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The task of pronunciation quality assessment by comparison with a reference example
usually requires large training set of such examples. Unfortunately, such sets even for
widely used human languages are rare. Most annotated speech corpora contain examples of
mispronunciation, without reference utterance examples. In this paper we propose an
approach to assess pronunciation quality by comparison with a reference example given
small set of reference utterance examples. Dynamic time warping with silence model
allows to compare reference utterance by teacher/native speaker with student’s utterance
and to obtain feature sets describing mispronunciation at word and phone level. Student’s
utterance is then classified as correct or mispronounced using bagging method.

Keywords: computer-aided pronunciation training, language learning, mispronunciation
detection, dynamic time warping, bagging.

Problem statement

Computer-Aided Language Learning (CALL) systems [1-2] have gained new attention
nowadays, as speech recognition technologies (SRT) widely used in human-computer
interaction with search engines can be adapted to distant language learning. Computer-Aided
Pronunciation Training (CAPT) systems respond to the demand of SRT client to be
understood. There are various technologies to teach reading, listening, and grammar, to
improve and expand vocabulary. At the same time, oral speech and correct pronunciation
training are harder to automate, and are more to the research, than to the technology, however
several pronunciation assessment services already exist [3-4].

The straightforward way to assess pronunciation is to use automatic speech recognition
(ASR) system. Current ASR systems are based on supervised machine learning techniques.
Training of ASR system requires a large corpus of annotated (manually/automatically)
reference data — audio files storing sound of a phoneme/word/phrase/text utterance of a person
in a given language. Such a prerequisite causes a bottleneck of direct adoption of ASR system
to pronunciation assessment — necessary datasets are only available for the most used
languages [5-6], whereas there are 7102 languages spoken in the world [7]. One more
bottleneck of ASR system adoption is the vocabulary used. Sufficient datasets are available
only for the most common, everyday topics (e.g. British English corpus WISCAMO [8] for
news). Specific terminology words, professional slang, rare vocabulary words will be
substituted by similarly sounding words.

Therefore, there is a need of exploring alternative approaches that do not require large
reference data, and do not perform extra operations, e.g. do not perform full ASR.

Related Work

At the early stages, pronunciation quality assessment was performed for the whole
phrase with the help of hidden Markov model. Obtained results did not depend on a teacher,
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but did not point to the error type [10-12]. To overcome this difficulty the researchers focused
on various ways of detection of “problematic” phonemes extracted from utterance examples,
and their classification as pronounced correctly or mispronounced [13-16]. The results of such
approach have shown increased precision of pronunciation assessment. Approaches to extend
ASR system with typical pronunciation errors [17] lead to increased quality of assessment.
However, they require a-priori sets of typical pronunciation errors, inherent to language
learners of different nationalities. As a result, only those typical errors could be assessed, i.e.
person-specific utterances within the same nationality are not taken into account.

Recently, comparison-based approaches to mispronunciation detection [9], [18] appear,
attempting to avoid usage of a full ASR system. They differ in the way how classification is
performed, and how feature sets of utterances are obtained. In [9] SVMs are used for
classification, and utterance feature sets extracted with Gaussian posteriograms (GP) and Mel
frequency cepstral coefficients (MFCC) are compared. In [18] classification is done with
Gaussian mixed models (GMMs), and deep neural networks (DNNs) are used for extraction
of feature sets.

Aim of the paper

In this paper, we propose to use bootstrap aggregating (bagging) algorithm to improve
classification of example utterances, taming the problem of small reference datasets. The
approach is inspired by the previous success in application of dynamic time warping (DTW)
with silence model [9] to mispronunciation detection. However, in [9] support vector
machines (SVM) are used in classification of example utterances, which require a large
reference dataset for classifier training. Bagging algorithm allows starting pronunciation
assessment with a small reference dataset, incrementally adding new references. Such an
environment is inherent to a socially-oriented on-line language learning system, where
teachers/native speakers can add their utterances of sample phrases, and the system
reclassifies students’ pronunciation accordingly.

Results

Mispronunciation quality assessment simplified method is based on the following
assumptions:

e if a phrase uttered by a student similar to a phrase uttered by a teacher, then the
student has a good pronunciation;

e similarity criterion is a distance function between correspondent features’ values of
conditional phonemes utterance by teacher and student;

e uttered phrase is split into conditional phonemes in assumption that features of the
sound change essentially between different conditional phonemes, rather than inside one
conditional phoneme;

¢ silence and pauses between words are not taken into account.

Claimed that student’s pronunciation is well-trained if his/her phrase is similar to a
teacher phrase. This allows at the beginning only a small set of teacher sample utterances. The
benefit of such an approach is its simplicity, incremental pronunciation quality assessment
improvement as more correctly pronounced samples (e.g. by students) are put into a sample
set.
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Sound file preparation stage

Sound file preparation stage is traditional for speech recognition (see Fig.1). First, low-
frequency component is removed as not important for speech recognition by means of signal
smoothing:

x,=ax,+(1-a)x,, |a<], (D

where « - is a parameter, regulating the level of smoothing.

Then, the signal amplitude is mapped to the segment [-1, 1] and the signal is split into
frames, F (see Fig. 1). Frames are overlapping fragments of the sound file, having length
depending on the frequency of the sound. In our case, as sound was recorded at 22 kHz, and
fast Fourier transformation requires 2" discrete signal values in a frame, frame length was
23 ms (512 values), and overlapping window was 11 ms (256 values).
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Fig. 1. Dependency of a sound signal on time and frame size explanation

For each frame ¢ of F we calculated MFCC [19] feature set, and additionally energy,
entropy, and their first and second derivatives, resulting in a feature set f, of 42 features.
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Fig. 2. Sound file preparation steps

For a frame ¢ its energy is evaluated as biased estimate of the variance of the input
signal:

N—-

L
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E=—>(x-%),1=1T, 2)

where X, - is an average value of signal in a frame ¢, N — quantity of amplitude values in a

frame, ¢ — frame number, 7 — total quantity of frames.

To evaluate entropy we obtain amplitude sweep [a ], the resulted segment is

min ? amax

and a, =a,,, , and for each

max 2

split into R parts [a,,q,], [a,,a,], ..., [a,,az], where a, =a,;

n
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frame we calculate the quantity of amplitudes, belonging to the segment and obtain frequency
histogram. Then, using Shannon’s definition of information entropy, we obtain:

I:_Zpi ln(pi)7 (3)

i=1

where p, —is a signal amplitude share, belonging to the segment [a, ,,a,].

Usage of Mel Frequency Cepstral Coefficients (MFCC) is one of the standard
techniques to obtain features of a sound in ASR systems [19]. MFCC features are obtained
with the help of a set of frequency filters, taking into account the peculiarity of a human ear to
have different sensibility in different parts of the audio spectrum — almost linear for
frequencies below 1 kHz and logarithmic for higher frequencies.

At the first step we calculate signal energy logarithm upon application of each filter

S(t,m) = ln(Nz_l|X(t,n)|2H(m,n)j,t =1,T,m=0,M -1, (4)

where X(¢,n) —is a n-th component of Fourier image in the frame ¢, H(m,n) —is a n-th
component of m -th Mel-Frequency filter, N — window size, M — predefined quantity of
Mel filters, 7 — quantity of frames. Usually in ASR systems M =20, but M =12 is also
acceptable.

At the second step we perform discrete cosine transformation of S(¢,m) values:

M-1 _
c(tom)= Y S(tm,) cos(W}r LT, m=0,M 1, 5)

m1:0

We also calculate first and second derivatives to take into account human ear reaction to
the spectrum changes in time:

de(t,m)=c(t+2,m)—c(t —2,m),

d’c(t,m)=c(t+1,m)—c(t —1,m). ©)
The same derivatives are calculated for energy £ and information entropy / as well.
Values (2), (3), (5), (6) form a feature set f, for each frame ¢, resulting in a feature set

of 42 features

£, ={c(t,m),de(t,m),d*c(t,m), E,dE,d’E, 1,dl,d’I) (7)

Preparation of samples

To detect silence we seek frames with minimal information entropy values [20] that are
considered as noise. Frames contain informative speech, if its Mahalanobis distance to any of
frames considered as noise exceeds a given threshold [21].

Sequence of frames, F, is then separated into conditional phonemes, by pair wise
comparison of Euclidean distances between correspondent MFCC values of each two
neighbor frames f,, f,_,. We assume that sound characteristics change essentially between two

different conditional phonemes, rather than within the same phoneme. To calculate Euclidean
distances we use MFCC features of the same nature (energies, frequencies etc). Conditional
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phonemes set may not coincide with the traditional sound set of the language, and for each
specific phrase may differ.

Separation of a sample phrase into words may be performed manually or with the help
of some ASR system.

Comparison with sample

After sample and student utterances are prepared as shown in Fig.3, DTW algorithm is
used to align two frame sets (see Fig.3).

Given sample FT ={ft,.., ft,} and student’s FS ={fs,,..fs, }frame sets, DTW
distance matrix @ is constructed as

q)(i,j)zD(ﬁi,fS'j),iZI,,n’j =l..m,

where D — is Euclidean distance between sample/student frames.
As student utterance is uncertain, with pauses, we use DTW with modified distance
function, taking silence frames into account, as in [9].

Silence vector @, keeps average distances from each frame of FS to each frame of
FT , marked as silence,

b)) =~ S Ok, ).

where r —is a quantity of frames in F7 marked as silence.
Modified distance matrix is then obtained as

o', j) =1 (PG (). i€ B
oG, ), ie B ,

where ¢, (j) — average distance between j-th frame of FS and frames of F7, marked as

silence, i — sample frame index, j — student frame index, B — set of sample frames, where
student can (or is allowed to) make a pause.
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= » y
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A

measures (1)-
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Fig. 3. Comparison steps
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Fig. 4. Sample (ideal) and student utterances of a phrase “This woman has got a good dress”

Given ¢, ¢ — begin/end indexes of frames of a particular conditional phoneme of

fmin * " max

sample utterance, ¢, . ,¢, — of student utterance, we obtain the following set of measures:

smin > ” S max

— max/min indexes of student frames ¢ given the index of sample frame ¢,

SO (tt) = min(ts | tt))

(8)
5,(t,) = max(, [1,);
— max/min indexes of sample frames 7, given the index of student frame ¢,
t,(¢,) =min(z, | ¢,),
o(s)_ | ‘). ©)
4(t,) = max(t, | £,);
— average angle of a slope of the graph of a linear function (see Fig. 4)
t - .
K — S max Smin ;
tt max tlmin (10)
— deviation from the graph of a linear function
C = max(|s, () —¢-Kl|s, () - K] ) (11)
—maximal deviation from the graph of a linear function
D= max (maXQSO(Z)—t-K,Sl(t)—t-KD), (12)

tmin <1<t max
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— maximal quantity of student frames correspondent to one sample frame
S =max(s,(t) — s, (1),t, <1<t (13)
— maximal quantity of sample frames correspondent to one student frame

S =max(¢,(s)—,(5)),¢ <t . (14)

Smin

Enlisted measures aim at evaluation of the pronunciation speed and duration of a
phoneme utterance.
To measure similarity of utterance of two phonemes of the same length (in frames) we
Umax  51(2) ,
used Euclidean distance between each pair of phonemes R = ) > ®(ts), and
1=ty in $=50 (1)

Limax

R, = > @ (t,t-K).

t:tfmin

Classification

Given a feature set f, and measures set (8)-(14), it is possible to classify student

utterance as correct or mispronounced. Classification task was formulated as follows: given a
small set of sample utterances and an example utterance, obtain pronunciation quality as

similarity measure. Each sound file is presented as two-dimensional array: F = { f },t = I,_T,
where ¢ —is a frame number, f, —set of 42 features (7), calculated for the frame ¢.

To compare different recordings, their durations were equalized with DTW, hence all
the sounds were presented as two-dimensional arrays of the same size.
Let classifier be presented with an unknown function %: F — {—1,+1}, where “-1” and

“+1” are classes correspondent to “mispronounced” and “pronounced correctly”. Function 4
is selected such that if 4(F) <0, an example utterance is considered as mispronounced, and if

h(F) >0 — as pronounced correctly.

The main problem for mispronunciation detection task was the small set of samples.
Most machine learning techniques (Bayesian classifiers, neural networks, hidden Markov’s
models) require large training sets. Usage of small training sets leads to overfitting problem —
classifier simply stores the whole training set, without learning and generalizing, so even
slight modification of the sample leads to errors. However, modifications are unavoidable,
because sample utterances can be recorded by different people, having different recording
devices.

Therefore, only simple classifiers, such as support vector machines (SVM) dealing with
small training sets, can be applied. SVM classification technique seeks for hyper plane
separating two clusters in multidimensional space, where the most important points are the
closest to the borders of clusters. However, in our task it is unknown if such a hyper plane
exists, because it is possible, that there is not a plane, but a complex surface (parabolic etc.).
We conducted a set of experiments with SVM, as in [9], but on a small training set, and
obtained unsatisfactory results.

Hence, we concluded at selection of machine learning ensemble meta-algorithm
Bootstrap Aggregating (Bagging) [22].
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Bagging

As the sample set is relatively small, classifiers like SVM cannot be used due to large
training set required, we propose to use bootstrap aggregating, or bagging algorithm [22] to
generate training set for classifier.

The main idea of bagging is to create an ensemble of simple classifiers, each of which is
trained on a randomly selected training subset

h,(F.,z,),q=1,0,

where O — number of classifiers, z, — some adjustable parameters, F'— audio file feature set.

Q is either predefined or adjusted depending on the training results.
After training, we obtain a set of /%, , on average behaving as a 4(F) we seek for, and

the resulting classifier is averaging all the 7, :

WF) =éisign(hq (F.z,).

g=1

that is a value of comparison between a sample and an example.

Training set construction for bagging

To create training sets three consequent random generators were used. First generator
selected a feature index m, from the feature set f, (integer from 1 to 42), second —a moment

of time 7, . Third generator worked several times — it selected indexes of elements from the set

of all utterances, both sample and students’, {/ it i=L1.
Training subset is a set of pairs

(Eq My [lq[ ]7 czass[lqi ])

where class[l;]=1, if F,_, [[] is correctly pronounced, classl,]=-1, if F_, [[,] is

mispronounced.
As functions &, (F[/,],z,) we selected linear functions

h(Fll,)z)=F, , [l]+2,, (15)

where qu,mq [/,/] is a real number — the value of m,_ for feature set ftq , for [ ;-th utterance, z,

- some real number.
To train each classifier 4, (F,z,) it is necessary to find z, , minimizing the error

1
ERR, =3

i=1

class[l,]— Sl'gl’l(hq7 (th,mq [Z,:).2, ))‘

Classifiers (8) are simple, easy to create and to train. For each classifier 4 (F,z,)

calculated is the frequency of errors, and the most precise classifiers remain, others are
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removed. The selection assumes each classifier decided its dominant class, “-1” or “+1”, and
then class number is averaged.

The benefits of bagging are: there is no overfitting, adding “noise” is a step of
classifiers creation; best features are selected automatically at the classifiers selection stage;
rather complex surfaces, not just planes in the feature space, can be dealt with bagging.

Experiments

To assess pronunciation quality, calibration of results is needed. To calibrate the system,
we use small additional set of utterances by students with good pronunciation grades,
confirmed by a teacher. This additional set was used to obtain minimum and maximum
permissible values of each feature.

Phoneme or word considered as mispronounced if any of measures (8)-(14) go beyond
permissible values. A phrase is considered as mispronounced if any of phonemes or words
was mispronounced.

Examples of pronunciation quality assessment are shown in Table 1, where “-f” —
female student, “-m” — male student.

Table 1.
Grades of pronunciation quality assessment for the phrase “This woman has got a good
dress”
Example | Worst word grade | Worst conditional phoneme | Expert grade
students with good pronunciation grades
2-f 0.250 0.250 good
3-f 0.250 0.250 good
4-f 0.250 0.389 good
5-f 0.250 0.250 good
o-f 0.250 0.250 good
7-m 0.250 0.250 good
8-m 0.250 0.250 good
9-m 0.250 0.250 good
students
06-f 1.499 1.033 weak accent
00-m 1.887 3.764 strong accent
05-f 3.949 6.386 strong accent
07-f 3.748 2.499 strong accent
08-f 5.936 6.440 strong accent
08-f 4.343 6.814 strong accent
09-m 2.017 3.976 strong accent
01-f 2.191 9.836 strong accent
03-f 5.247 3.582 missed word
04-f 3.106 7.746 other phrase
10-f 25.487 25.487 one word instead of phrase
11-m 2.666 2.666 one word instead of phrase
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Concluding remarks

The paper discusses the possibility to adopt known algorithms, used in ASR systems, to
a comparison-based CAPT system. The proposed combination is MFCC-based sound feature
set, DTW with silence model and bagging for creation/training pronunciation classifiers given
a small sample set. Training is performed for each sample utterance separately, and allows for
a small sample set. Adding a new sample does not require the whole system rebuilding, hence
the solution is scalable.

Proposed approach evaluates both correctness of pronunciation and duration/number of
phonemes. To define proper pronunciation a small training set is enough — nearly 10 samples
of each phrase, uttered by different voices and at different rate of speech.

Directions of future work are seen as follows. First, to compare the quality of results on
other corpora possessing both sample and student utterances. Second, to apply other classifier
types that are tolerant to small sample sets.
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OLIHKA SIKOCTI BUMOBU METOJOM IOPIBHSIHHS 3 ETAJIOHOM
I".A. Do6poBonbcbkuii, O.0. Togopiko, H.I'. Kebepie

3anopi3bKuil HalliOHAILHUN YHIBEPCUTET
ByIL. JKyKkoBcbKoro, 66, M. 3amopixoks, 69600, Ykpaina; e-mail: gen.dobr@gmail.com

3amaga OIIHKK SIKOCTI BHMOBH 3a JIOTIOMOTOIO TOPIBHSHHS 3 ETAJOHHOIO BHUMOBOIO
3a3Br4ail NoTpeOye BeJMKOI KITBKOCTI eTayoHiB. Ha »xanb, nmigibpaTn HeoOXiAHYy KUIBKICTh
€TaJOHIB HAaBITh JJIs PO3MOBCIOJKCHOT MOBHM Ba)KKO, OCKUIBKM MEPEBaKHA OLIBIIICTH
aHOTOBaHMX KOPIYCIB MICTHTh JIMIIE Ha0OpW IPUKIAJIB HEKOPEKTHOI BHUMOBH, 0e3
€TaJOHHUX MPHUKIAMIB. Y JNaHifl CTAaTTi 3alpPONOHOBAHO OJMUH MIAXiM IO OLIHKK SKOCTI
BHMOBH METOJIOM IOpPIBHSHHS 3 CTaJOHOM B YMOBaX HEBEJIHMKOI KiTBKOCTI C€TAaJIOHHHX
BuMoB. Metonq DTW 3 ypaxyBaHHSIM THIII TO3BOJSE CIIBCTABUTH €TAJIOHHY (pasy, Ky
BHMOBHWB BUHTEJIH/HOCIH MOBH, 13 (pa30r0 y4dHs, Ta OTPUMATH HaOIp BIACTHBOCTEH BUMOBH
piBHS cioBa i ponemu. Ha oMy Habopi BIacTHBOCTEH BUKOHY€ETHCS Kilacuikamis ¢pa3u
SIK KOPEKTHO/HEKOPEKTHO BUMOBJICHOT 3a JIOTIOMOTOI0 METOIy bagging, skuii He moTpedye
BEJIMKOI KiJTBKOCTi €TAIOHIB I HABYAHHSL.

KarouoBi ciioBa: koMI’'roTepru30BaHe HaBYaHHS BHUMOBI, BUBYEHHS MOBH, BH3HAUCHHS
MTOMIWJIOK y BUMOBI, dynamic time warping, bagging

OLEHKA KAYECTBA NPOU3HOUWEHUSA METOA0OM CPABHEHUS C 3TAJIOHOM
I'.A. To6poBonbckuii, O.A. Togopuko, H.I'. Kebepne

3anopoKCKUH HAITMOHATIBHBI YHUBEPCUTET
yi1. J)KykoBckoro, 66, . 3amopoxse, 69600, Ykpanna; e-mail: gen.dobr@gmail.com

3ajaya OlEHKH Ka4eCcTBa MPOU3HOILICHUS yTEM CPABHEHHMS C ITAJOHHBIM POU3HOLICHUEM
00BIYHO TpeOyeT OONBIIOr0 KOJMYECTBa 3TaloHOB. K coxaneHuio, momo0path HYKHOE
KOJIMYECTBO OTAJOHOB Jaxe JUIsl I[IHPOKO paclpOCTPaHEHHBIX SI3BIKOB TPYIHO,
MOJIABJISONICe OOJBITMHCTBO AHHOTHPOBAHHBIX KOPIYCOB COJCPIKAT JIANIb HAOOPHI
MIPUMEPOB HEMPABUIBHOTO MPOU3HOIICHHUS, HO HE TaJIOHHBIC MPUMEPHL. B MaHHOM cTaThe
npeaaraeTcss OJMH TOJAXO/ K OIEHKE KauyecTBa NPOM3HOLICHUS METOJOM CpaBHEHHS C
STAJIOHOM IIPH YCJIOBHM HEOOJBLIOTO KoJIMYecTBa 3TaioHOB. Dynamic Time Warping c
y4eTOM THUIIMHBI TIO3BOJSIET  CONOCTABUTH OJTAJOHHYIO (pasy, IPOU3HECCHHYIO
YUYUTENEM/HOCUTEIEM S3bIKa, C (pa3odl YYeHHWKa, H TOIYyIUTh Ha0Op CBOKHCTB
MPOM3HOLICHUs] YpoBHA cjoBa u (onembl. Ha ocHoBaHumM 3TOro Habopa CBOICTB
BBIMOJIHSETCS Kiaccuukanus ¢pasbl Kak MPaBHIbHO/HENPABHIBHO IMPOM3HECEHHON ¢
MIOMOIIBI0 MeToAa bagging, KOTOpHIH He TpeOyeT OONBIIOr0 KOJIWYECTBA ITAJTOHOB IS
00y4eHHS.

KaioueBble ci10Ba: KOMITBIOTEPU3UPOBAaHHOE 00yYeHHE POU3HOLIEHUIO, N3yYECHHUE SI3bIKA,
orpejieTieHne OIIMOOK B MPOU3HOIIeHNH, dynamic time warping, bagging

269



