм используется для решения задач ЦЛП в постановке

$$Z = \max \sum_{j=1}^{n} c_j x_j$$

при ограничениях

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \quad i = \overline{1, m};$$

$$x_{j} \in \{0,1\} \quad j = \overline{1, n},$$

где все  $a_{ij}$ ,  $b_i$  и  $c_{\,j}$  являются неотрицательными числами.

Введем некоторые обозначения и утверждения. Индексы компонент, претендентов на значения «1» составляют множество  $V_i^k$ , где  $\kappa$  шаг алгоритма

$$V_j^{\kappa} = \left\{ j / \left( b_i^{\kappa} - a_{ij} \right) \ge 0, \quad \forall_i \right\};$$

Оценка перспективности компонент  $x_{i}$  для  $j \in V_{i}^{\kappa}$  определяется по формуле

$$p_{j} = \sum_{i=1}^{m} \left( b_{i} - a_{ij} \right) \cdot \sqrt{\frac{c_{j}}{\min c_{j}}}, \ j \in V_{j}^{\kappa}.$$

По величине  $p_j$  определяется очередь приоритетности компонент  $x_j$ , принимающих значение «1». Индексы j составляют множество PX и определяют приоритетную очередь компонент  $x_j$ . Множество PX является доминирующим при построении вектора  $X = \left\{x_j\right\}_{j=\overline{1,n}}$  на любом уровне работы алгоритма. Значение целевой функции  $R = \sum_{j=1}^n c_j x_j$  называется рекордом, если оно наибольшее среди уже пересмотренных вариантов.

B — вектор правых частей в системе ограничений,  $B^k$  — рабочий вектор, используемый на k-ом шаге алгоритма. Во второй части алгоритма используются еще два массива:  $\widetilde{P}$  - индексы нулевых компонент, имеющихся в варианте X и  $\overline{X}$  рабочий вариант решения задачи.

Ниже приводится описание самого алгоритма, состоящего из двух частей:

- определение исходного варианта и рекорда;
- проверка отсутствия лучшего варианта и формирования нового варианта.

Первая часть

- Шаг 1. Формирование массива оценок перспективности компонент вектора решений  $P = \{p_i\}$   $j = \overline{1,n}$ ;
- Шаг 2. Упорядочение компонент  $p_{j}$  массива P в порядке не возрастания и формирование массива индексов  $PX = \{j_i\}_{i=1,n}$

Шаг 3. Определение варианта решений  $X = \left\{x_j\right\}_{i=\overline{1}^n}$ .

3.1. 
$$\kappa = 1$$
;  $b_i^k = b_i \quad \forall_i$ ;

3.2. 
$$j = PX(k)$$
;

3.3. если 
$$(b_i^k - a_{ij}) \ge 0$$
  $\forall_i$ , то  $x_i = 1$ ;  $b_i^k = (b_i^k - a_{ij})$   $\forall_i$  и к 3.5;

3.4. 
$$x_i = 0$$
;

3.5. 
$$k = k+1$$
; если  $k \le n$ , то к 3.2;

3.6. вычисление рекорда 
$$R = \sum_{i=1}^{n} c_i x_i$$
.

Вторая часть алгоритма, связанная с проверкой о возможности улучшения варианта X и если это возможно, то улучшение.

Шаг 1. Формирование массива  $\widetilde{P}$  индексов нулевых компонент варианта X .

1.1. 
$$i = 1$$
;  $l = 0$ ;

1.2. если 
$$x_j > 0$$
, то 1.4;

1.3. 
$$l = l + 1$$
;  $P_l = j$ ;

1.4. 
$$j = j + 1$$
, если  $j \le n$ , то 1.2;

Шаг 2. Исходные условия.

$$k=1$$
:

2.1. 
$$Z = 0$$
;  $\bar{x} = \emptyset$ ;

2.2. 
$$b_i^k = b_i \quad \forall_i$$
;

2.3. 
$$j = \tilde{P}(k); \quad \bar{x}_i = 1;$$

2.4. 
$$b_i^k = (b_i^k - a_{ij}) \ \forall_i$$
;

Шаг 3. Формирование множества хороших компонент. 3.1. 
$$V_j^k = \left\{r = \overline{1, n} \left/ \left(b_i^k - a_{ir}\right) \ge 0 \quad \forall_i \right.\right\};$$

3.2. если 
$$V_i^k = \emptyset$$
, то шаг 7;

Шаг 4. Формирование варианта решения.

$$s=1$$
:

4.1. 
$$r = P_r(s)$$
;

4.2. если 
$$(r = j)$$
 или  $(r \in V_i^k)$ , то шаг 5;

4.3. 
$$\bar{x}(r)=1$$
;  $Z=Z+C_r$ ;  $b_i^k = (b_i^k - a_{ir}) \ \forall_i$ ;  $V_j^k = V_j^k - r$ ;

4.4. если 
$$Vk_{j}^{\kappa} = \emptyset$$
, то шаг 5;

4.5. если 
$$Z + \sum_{j \in V_i^k} c_j \le R$$
 , то шаг 7;

Шаг 5. s = s + 1; если  $s \le n$ , то 4.1;

Шаг 6. Если Z > R, то R = Z;  $X = \overline{X}$ ;

Шаг 7. k = k + 1; если  $k \le l$ , то 2.1;

Шаг 8. R и X являются результатом.

Пример. Найти оптимальное решение задачи в постановке

$$Z = \max \left( 4x_1 + 7x_2 + 2x_3 + x_4 + 3x_5 + 5x_6 \right)$$

## при ограничениях

$$\begin{cases} 2x_1 + 5x_2 + x_3 + 2x_4 + 3x_5 + 4x_6 \le 14 \\ 4x_1 + 3x_2 + 2x_3 + 4x_4 + 2x_5 + 3x_6 \le 11 \\ x_j \in \{0,1\} \quad j = \overline{1,6} \end{cases}$$

 Таблица 1.

 Последовательное решение рассматриваемого примера

| Переменная и значение     | $b_i^{\kappa}$ | Z       | $V_j^{\kappa}$ | Ситуация                                     |
|---------------------------|----------------|---------|----------------|----------------------------------------------|
| $\frac{x_2 = 1}{x_2}$     | 12<br>7        | 7       | {1,3,4,5,6}    |                                              |
| $x_6 = 1$                 | 8<br>4         | 7+5=12  | {1,3,4,5}      |                                              |
| $x_1 = 4$                 | 2 0            | 12+4=16 | Ø              | x = (110001); R = 16.                        |
| $x_3 = 1$                 | 13<br>9        | 2       | {1,2,4,5,6}    | $\widetilde{P} = \{3, 4, 5\}$                |
| $x_2 = 1$                 | 8<br>6         | 2+7=9   | {1,4,5,6}      |                                              |
| $x_6 = 1$                 | 4 3            | 9+5=14  | {4,5}          | (14+1+3)>16                                  |
| $x_5 = 1$                 | 1<br>1         | 14+3=17 | Ø              | x = (011011); R = 17.                        |
| $x_4 = 1$                 | 12<br>7        | 1       | {1,2,3,5,6}    | $\widetilde{P} = \{4,5\}$                    |
| $x_2 = 1$                 | 7<br>4         | 1+7=8   | {1,3,5,6}      |                                              |
| $x_6 = 1$                 | 3<br>1         | 8+5=13  | Ø              | 13 < 17                                      |
| $x_5 = 1$                 | 10<br>8        | 3       | {1,2,3,4,6}    | $\widetilde{P} = \{5\}$                      |
| $x_2 = 1$                 | 5<br>5         | 3+7=10  | {1,3,4,6}      |                                              |
| <i>x</i> <sub>6</sub> = 1 | 1 2            | 10+5=15 | {3}            | $15+7=17$ улучшений нет $\widetilde{P}=\phi$ |

Оценка перспективности каждой искомой величины

```
\begin{split} P_1 &= \left(14-2+11-4\right) \cdot \sqrt{4} = 19\,\sqrt{4} = 38.0\,;\\ P_2 &= 17\,\sqrt{7} = 45.0\,;\\ P_3 &= 22\,\sqrt{2} = 31.1\,;\\ P_4 &= 19\,\sqrt{0,5} = 13.4\,;\\ P_5 &= 20\,\sqrt{3} = 34.6\,;\\ P_6 &= 18\,\sqrt{5} = 40.2\,.\\ P_x &= \left\{2,\,6,\,1,\,5,\,3,\,4\right\}. \end{split} Оптимальное решение X = \left(\,0\,1\,1\,0\,1\,1\,\right); \quad Z = 17\,.
```

#### Заключение

Приведенный алгоритм имеет ряд положительных моментов по сравнению с алгоритмами с односторонним ветвлением. К ним относится определение изначального варианта решения и рекорда — значение целевой функции. Далее, приведенная очередность включения в решении компонент с единичными значениями также значительно улучшает скорость сходимости. Сам перебор вариантов построен на замене нулевых значений вектора решений поочередно единичными, что значительно уменьшает количество перебираемых вариантов. Проведенный пока не большой числовой эксперимент дал утешительные результаты. Конечно, проверить работу необходимо на большом количестве числовых задач и, по возможности, дать теоретическое обоснование в смысле скорости сходимости. Работа над алгоритмом продолжается.

## Список литературы

- 1. Корбут, А.А. Дискретное программирование / А.А. Корбут, Ю.Ю. Финкельштейн. М.: Наука, 1969. 368 с.
- 2. Land, A.H. An automatic method of solving discrete programming problems / A.H. Land, A. G. Doig // Econometrica, 1960. V. 28. №3. C. 497-520.
- 3. Little, J.D. C. An algorithm for the traveling salesman problem / K.G. Murty, D. W.Sweency, C. Karel // Operat. Res., 1963. T. 11. №6. C. 972-989.
- 4. Шкурба, В.В. Конструктивные подходы к решению задач дискретной оптимизации / В. В. Шкурба // В кн. «IV симпозиум по экстремальным задачам» Тезисы докладов, Каунас, 1969. С. 15-17.
- 5. Михалевич, В.С. Последовательные алгоритмы оптимизации и их применение, І, ІІ / В.С. Михалевич // Кибернетика. 1965. №1. С. 45-55; №2. С. 85-89.
- 6. Юхименко, Б.И. Сравнительная характеристика алгоритмов метода ветвей и границ для решения задач целочисленного линейного программирования / Б.И. Юхименко, Ю.Ю. Козина // Тр. Одес. политехн. ун-та. 2005. Вып. 2. С. 199-204.
- 7. Balas, E. An addictive algorithm for solving linear programs with zero-one variables / E. Balas // Operat. Res. − 1965. − V.13. − №4. − C. 517-546.

# ПРИСКОРЕНИЙ АЛГОРИТМ ОДНОСТОРОННЬОГО ГАЛУЖЕННЯ ДЛЯ ВИРІШЕННЯ ЗАВДАНЬ ЛІНІЙНОГО ПРОГРАМУВАННЯ З БУЛЕВИМИ ЗМІННИМИ

#### Б.І. Юхіменко

Одеський національний політехнічний університет, проспект Шевченка, 1, Одеса, 65044, Україна; e-mail: pm1987pm@gmail.com

В роботі даний невиликий огляд комбінаторних методів, які представлені в початкових видяннях. Наведені передумови до необхідності удосконалення математичного апарату розв'язання задач цілочисельного лінійного програмування. Основною розробкою  $\epsilon$  алгоритм з одностороннім гілкуванням для розв'язання задачі лінійного програмування с булевими змінними. Дана покрокова структура алгоритму, вирішений числовий приклад.

Ключові слова: відсіювання, пріоритетна черга, одностороннє розгалуження.

# SINGLE ACCELERATE THE ALGORITHM BRANCHES FOR SOLVING LINEAR PROGRAMMING PROBLEMS WITH BOOLEAN VARIABLES

#### B.I. Ukhimenko

Odessa National Polytechnic University,

1, Shevchenko Ave., Odessa, 65044, Ukraine; e-mail: pm1987pm@gmail.com

The paper presents a short review of combinatorial methods presented in the primary publications. Preconditions are listed for the need to improve conditions of the mathematical tool of solving problems of integer linear programming. A one-way branching algorithm is the main development is for solving problems of linear programming with Boolean variables. The paper presents turn-based structure of the algorithm, was solved a numerical example.

**Keywords:** screening, priority queue, unilateral branching.