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This paper presents the results of research, formalization and mathematical justification of
the Fibonacci Q-matrix coding method. This method allows finding errors in the encoded
message with high probability and correcting them in certain cases. The notes on algorithm
implementation are given. The developed “block Q-matrix” method based on the standard
method is described. The comparative analysis of the algorithms is presented.
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Introduction

The question of effective encoding and protection of the data in communication
channels is rather important in the modern IT sphere.

Most of the known error detection and correction codes make it possible to restore
single bits or combinations of bits [1-4], which is surely useful for many fields of application.
However, the presented “Fibonacci Q-matix” coding method uses an entirely different
approach: it allows restoring one of the predefined parts of the message — no matter how big is
— given the condition that the damage affected only that part. The flaw is that errors, even
small ones, in other parts of the message make the whole message unreadable.

However, there is an opportunity to develop new methods based on the standard Q-
matrix method. The developed “block Q-matrix method” presented in the paper divides the
message into fixed-length segments and applies the standard algorithm to them. That allows
correcting errors scattered throughout the whole message. Also, in case method fails to restore
some damaged segments, only that segments becomes unreadable.

The aim of the research is to study and evolve the coding methods based on the
Fibonacci numbers.

The task of the research is to formalize, justify mathematically and analyze the
Fibonacci Q-matrix coding method, analyze the ways to improve the algorithm, develop a
program library which implements the method and make the characteristic of its work.

«Fibonacci Q-matrix» properties

Fibonacci Q-matrix is a following square 2x2 matrix [5]:

1
2= ol (D

Property 1. There is a property which connects the Q-matrix with the Fibonacci
numbers:
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Qn_ Fn+1 Fn o)
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where F; is the Fibonacci number i.
This can be proved by the induction method.

, |1+l 1+0] |2 1
n=2: Q0 = = .
1+0 1+0 11
The elements of the Q” matrix are the corresponding Fibonacci numbers: F, = F, =1,
F,=2.

Fn+l F:l +1
Assume that Q" = F and calculate Q" .

n n—1

Qn+1 Qn Q Fn+l +Fn Fn+l +O Fn+2 Fn+l
= X = = .
Fn+l+0 Fn+0 Fn+l Fn

The property is proved.
Property 2. det(Q") =(-1).
To prove it a determinant of Q-matrix can be calculated:

det(Q)=1x0—1x1=-1.

Using a property stating that a determinant of the product of two square matrixes of the
same size equals the product of their determinants [8]:

det(Q") = (=1)". 3)

Consequence. As det(Q")=F, F,_, —F’=(-1)", then for each three consecutive
Fibonacci numbers the following is true:

F . F_ —F>=(-1". 4)

n+l" n-1

Property 3. With the help of the cofactor method [8] the following presentation of the
Q™" matrix can be acquired:
Fn—l - Fn (_l)nFn,l (_1)n+1 Fn
= n+l n ) (5)
— Fn F Ca)) Fn (-1 Fn+1

Q"= (—1)”{
n+l
The standard Fibonacci Q-matrix coding method

Let’s look at the standard Fibonacci Q-matrix coding method [5].
Assume there is a message M , which can be divided into 4 parts, represented in
numeric values as a 2 x2 matrix. Each element m, is a nonnegative integer number
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m - m,
M:{ } (6)

my m,

Encoding. An encoded message M’ can be fetched in the following way.

Fam +Fm, Fm +F1m2} {mll mﬂ 7

M':M}( "= g
¢ [F+lm3+F:1m4 Eomy+ F,m,

n

’ r|
Wl3 m4

As F, and m, are nonnegative integer numbers, then the elements m, of the encoded

matrix M’ are nonnegative as well.

The power of the Q-matrix can be a random positive number and it serves as an
encryption key of this method.

Decoding. The primal message M" can be fetched from the decoded message M’ in
the following way.

M":M'xQ‘":{mlﬂ mﬂ [( D' E,mi + (=)™ Fmy - (D)™ Fmi +(=1)" F+1m2} )

(1Y F i+ (<) Ept, (1) Eym + (1) F
We need proof that A" = M . For this we must prove that each m equals m;, :

=(=1)"F _m +(=1)""Fm} =
=(-)"F_F, m+)"F_Fm+-)"Fm+(-)"FF_m,=
=(-)"F,_F, . m—(-1)'F'm +(-1)"F,F,_m,—(=1)"F.F_m,=
= (=0)"'m(F, F, = F)) = (D" x(=)"m =m;
=(=D)""Fm/+(=1)"F, m, =
=(-)""EF m+)"Erm, +(-)'F, Fm +(-1)"F, F_m, =

n+l n+l

=(=D"F,, Fm —(=D)"F,  FEm+(=D)"F, F,_m,—(-1)" Fzmz

werl
=(=0)"'my(F, F, = F}) = (=1)" x(=1)"m, = m,;
=(=1)"F,_mi+ ()" F,m, =
=(-)'F,_F, m+(-1)'F_Fm,+)"EF’m,+(1)"FF _m,=
=(-)'F,_F, m—(-1)"F’m,+(=1)"FF,_m,—(=1)"F.F _m,=
=(=1)"'my(F, F, = F) = (1) x (=1)"my = my;
my = (=1)""Fmi+(=1)"F,, m, =
=(-)""EFE m+()"E’'m, +(~1)"F,, Fm,+(-1)"F, F _m,=

n+l n+1
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=(=1)"F, F,my— (=1)'F, \Fm, +(=1)"F, \F, jmy— (=1)" F,/m, =

+1 +1

=(-1)'m,(F,F,_ —F)=)"x(-1)"m, =m,.

n+l" n-1

Error detection and correction

One of the features of this coding method is the possibility of detecting and correcting
the errors. From (3) it can be known that:

det(M") = (=1)" det(M) .

By passing the value of the determinant with the message, we can allow the receiver to
check whether it matches the determinant of the received matrix before starting to decode. If
the message is corrupted, one or more of the elements of the matrix will differ, and the
determinants won’t match.

As det(M') =mm, —m,m;, we can restore the corrupted part of the message, if the

determinant and the other three parts are unharmed.

. mim} + det(M' . mm, +det(M’
m1: 2°7%3 ( ),mzz 1"7°"4 ( )’

! !
my m;

! ! ! ! ! A (9)
m = mymy + det(M )’ m = mim; + det(M") .

! !
m, m,

If it is not obvious which part of the message was corrupted, the correction for each part
can be calculated. The corrected part must be integer, so with high probability there will be a
single matching result.

If no correction provides integer results, then two or more parts of the message were
damaged, and the restoration is likely impossible.

Example:
65 115 ., [13 8
M = , 0" = )
104 97 8 5
1765 1095}

M'=MxQ° =
2128 1317
det(M") = -5655.

Let’s add a «corruption» into the second part of the message, changing it to 1112:

1765 1112
ME}"V — ,
2128 1317

det(M ") = —41831 % —5655.

Let’s assume that the first part is damaged, and try to correct it:
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,  mymy+det(M')  1112x2128-5655

, : =1792.47.
m, 1317

The result is non-integer. Let’s assume the second part was damaged:

= mim; +det(M") 1765x1317 —5655

4 , =1095.
m, 2128

Let’s assume the correction is true:

o T1765 1095] [5 -8 [65 115
M"=M'xQ" = x -
2128 1317| |-8 13| [104 97 |.

So, we have restored the message, where one of the parts was corrupted.

Notes on algorithm implementation

The following notes are given for the implementation of the Fibonacci Q-matrix coding
method.

1. The encrypted parts of the message along with the determinant are translated into the
Fibonacci code [7]. Because each Fibonacci code contains only two consecutive 1-digits,
which are located at the end of the code, it can help to determine which parts of the message
were corrupted. Also, if a binary data transmission is used, we won’t have to translate the
encrypted values into the binary numeral system, because the Fibonacci code consists only of
0- and 1-digits. In this way we avoid unnecessary calculations while transforming numbers
from one numeral system into another.

2. The encrypted parts are brought to the common length by adding 0-bits to the lesser
parts. The message is increased by 1-2 bytes in most cases this way. In computer
implementation developed for this method the common length of each part is increased till it
becomes divisible by 8, so that each byte has only one corresponding part of the message.

3. The writing of encoded data is done in the following way. The size of the
determinant in bytes and its sign are written. The determinant is written. The decoded parts
are written.

4. The reading of encoded data is done in the following way. The size of the
determinant and its sign are read. The determinant is acquired by reading the number of bytes
equal to its size. The rest of the message is divided into 4 equal-sized parts, each one has its 0-
bits deleted from the end until the first 1-bit is met.

5. The data read is checked for the correct Fibonacci codes. If the determinant is
damaged, the correcting of other errors will be useless. If the Fibonacci code of the
determinant is correct, and one part of the message is damaged, that part is restored. If the
Fibonacci codes of the determinant and the encoded parts are correct, but the received
determinant doesn’t match the calculated determinant, an attempt to restore each part is made,
and an integer result is treated as a correct one. If no attempt gave the integer result, the
message is decoded with errors.

Block Q-matrix algorithm

The following algorithm has been developed on the basis of studied properties of
Fibonacci Q-matrix and the Fibonacci code.
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Assume there is a message M , which can be divided into segments 4 bytes each:

M = <{bllb12b13bl4’bZleZb23b24 ""’bnlanbn.’,bnét}’O < bi/' < 255 - (10)
Let’s encode the message M into M' by applying the standard Fibonacci Q-matrix
method for each quad of bytes

M'={B|,B,,...,B}, (11)

where B/ is a group of bytes b, b,,b,,b,, encoded with the help of the standard Fibonacci Q-

matrix method.
The power of Q-matrix n=35 is chosen for the implementation of this method. The
implementation of the standard Fibonacci Q-matrix method is done as described previously.
To decode the message, the standard Q-matrix method needs to be applied for each
encoded segments B’ . However, in order to separate B; correctly in the encoded message, the

length of these segments must be a fixed length of & bytes. To find it, we’ll calculate the
largest possible values of determinant and the elements of the encoded matrix.

The biggest value of determinant in case n=5 is achieved when
det(M") = mim), —m,m; = 255x255—-0x0=65025. Translated into Fibonacci code it will be

written as 100001000101010000001011; the length of this presentation is 24 bits, i.e. 3 bytes.
The biggest value of the element of the encoded matrix is achieved when
m,=F m +Fm, =8x255+5x255=3315. Translated into Fibonacci code it will be

written as 001010100100010011; the length of this presentation is 18 bits. All four elements
of the matrix will have their collective length no more than 9 bytes.

Therefore, considering that at least 1 more byte is needed for the sign and the size of
determinant, we can say that each encoded segment B won’t exceed k=13 bytes. If the

segment is smaller, the missing bits are filled with the values which can be ignored by the
decoding algorithm (for example, 0-bits).

So, the optimal block Q-matrix method produces 104 bits (13 bytes) of encoded
message from each 32 bits (4 bytes) on the initial message.

It is worth noting that the computer implementation, the work of which is described
later in the paper, uses the implementation of the standard Q-matrix method with more
massive amount of output data (providing divisibility by 8 for encoded parts), and each 4
bytes are encoded into 18 bytes.

Interleaving modification

The described algorithm can handle the errors in different parts of the message,
restoring each 4-byte segment if the damage affected only one byte of this segment. However,
this means that the errors must affect only single bytes, not consecutive ones. In any case, the
undamaged segments of the message will remain readable.

To increase the effectiveness, the algorithm is modified with the help of interleaving
[9]: the encoded bytes are shuffled in certain order, and the consecutive damaged bytes will
affect different 4-byte segments in the end.

In the computer implementation, the first bytes of each segment are placed at the
beginning, then the second ones, and so on, till the last bytes. This process allocates bytes of
each segment equally, and the errors will need to “guess” several bytes of each segment to
prevent it from restoration. Even if it happens, only the 4 bytes of this segment will become
unreadable in the decoded message.
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Results of the numerical experiments

A C++ library has been developed, which performs encoding and decoding with the
help of the standard Fibonacci Q-matrix method and the block method, applying the notes
listed above.

The ability to correct errors has been tested for each algorithm. The given number of
byte damages has been generated for the message: in one case the single damaged bytes were
randomly scattered throughout the message, in another case the consecutive bytes were
damaged in the random position. For each number of errors 100 tests were handled, which
calculated the number of completely restored message cases.

The message was 576 bytes long. For the standard Fibonacci Q-matrix method (n=5)
the encoded message was 1250 bytes. For the block Q-matrix method it was 2592 bytes. The
test results are shown on the diagrams on fig. 1 and fig. 2. The comparative analysis of the
work of the algorithms is presented in table 1.

120%
—— single bytes damaged
100%

consecutive bytes damaged
80%
60%

40%

20%

The cases of complete restoration

0%
1 2 3 4 5 10 20 30 40 50 75 100 125 150 175 200 300 400 500
1% 4% 12% 24% 40%

The number of damaged bytes

Fig. 1. The cases of complete restoration of the initial message in the standard Fibonacci
Q-matrix method
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The cases of complete restoration
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The number of damaged bytes

Fig. 2. The cases of complete restoration of the initial message in the block Q-matrix method
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The standard Fibonacci Q-matrix method survives the considerable amount of
consecutive damaged bytes (being completely ineffective in case more than 40% of the
message is damaged), although it is useless in case of single damaged bytes in different parts
of the message. In that case the half or the whole message becomes unreadable.

The block Q-matrix method handles the consecutive damaged bytes a little worse (being
completely ineffective in case more than 31% of the message is damaged), and allows the
restoration of the scattered single error bytes (up to 4% if the message). Also, even if it fails to
correct, only the failed damaged groups remain unreadable.

Table 1.
Comparative analysis of the methods

Standard Ficonacci

Q-matrix (n=5) Block Q-matrix method

Ratio of the encoded

message size to the initial 2.1622 4.5
message size
Code rate 0.4625 0.22
Complete restoration of Up to 40% damage of the Up to 31% damage of the
consecutive error bytes message message
1 o
Cpmplete restoration of Less than 1% damage of the Up to 4% damage of the message
single error bytes message
If failed to correct all Half or all of the message is | Only the failed 4-byte segments
errors unreadable remain unreadable
Time to encode 4000
1.13 sec 1.1 sec
bytes
Time to decode 4000 465 sec 0.75 sec
bytes

The standard Fibonacci Q-matrix method doesn’t belong to linear block or
convolutional codes [2], which are widespread in coding theory for error detection and
correction, or any other category known to the authors. In terms of this it is difficult to
compare it with the work of other codes.

While the widespread codes make it possible to correct single bits and their
combinations, the Fibonacci Q-matrix allows restoring the elements of the matrix, the size of
which is theoretically unlimited. The implementation of this method, however, may require
arbitrary-precision arithmetic.

This code also allows encrypting the data, using the power of the Q-matrix as an
encryption key. This gives the code an additional advantage in cryptography.

The use of this method might prove useful for the digital signature technology. If both
the power of the Q-matrix and the determinant are present, the validation of the document can
be verified by comparing the calculated determinant with the known one.

The results of numerical experiments made it possible to calculate the rate of the code.
The code rate [3] is a relation of bits of «useful» information (primal message) to the number
of bits of redundant information (encoded message).

Using the developed library it was experimentally proved that for » =5, while the size
of the message tends to infinity, the rate of the standard Fibonacci Q-matrix code approaches
approximately 0.4625. Increasing the power n for Q-matrix will decrease the code rate,
therefore increasing the size of the encoded message compared to the primal.

For comparison, the rate of Hamming (3.1) - code is 0.333, and Hamming (7.4) - code is
0.571 [3].
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The standard Fibonacci Q-matrix coding method is quite useful if the damage took
place in only one part of the message, even if the whole part was corrupted. However, the
damage in more parts will make half of the message, or the whole message, unreadable and
uncorrectable. Interleaving isn’t effective for this method, unless we can predict which bytes
will be damaged beforehand.

Nevertheless, given that lim, F”” =@, where F, is a Fibonacci number 7, and ¢ is

the Golden ratio, there are ways to correct errors even in two or three elements in the matrix
[5,6]. However, these methods require additional study.
The developed block Q-matrix method relates to the block codes [10]. The code rate is

4 . . . . .
T =0.22 in computer implementation, and the optimized algorithm’s code rate can reach

i?) =0.307. In both cases the number of redundant bits exceeds the standard method.

With the help of interleaving this code can correct the consecutive damaged bytes a
little worse than the standard Fibonacci Q-matrix method. However, at first, it leaves the
unharmed code readable, and, at second, is able to restore single damaged bytes in different
parts of the message even without interleaving.

Both methods are inferior to most of the modern codes in speed and amount of
calculations, but their correcting ability can be high for specific types of damage.

Conclusion

This paper presents the Fibonacci Q-matrix coding method, which allows detecting and
correcting data errors. The authors have formalized, systematized and justified the existing
researches in this field. The “block Q-matrix” method has been developed on the basis of the
standard algorithm. The comparative analysis of these methods has been made.

The advantage of these methods is that they allow correcting considerably large
information units, the size of which is theoretically unlimited, instead of single bits and their
combinations. A matrix element that can be an integer of unlimited value is a minimal
information unit for the Fibonacci Q-matrix coding method.

However, both methods are inferior to most of the modern codes in speed and amount
of calculations. The standard method also cannot restore the message, if the damage is out of
limits of predefined area. This disadvantage has been amended in the block Q-matrix method.
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